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Hilbert transforms and the Cauchy integral
in euclidean space

by

Andreas Axelsson (Stockholm), Kit Ian Kou (Macau)
and Tao Qian (Macau)

Abstract. We generalize the notions of harmonic conjugate functions and Hilbert
transforms to higher-dimensional euclidean spaces, in the setting of differential forms
and the Hodge–Dirac system. These harmonic conjugates are in general far from being
unique, but under suitable boundary conditions we prove existence and uniqueness of
conjugates. The proof also yields invertibility results for a new class of generalized double
layer potential operators on Lipschitz surfaces and boundedness of related Hilbert trans-
forms.

1. Introduction. This paper considers higher-dimensional analogues of
the concept of harmonic conjugate functions in the plane. We first review the
situation for plane domains. Let D be a simply connected domain in R2 = C.
Then, given a harmonic function u(z) in D, a harmonic conjugate to u(z)
is a second harmonic function v(z) in D such that f(z) = u(z) + iv(z) is an
analytic function, i.e. satisfies Cauchy–Riemann’s equations. The function
v(z) exists and is unique modulo constants. For example, if one requires
that v vanishes at some fixed point in D, then we get a well defined map
u 7→ v. Since harmonic functions are in one-to-one correspondence with their
boundary values, this defines the Hilbert transform

HD : u|∂D 7→ v|∂D

for the domain. The Hilbert transform for a domain D ⊂ R2 concerns only
functions in D, mapping the real part of an analytic function to its imag-
inary part. In contrast, the Cauchy integral concerns the relation between
analytic functions in D and C \ D. This is best explained through Hardy
spaces/projections.
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Given a function h : ∂D → C, we form the Cauchy integral

F (z) = C±h(z) := ± 1
2πi

�

∂D

h(w)
w − z

dw, z ∈ D±,

where D+ := D and D− := C \D. Taking traces, one obtains two bound-
ary functions f±(ζ) := limz→ζ, z∈D± F (z) such that f+ + f− = h on ∂D.
The Cauchy integral acts by projection onto the two complementary Hardy
subspaces of the boundary function space, consisting of the traces f+ and
f− respectively. Discarding the exterior Hardy function f− and considering
f := f+ = u + iv, well-posedness of the classical Hilbert boundary value
problem (BVP) for analytic functions shows that f is in one-to-one corre-
spondence with its real part u, as well as with its imaginary part v. (In
this introduction, in order to explain the main ideas, we neglect technical
details like regularity assumptions on ∂D and h, as well as the fact that
maps normally are Fredholm, not exact isomorphisms.)

From the Hilbert BVP it can be shown that if h is required to be real-
valued, then h is also in one-to-one correspondence with the trace of its
interior Cauchy integral f = C+h|∂D = 1

2h + 1
2πi p.v.

	
∂D h(w)/(w − z) dw.

Thus in the diagram

f
Im //

Re

��======== v

h

C+|∂D

@@������� T // u

the double layer potential operator

Th(z) := Re(C+h|∂D(z)) =
1
2
h(z) +

1
2π

p.v.
�

∂D

Im
(

dw

w − z

)
h(w), z ∈ ∂D,

is an isomorphism. This allows calculation of the Hilbert transform as

(1) v = HDu = Im(C+(T−1u)|∂D).

Note that even though the Cauchy integral, for all D, uses the restriction
of 1/(w − z) as kernel, the kernel of the Hilbert transform depends heavily
on D due to the factor T−1. Unfortunately, in the literature the Hilbert
transform is often incorrectly identified with the Cauchy integral, since it
happens to coincide with the (imaginary part of) the Cauchy integral for
half-planes and disks. However, we emphasize that for all other domains,
these two operators are not the same.

The aim of this paper is to show the existence and L2-boundedness of
higher-dimensional Hilbert transforms for Lipschitz domains in Rn. These
Hilbert transforms are derived from a Cauchy integral as in (1). In the plane,
the double layer potential operator T is the compression of the Cauchy inte-
gral C+|∂D to the subspace of real-valued functions, i.e. T is C+|∂D restricted
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to the subspace of real functions, followed by projection back onto this sub-
space. In higher dimensions, there is a canonical Cauchy integral as well, but
there are various natural subspaces to compress it to, to obtain generaliza-
tions of the double layer potential operator. It is of importance to establish
boundedness and invertibility of such operators, as seen for example in (1).
In connection with boundary value problems for Dirac operators (see the
works [4, 2, 3] by the first author and Remark 4.3 for more details), one
type of compressed Cauchy integrals plays a central role. The compressed
Cauchy integrals used in this paper to calculate higher-dimensional Hilbert
transforms have not been studied before, to the authors’ knowledge.

We next explain the higher-dimensional concepts of harmonic conjugate
functions and Hilbert transforms that we consider in this paper. The plane
domain D is replaced by a domain in Rn, and the Cauchy–Riemann system
is generalized to the Hodge–Dirac system (d + δ)F (x) = 0. Functions F :
D →

∧
Rn now in general take values in the full 2n-dimensional exterior

algebra ∧
Rn =

∧0 Rn ⊕
∧1 Rn ⊕ · · · ⊕

∧n Rn,

and d and δ denote the exterior and interior derivative operators

dF (x) = ∇ ∧ F (x) =
n∑
j=1

ej ∧ ∂jF (x),

δF (x) = ∇ y F (x) =
n∑
j=1

ej y ∂jF (x),

where the exterior and interior products are dual in the sense that 〈x, u∧y〉 =
〈uyx, y〉 for all multivectors u, x, y ∈

∧
Rn. Multivector fields F taking values

in the subspace
∧k Rn are referred to as k-vector fields. The Hodge–Dirac

equation entails a coupling between the different k-vector parts of F . If
F =

∑
k Fk, where Fk : D →

∧k Rn, the differential operators map as
follows

(2) · · · ∧k−2 Rn

d
//

δoo d // ∧k−1 Rn

δ
oo

d
//

δoo

∧k Rn
d // ∧k+1 Rn

δ
oo

d
//
∧k+2 Rn

δoo d // · · ·
δ

oo

so that the Hodge–Dirac equation is equivalent to the system of equa-
tions dFk−1 = −δFk+1, 0 ≤ k ≤ n. If F is monogenic, i.e. satisfies the
Hodge–Dirac equation, then it is harmonic, i.e. satisfies ∆F = (d+ δ)2F =
(δd + dδ)F = 0, or equivalently each of the 2n scalar component functions
of F is harmonic. Recall that d2 = δ2 = 0.
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Fix 0 ≤ k ≤ n and consider a harmonic k-vector field U : D →
∧k Rn. We

say that V1 : D →
∧k−2 Rn and V2 : D →

∧k+2 Rn form a pair of harmonic
conjugates to U if (d + δ)(V1 + U + V2) = 0, or equivalently dU = −δV2,
δU = −dV1 and dV2 = δV1 = 0.

Example 1.1. When n = 2 and k = 0, this reduces to the classical
situation. Indeed, consider an analytic function f = u + iv. We identify
R ≈

∧0 R2 and iR ≈
∧2 R2. Fixing an ON-basis {e1, e2} for R2, we identify

i ≈ e1 ∧ e2. Then

(d+ δ)(u+ iv) = (e1 ∧ ∂1u+ e2 ∧ ∂2u) + (e1 y i∂1v + e2 y i∂2v)
= (∂1u− ∂2v)e1 + (∂2u+ ∂1v)e2 = 0

coincides with the Cauchy–Riemann equations. Hence v is a classical har-
monic conjugate to u if and only if V2 = v e1 ∧ e2 : D →

∧2 R2 is a harmonic
conjugate to u in the sense of the Hodge–Dirac system. (In this case, the
harmonic conjugate V1 vanishes.)

In the general case, we observe that a necessary condition for such V1,
V2 to exist is that U is two-sided harmonic, i.e. δdU = 0 = dδU . We also
observe that V1, V2 are only well defined modulo two-sided monogenic fields,
i.e. the differences V1 − V ′1 and V2 − V ′2 of two sets of harmonic conjugates
satisfy d(Vi − V ′i ) = 0 = δ(Vi − V ′i ), i = 1, 2. When 1 ≤ k ≤ n − 1,
the two-sided monogenic k-vector fields form an infinite-dimensional space
(see Corollary 3.11). Thus, in order to obtain a uniquely defined higher-
dimensional Hilbert transform, further conditions need to be imposed on V1

and V2, so that there is a well defined map

U 7→ V1, V2.

In this paper we consider one possible such further condition on harmonic
conjugate functions, which extends the above technique of calculating con-
jugates with the Cauchy integral and double layer potential operators to
higher dimensions. Under this further condition we say that the harmonic
conjugate functions are of Cauchy type. Since all component functions of U ,
V1 and V2 are harmonic, these fields are in one-to-one correspondence with
their trace on ∂D. Thus, equivalently we will have a Hilbert type transform
U |∂D 7→ V1|∂D, V2|∂D for D.

The outline of the paper is as follows. In Section 2 we introduce the
higher-dimensional Cauchy integral associated with the Hodge–Dirac sys-
tem, and prove existence and uniqueness results for Cauchy type conjugates
to scalar functions, i.e. when k = 0 or k = n. This amounts to proving in-
vertibility of the classical double layer potential operator for domains in Rn.
Both the boundedness and invertibility of this singular integral operator
on Lp-spaces on Lipschitz boundaries (1 < p < ∞ for boundedness and
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2− ε < p <∞ for invertibility) are deep results, but are by now well known
facts.

Section 4 contains the main new result of the paper, Theorem 4.1, and
establishes existence and uniqueness of Cauchy type conjugates to k-vector
fields, 1 ≤ k ≤ n−1. This general case is more involved than the scalar case,
since the generalized double layer potential operators which appear will not
in general be invertible, not even Fredholm, as they have infinite-dimensional
null spaces and cokernels. However, using the theory of boundary value
problems for Dirac operators (which is reviewed in Section 3), we manage
to show invertibility of the operator acting from a complement of the null
space to its range, in a natural L2-based Hilbert space.

In the final Section 5 we illustrate the non-uniqueness of harmonic conju-
gate functions in higher-dimensional euclidean spaces by constructing differ-
ent conjugate functions which are not in general the Cauchy type conjugates.
This second construction is based on the theory of Hodge decompositions,
and the harmonic conjugate functions obtained are said to be of Hodge
type.

In the literature, various generalizations of harmonic conjugate functions
to higher-dimensional euclidean spaces can be found. A classical generaliza-
tion for the upper half-space, using divergence and curl free vector fields, was
introduced in harmonic analysis by Stein and Weiss [11]; see also Stein [12]
and Example 2.7(1). A generalization more similar to our construction is
due to Arzhanykh [1], who studied two-forms B : D →

∧2 R3 conjugate to
scalar functions in three-dimensional space. In the setting of Clifford anal-
ysis, without dealing directly with the more fundamental differential oper-
ators d and δ, there is work on Hilbert transforms and harmonic conjugate
functions in euclidean space by Brackx, De Knock, De Schepper and Eel-
bode [6]. See also the references therein for calculations on special domains
like the unit ball.

2. Hilbert transforms for scalar functions. Write D := d + δ for
the Hodge–Dirac operator; this is an elliptic first order partial differential
operator whose square is the Hodge–Laplace operator D2 = ∆. Just like the
exterior and interior differentiation use the exterior and interior products,
the Hodge–Dirac operator uses the Clifford product:

DF (x) = ∇ 4 F (x) =
n∑
j=1

ej 4 ∂jF (x).

The Clifford product is the unique associative algebra product 4 on
∧

Rn,
with identity 1 ∈

∧0 Rn = R, such that

(3) v 4 w = v y w + v ∧ w, w 4 v = w x v + w ∧ v
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for all vectors v ∈
∧1 Rn = Rn and all multivectors w ∈

∧
Rn. The main

difference between the complex product in R2 and its higher-dimensional
analogue in Rn, the Clifford product, is that the latter is non-commutative.
Here y and x denote the left and right interior products, defined as the
operations adjoint to left and right exterior multiplication, i.e.

(4) 〈w y x, y〉 = 〈x,w ∧ y〉, 〈x x w, y〉 = 〈x, y ∧ w〉, w, x, y ∈
∧

Rn.

Following standard notation, we write w14w2 =: w1w2 for short. Important
to this paper is the following mapping property of the Clifford product: If
v ∈

∧1 Rn = Rn and w ∈
∧k Rn, then

vw ∈
∧k−1 Rn ⊕

∧k+1 Rn.

This is clear from (3).
Concretely, if {ei}ni=1 denotes the standard ON-basis for Rn, the induced

ON-basis for the space of k-vectors
∧k Rn is {es}|s|=k, and in total {es}s⊂n

is the induced basis for
∧

Rn, where n := {1, . . . , n}. For a subset s =
{s1, . . . , sk} ⊂ n, where 1 ≤ s1 < · · · < sk ≤ n, we write es := es1 ∧ · · · ∧ esk

.
In this induced basis the exterior, interior and Clifford products are

es ∧ et = ε(s, t)es∪t if s ∩ t = ∅, and 0 otherwise,
es y et = ε(s, t \ s)et\s if s ⊂ t, and 0 otherwise,

es x et = ε(s \ t, t)es\t if t ⊂ s, and 0 otherwise,

eset = ε(s, t)es4t,

where the permutation sign is ε(s, t) := (−1)|{(si,tj)∈s×t ; si>tj}| = ±1 and
s4 t := (s \ t) ∪ (t \ s) denotes the symmetric difference of index sets.

The radial vector field

E(x) :=
1

σn−1

x

|x|n
, x ∈ Rn,

where σn−1 is the area of the unit sphere Sn−1, is divergence and curl free
for x 6= 0, and is a fundamental solution to the Hodge–Dirac operator. By
the associativity of the Clifford product, Stokes’ theorem gives a Cauchy
type integral formula

(5) F (x) =
�

∂D

E(y − x)ν(y)F (y) dσ(y), x ∈ D,

for monogenic fields F : D →
∧

Rn, i.e. solutions to DF = 0. Here ν(y)
denotes the unit normal vector field on ∂D pointing outward from D, and
dσ denotes scalar surface measure on ∂D. Note that ν(y) must be placed
between the two factors because of non-commutativity.

Example 2.1. If n = 2 and F : R2 ≈ C → C ≈
∧0 R2 ⊕

∧2 R2, the
Cauchy formula (5) reduces to the standard one. Indeed,
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E(y − x)ν(y)dσ(y) =
1

2πi
dw

w − z
if we identify i = e1e2, w = e1y, z = e1x and dw/i = e1νdσ.

With these algebraic preliminaries, we next turn to analysis. For esti-
mates, we use the notation X ≈ Y to mean that there exists a constant C,
independent of the variables in the estimate, such that C−1Y ≤ X ≤ CY .
Similarly, X . Y means that X ≤ CY .

To avoid topological technicalities, we shall restrict attention to the fol-
lowing two types of strongly Lipschitz domains D± ⊂ Rn (i.e. domains
whose boundaries are locally graphs of Lipschitz functions). We write Σ :=
∂D+ = ∂D− for the Lipschitz boundary between D+ and D− = Rn \D+;
by D we denote either D+ or D−.

• A graph domain D+ = {x ; xn > φ(x1, . . . , nn−1)} above the graph
of a Lipschitz regular function φ : Rn−1 → R. Here D− denotes the
domain below the graph.
• An interior domain D+, being a bounded domain which is Lipschitz

diffeomorphic to the unit ball, and whose boundary is locally the graph
of a Lipschitz function (in suitable ON-bases). The exterior domain
D− is the interior of the unbounded complement of D+.

The unit normal vector field ν(y) on Σ is always assumed to point into D−,
i.e. the region below the graph or into the exterior domain. We define non-
tangential approach regions γ(y) ⊂ D, y ∈ Σ, for these Lipschitz boundaries.
For graph domains D±, fix c1 greater than the Lipschitz constant for Σ, and
let

γ(y) = γ(y,D±) := {(x′, xn) ∈ Rn−1 × R ; ±(xn − yn) > c1|x′ − y′|}
for y = (y′, yn) ∈ Σ. For exterior and interior domains, and y ∈ Σ, consider
the coordinate system around y in a neighbourhood of which Σ is a Lipschitz
graph. The approach region γ(y,D±) is defined as the truncated part of the
cone, where dist(x, y) < c2 and c2 denotes a sufficiently small constant.

The boundary function spaces we use are the spaces Lp(Σ;
∧

), where∧
:=
∧

Rn. For a field F in D±, define its non-tangential maximal function

N∗(F )(y) := sup
x∈γ(y,D±)

|F (x)|, y ∈ Σ.

A fundamental theorem in harmonic analysis and singular integral theory,
due to Coifman, McIntosh and Meyer [7], states that the Cauchy integral
is bounded on Lp(Σ;

∧
) on any Lipschitz surface Σ. By surface, we shall

mean a hypersurface in Rn.

Theorem 2.2. Let D± be Lipschitz graph, interior or exterior domains,
and fix 1 < p <∞. Let h ∈ Lp(Σ;

∧
) and define the monogenic field
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C±h(x) := ±
�

Σ

E(y − x)ν(y)h(y) dσ(y), x ∈ D±.

Then ‖N∗(C+h)‖p+‖N∗(C−h)‖p ≤ C‖h‖p for some C <∞ depending only
on p and the Lipschitz constants for the graphs describing Σ.

The principal value Cauchy integral

Eh(x) := 2 p.v.
�

Σ

E(y − x)ν(y)h(y) dσ(y), x ∈ Σ,

exists a.e. and defines a bounded operator E : Lp(Σ;
∧

) → Lp(Σ;
∧

) such
that E2 = I. The boundary traces f+(z) := limx→z, x∈γ(z,D+)C

+h(x) and
f−(z) := limx→z, x∈γ(z,D−)C

−h(x) exist for a.a. z ∈ Σ and in Lp, and

E+h := f+ = 1
2(h+ Eh) and E−h := f− = 1

2(h− Eh)

define Lp-bounded projection operators.

Let h ∈ Lp(Σ;
∧k) be a k-vector field and consider harmonic conjugates

in D+. The Cauchy integral produces a monogenic field

F = V1 + U + V2 = C+h : D+ →
∧k−2 Rn ⊕

∧k Rn ⊕
∧k+2 Rn

in D+. Indeed, the mapping properties of the Clifford product show that
multiplication with the normal vector gives νh : Σ →

∧k−1 Rn ⊕
∧k+1 Rn,

and a similar splitting when multiplying with the vector E(y − x) shows
that

(6) C+h(x) =
�

Σ

E(y − x) y (ν(y) y h(y)) dσ(y)

+
�

Σ

(
E(y − x) ∧ (ν(y) y h(y)) + E(y − x) y (ν(y) ∧ h(y))

)
dσ(y)

+
�

Σ

E(y − x) ∧ ν(y) ∧ h(y) dσ(y) = V1 + U + V2.

Definition 2.3. Given a two-sided harmonic field U : D± →
∧k Rn, i.e.

δdU = 0 = dδU , we say that V1, V2 are Cauchy type harmonic conjugates
to U if there exists h : Σ →

∧k Rn such that U = (C±h)k, V1 = (C±h)k−2

and V2 = (C±h)k+2, where the subscript k denotes the k-vector part of a
multivector. We call h the dipole density of the system V1, U, V2 of harmonic
conjugate functions. The corresponding map of boundary values

U |Σ 7→ V1|Σ , V2|Σ ,
is referred to as the (Cauchy type) Hilbert transform for the domain D.

The following theorem on existence and uniqueness of Cauchy type har-
monic conjugates to scalar functions (k = 0, n) is the main result of this
section.
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Theorem 2.4. Let D ⊂ Rn be a Lipschitz graph, interior or exterior
domain and assume that 2 ≤ p <∞.

(i) Let U : D → R =
∧0 Rn be a harmonic function such that N∗(U) ∈

Lp(Σ). If D is an exterior domain, also assume that limx→∞ U = 0
and has trace u = U |Σ such that

	
uψ dσ(y) = 0, where ψ is the

function from Theorem 2.5. Then there is a unique Cauchy type
harmonic conjugate V = V2 : D →

∧2 Rn to U , and a dipole density
h ∈ Lp(Σ), such that

‖N∗(V )‖p + ‖h‖p . ‖N∗(U)‖p.
If D is a graph or an interior domain, then h is unique, and if D is
an exterior domain, then h is unique modulo constants.

(ii) In the case k = n, (i) remains true when U : D →
∧0 Rn = R and

V = V2 : D →
∧2 Rn are replaced by U : D →

∧n Rn ≈ R and
V = V1 : D →

∧n−2 Rn.

The scalar cases k = 0 and k = n are significantly more straightforward
than the non-scalar case 1 ≤ k ≤ n− 1 (to be treated in Section 4) as they
reduce to the question whether the classical double layer potential equations
are invertible, as explained in the two-dimensional case in the introduction.
On Σ, define the principal value double layer potential operator

(7) Kh(x) := 2 p.v.
�

Σ

〈E(y − x), n(y)〉h(y) dσ(y) = (Eh(x))0

for h : Σ → R, x ∈ Σ. The boundedness of K in Lp(Σ), 1 < p < ∞, is
a direct consequence of Theorem 2.2. Invertibility of I ± K on the other
hand, used in the proof of Theorem 2.4, is not true for all p on a general
Lipschitz surface. Invertibility in L2(Σ) was proved by Verchota [13] via
the method of Rellich estimates. Invertibility in the range 2 < p < ∞ was
proved by Dahlberg and Kenig [8] through atomic estimates in real Hardy
space H1(Σ), duality and interpolation.

Theorem 2.5. Assume that 2 ≤ p < ∞ and let Σ be a Lipschitz graph
domain or the boundary of an interior/exterior domain. Then

I +K : Lp(Σ)→ Lp(Σ) : h 7→ h+ (Eh)0 = 2(E+h)0
is an isomorphism. This is also true for I − K : h 7→ 2(E−h)0 in the
case of a graph domain. In the case of an exterior domain, I − K is a
Fredholm operator with null space consisting of constant functions and range
consisting of all u ∈ Lp(Σ) such that

	
Σ uψ = 0 for some ψ ∈ Lq(Σ), where

1/p+ 1/q = 1.

We remark that Theorems 2.2, 2.4 and 2.5 can be generalized to strongly
Lipschitz domains with more complicated topology. In this case existence
and uniqueness of conjugates hold only modulo finite-dimensional subspaces,
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and I ±K are Fredholm operators with higher-dimensional null spaces and
cokernels.

Proof of Theorem 2.4. To prove (i), take h ∈ Lp(Σ;
∧0) and define Ũ :=

(C±h)0 and ũ := Ũ |Σ = 1
2(I ±K)h ∈ Lp(Σ;

∧0). Theorem 2.5 determines
uniquely h such that ũ = u, possibly modulo constants in the case of an
exterior domain. In any case, this defines uniquely a Cauchy type harmonic
conjugate V := (C±h)2, since C− maps constants to zero in an exterior
domain.

To prove (ii), consider a system of Cauchy type harmonic conjugates
C±h = V + U , where h : Σ →

∧n Rn, V : D →
∧n−2 Rn and U : D →∧n Rn. Introduce the operator U 7→ Uen (i.e. the Hodge star operator for

differential forms up to a sign) which maps k-vectors to n − k-vectors. We
have C±(hen) = Uen+V en, where the functions take values in

∧0 Rn,
∧0 Rn

and
∧2 Rn respectively. This reduces (ii) to (i), since U 7→ Uen commutes

with the Dirac operator and the Cauchy integral by the associativity of the
Clifford product.

We note from the proof the following relations between Cauchy type
harmonic conjugate functions and Hilbert transforms of scalar functions,
the Cauchy integral and the classical double layer potential operator.

Corollary 2.6. Let V : D+ →
∧2 Rn be the Cauchy type harmonic

conjugate to the harmonic function U : D+ →
∧0 Rn = R, with suitable

estimates of non-tangential maximal functions. Then

U + V = 2C+((I +K)−1u),

where C+ is the (interior) Cauchy integral , K is the double layer potential
operator , and u = U |Σ. Taking the trace v = V |Σ of the conjugate function,
the Cauchy type Hilbert transform of u is

u 7→ v = (E(I +K)−1u)2.

Replacing C+, I +K and I +E by C−, I −K and I −E, the corresponding
formulae hold for the domain D−.

Example 2.7. (1) IfD = Rn
+ is the upper half-space with the flat bound-

ary Σ = Rn−1, then K = 0 since E(y−x) in this case is orthogonal to ν(y).
Thus h = 2u and

V (x) = 2(C+u)2(x) = en ∧
2

σn−1

�

Rn−1

y − x
|y − x|n

u(y) dy, x ∈ Rn
+,

where en is the basis vector normal to Rn−1, so in this case the Hilbert
transform U |Rn−1 7→ V |Rn−1 for the upper half-space coincides with the
bivector part of the principal value Cauchy integral u 7→ (Eu)2.
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A classical higher-dimensional notion of harmonic conjugates, using di-
vergence and curl free vector fields in the upper half-space Rn

+, is due to
Stein and Weiss [12], and we refer to Stein’s book [11] for further details.
The upper half-space has the special property that the vector en normal
to ∂Rn

+ = Rn−1 is constant. Split a vector field F in Rn
+ into normal and

tangential parts as

F (x) = U(x)en + Ũ(x),

where U is a scalar function. Stein and Weiss consider the tangential vector
field Ũ as a harmonic conjugate to U , if F is a divergence and curl free
vector field, i.e. if F is monogenic. Since the Clifford product is associative,
this is equivalent to U + Ũen : Rn

+ →
∧0 Rn ⊕

∧2 Rn being monogenic
since

D(U + Ũen) = D((Uen + Ũ)en) = (D(Uen + Ũ))en = 0.

Due to the very special geometry of Rn
+, the bivector field Ũen will in fact

be the Cauchy type harmonic conjugate to U . Indeed, if V denotes the
Cauchy type conjugate, then as noted in the introduction, the difference
Ũen − V is a two-sided monogenic bivector field. Moreover, V (x) = en ∧	
Rn E(y − x)u(y) dy, since the normal vector is constant. Hence
en ∧ (Ũen− V )|Rn−1 = 0. From Theorem 3.3 below we deduce that Ũen− V
= 0, since there are no non-trivial monogenic fields which are normal (in
the sense of Definition 3.1) on the boundary.

Thus, from the above relation Ũen = 2(C+u)2, the Stein–Weiss tangen-
tial vector field Ũ is seen to be

Ũ(x) =
2

σn−1

�

Rn
+

x′ − y
|x− y|n

u(y) dy, x = (x′, xn) ∈ Rn
+,

and taking the trace of Ũ , the n− 1 component functions of Ũ |Rn−1 are the
Riesz transforms of u. We remark that harmonic conjugates in the sense of
Stein and Weiss do not generalize to more general domains D, since they
depend on a canonical direction en.

(2) If D is the unit disk in the plane, then

Kh(x) =
1
π

p.v.
�

Σ

〈y − x, y〉
|y − x|2

h(y) dσ(y) = [h],

where [h] denotes the mean value of h, regarded as a constant function. This
gives (I +K)−1u = u− [u]/2 and

V (x) = (2C+(I +K)−1u)2(x) = (2C+u− [u])2 = 2(C+u)2(x)
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=
1
π

�

Σ

y ∧ x

|y − x|2
u(y) dσ(y)

→ (Eu)2(eit) = i
1

2π
p.v.

2π�

0

cot((t− s)/2)u(s) ds,

when x → eit, y = eis, i = e1e2, and the limit is pointwise a.e. and in
Lp, 1 < p < ∞. Also here the Hilbert transform coincides with the imagi-
nary part of the principal value Cauchy integral. Note that this is far from
being the case for more general domains, not even when n = 2, or for
higher-dimensional spheres as we shall see below. For the exterior of the
unit circle, we see that (I −K)h = h − [h]. Thus I −K has the constants
as null space and its range consists of all functions with mean value zero.
Hence the function ψ in Theorem 2.4, orthogonal to the range, is a constant
function.

(3) For the unit sphere Σ in Rn, K is the operator

Kh(x) =
1

2n/2σn−1

�

Σ

h(y)
(1− 〈x, y〉)n/2−1

dσ(y).

This is weakly singular and therefore compact on all Lp spaces. In fact, this
is true whenever Σ is a smooth surface, since the normal vector will be
approximately orthogonal to E(y − x) in the kernel when y is close to x.
Through a limiting argument, it was proved by Fabes, Jodeit and Rivière [9]
that K is a compact operator on Lp, 1 < p <∞, whenever Σ is a bounded
C1 regular surface.

3. Dirac boundary value problems. In this section we describe parts
of the operator-theoretic framework for Dirac boundary value problems,
developed by the first author in his PhD thesis [3], which we use in Section 4
to extend Theorem 2.4 to general k-vector fields. In the present section,
we focus on explaining the main ideas of proofs, but give references to full
proofs. By N(T ), R(T ) and D(T ) we denote the null space, range and domain
of an operator T .

The basic picture is that the boundary function space

(8) L2(Σ) := L2(Σ;
∧

)

= L2(Σ;
∧0)⊕ L2(Σ;

∧1)⊕ · · · ⊕ L2(Σ;
∧n−1)⊕ L2(Σ;

∧n)

splits in two different ways into pairs of complementary closed subspaces

L2(Σ) = E+L2 ⊕ E−L2 = N+L2 ⊕N−L2.

In the first splitting L2 = E+L2 ⊕ E−L2, the subspaces E±L2 are the
Hardy type subspaces associated with the Dirac equation, i.e. E+L2 consists
of the traces of monogenic fields in D+ and E−L2 consists of the traces
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of monogenic fields in D− which vanish at infinity. The Hardy subspaces
E±L2 = R(E±) are also the ranges of the Hardy projection operators E± in
L2(Σ) from Theorem 2.2, which explains the notation. There is a one-to-one
correspondence between f = F |Σ ∈ E±L2 and F = C±f : D± → ∧Rn, and
we sometimes identify F and f , referring to F as belonging to the Hardy
type subspace.

In the second splitting L2 = N+L2 ⊕ N−L2, which is pointwise, the
subspace N+L2 consists of all fields tangential to Σ, and N−L2 consists of
all fields normal to Σ.

Definition 3.1. A multivector field f : Σ →
∧

Rn is tangential if
ν(x) y f(x) = 0 for almost all x ∈ Σ, and normal if ν(x) ∧ f(x) = 0 for
almost all x ∈ Σ.

The two projection operators N± are

N+g := ν y (ν ∧ g) and N−g := ν ∧ (ν y g).

This tangential/normal splitting is orthogonal, so that ‖g++g−‖2 = ‖g+‖2+
‖g−‖2 when g± ∈ N±L2. On the other hand, the Hardy space splitting is
not orthogonal, only topological in the sense that ‖f+ + f−‖ ≈ ‖f+‖+ ‖f−‖
when f± ∈ E±L2.

The operator-theoretic problem underlying boundary value problems is
to understand the relation between the splitting E+L2 ⊕ E−L2 and the
splitting N+L2 ⊕N−L2.

Example 3.2. Consider the following basic Dirac BVP consisting in
finding F : D+ →

∧
Rn solving the Dirac equation (d + δ)F = 0 in D+

with given normal part g on the boundary Σ. Under appropriate regularity
assumptions, this means exactly that we are looking for f = F |Σ ∈ E+L2

such that N−f = g. Uniqueness and existence of such f , for each g, are
clearly equivalent to the restricted projection N− : E+L2 → N−L2 being
an isomorphism.

In general, there are topological obstructions preventing N−|E+L2
from

being an isomorphism. However, modulo finite-dimensional spaces, the op-
erator is always invertible.

Theorem 3.3. Let Σ be any strongly Lipschitz surface. Then the re-
stricted projection N− : E+L2 → N−L2 is a Fredholm operator of index 0,
i.e. has closed range and finite-dimensional kernel and cokernel of equal di-
mensions. The same is true for all eight restricted projections

N+ : E±L2 → N+L2, N− : E±L2 → N−L2,

E+ : N±L2 → E+L2, E− : N±L2 → E−L2.

If Σ is a Lipschitz graph, then all these maps are isomorphisms.
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The key ingredient in the proof is a Rellich type estimate. The strong
Lipschitz condition on Σ, i.e. that Σ is locally the graph of a Lipschitz
function, shows the existence of a smooth vector field θ which is transversal
to Σ, i.e. 〈ν(x), θ(x)〉 ≥ c > 0 for all x ∈ Σ. Basic identities for the Clifford
and interior products show that

|f |2〈ν, θ〉 = |f̂ |2 1
2(νθ + θν) = 〈f̂ν, f̂θ〉 = 〈−2ν y f + νf, f̂θ〉,

where f 7→ f̂ is the automorphism which negates k-vector fields with odd k.
Thus an application of Stokes’ theorem yields the following Rellich identity:

(9)
�

Σ

|f |2〈ν, θ〉 dσ(y) = −2
�

Σ

〈ν y f, f̂θ〉 dσ(y) +
n∑
j=1

��

D+

〈F, ejF̂ (∂jθ)〉 dx

for all f = F |Σ ∈ E+L2, and therefore the estimate ‖f‖ . ‖N−f‖ +
‖F‖L2(supp θ). If Σ is a Lipschitz graph, we can choose θ = −en, in which
case the last term vanishes and it follows that the restricted projection
N− : E+L2 → N−L2 is injective and has closed range. More generally, the
map f 7→ F in the last term in the estimate can be shown to be compact,
from which it follows that N− : E+L2 → N−L2 has finite-dimensional null
space and closed range. Finally, the index of the restricted projection can
be shown to be zero through either a duality argument or the method of
continuity. For details we refer to [2].

As we shall make frequent reference to it, let us state the well known
method of continuity.

Theorem 3.4 (Method of continuity). Let X and Y be Banach spaces,
and assume that Tλ : X → Y, λ ∈ [0, 1], is a family of bounded operators
depending continuously on λ. If Tλ are all semi-Fredholm operators, i.e.
have closed range and finite-dimensional null space, then the index , i.e.
dim(Y/R(Tλ))− dim N(Tλ), of all operators Tλ is the same.

Another operator in L2(Σ) of importance to us, besides E± and N±, is
the following unbounded first order differential operator Γ .

Definition 3.5. Let Σ be a strongly Lipschitz surface. Denote by Γ the
unique closed operator in L2(Σ) with dense domain D(Γ ) ⊂ L2(Σ) and the
following action:

(i) If f = f+ + f− = F+|Σ + F−|Σ ∈ E+L2 ⊕ E−L2 in the Hardy space
splitting, then Γ acts by exterior (= −interior) differentiation on the
monogenic fields F± in D± as

Γf = (dF+)|Σ + (dF−)|Σ = (−δF+)|Σ + (−δF−)|Σ .
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(ii) If f = f1 + ν ∧ f2 ∈ N+L2⊕N−L2 in the tangential/normal splitting,
where f1, f2 ∈ N+L2, then Γ acts by tangential exterior and interior
differentiation on the two parts respectively as

Γf = dΣf1 + ν ∧ (δΣf2),

where dΣ and δΣ denote the intrinsic tangential exterior and interior
differentiation operators on the surface Σ.

Recall that a bilipschitz parametrization % : Rn−1 → Σ, locally around
a point y ∈ Σ, induces a pullback %∗, mapping tangential multivector fields
N+L2 to L2(Rn−1;

∧
Rn−1). Exterior differentiation commutes with this

pullback, i.e. dΣf = (%∗)−1dRn−1%∗f . Dual to this, a reduced pushforward
%̃∗ in the terminology of [3], intertwines δΣ and δRn−1 .

For Definition 3.5 to make sense, one needs to show that the operators
in (i) and (ii) coincide. This is a consequence of the following proposition.

Proposition 3.6. The following intertwining relations for exterior and
interior differentiation operators hold :

(i) If U : D± →
∧

Rn and N∗(U), N∗(dU) ∈ L2(Σ), then N+U |Σ ∈
D(dΣ) and Γ (N+U |Σ) = dΣ(N+U |Σ) = N+(dU |Σ). If U : D± →∧

Rn and N∗(U), N∗(δU) ∈ L2(Σ), then ν y U |Σ ∈ D(δΣ) and
Γ (N−U |Σ) = ν ∧ δΣ(ν y U |Σ) = N−(δU |Σ).

(ii) If h ∈ N+L2, dΣh ∈ L2(Σ) and x /∈ Σ, then

d
�

Σ

E(y − x)ν(y)h(y) dσ(y) =
�

Σ

E(y − x)ν(y)(dΣh)(y) dσ(y).

If h ∈ N−L2, δΣ(ν y h) ∈ L2(Σ) and x /∈ Σ, then

d
�

Σ

E(y−x)ν(y)h(y) dσ(y) =
�

Σ

E(y−x)ν(y)(ν ∧ δΣ(ν yh))(y) dσ(y).

The trace result N+(dU |Σ) = dΣ(N+U |Σ) in (i) is a special case of the
fundamental fact that the exterior differentiation and pullbacks commute.
Indeed, if i : Σ → Rn denotes inclusion, then N+U |Σ = i∗(U). The trace
result N−(δU |Σ) = ν ∧ δΣ(ν y U |Σ) can then be obtained by Hodge star
duality. For more details of the proof of Proposition 3.6, we refer to [2,
Proposition 4.10] and [3, Proposition 6.2.5].

The usefulness and relevance of the operator Γ to this paper is that it is
closely related to the decomposition (8), as the following proposition shows.

Proposition 3.7. The operator Γ relates to the splitting of
∧

Rn into
homogeneous k-vectors as follows:

(i) If h ∈ L2(Σ;
∧k) and Γ (N+h) = 0, then (C±h)k+2 = 0. If h ∈

L2(Σ;
∧k) and Γ (N−h) = 0, then (C±h)k−2 = 0. Thus, if h ∈

L2(Σ;
∧k) and Γh = 0, then C±h is a k-vector field.
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(ii) For a monogenic field F =
∑n

k=0 Fk in D±, i.e. (d+ δ)F = 0, where
Fk : D± →

∧k Rn, the following are equivalent.

• All homogeneous parts Fk of F are monogenic, i.e. (d+ δ)Fk = 0.
• F is two-sided monogenic, i.e. DF = 0 = FD, where FD :=∑n

j=1(∂jF )ej.
• F satisfies dF = δF = 0.

The result (i) shows that Γ governs the off-diagonal mapping of the
Cauchy integral, i.e. the first and last terms in (6). Indeed, an integration
by parts rewrites these terms as single layer potentials:�

Σ

E(y − x) ∧ ν(y) ∧ h(y) dσ(y) =
�

Σ

Φ(y − x) ν(y) ∧ (Γh(y)) dσ(y),

�

Σ

E(y − x) y (ν(y) y h(y)) dσ(y) = −
�

Σ

Φ(y − x) ν(y) y (Γh(y)) dσ(y),

for x 6∈ Σ, where Φ(x) denotes the fundamental solution for the Laplace
operator and E(x) = ∇Φ(x). For a proof of Proposition 3.7, we refer to [2,
Lemma 4.13, Proposition 4.5].

Since Γ acts by exterior and interior differentiation, it is clear that Γ 2

= 0, or more precisely R(Γ ) ⊂ N(Γ ). We have inclusions of function spaces

LR2 (Σ) ⊂ LN2 (Σ) ⊂ LD2 (Σ) ⊂ L2(Σ),

where LR2 (Σ) := R(Γ ), LN2 (Σ) := N(Γ ) and LD2 (Σ) := D(Γ ). Here LN2 (Σ)
is always a closed subspace of L2(Σ) and LD2 (Σ) is always a Hilbert space
densely embedded in L2(Σ). The domain LD2 (Σ) is equipped with the graph
norm ‖f‖2D := ‖f‖22 + ‖Γf‖22, which makes it a Hilbert space. The range
LR2 (Σ) is equipped with the range norm

‖f‖2R := inf{‖Γu‖22 + ‖u‖22 ; u ∈ D(Γ ), Γu = f},

which makes it a Hilbert space. The properties of the range LR2 (Σ) depend
on the surface Σ, as the following lemma shows.

Lemma 3.8. If Σ is an unbounded Lipschitz graph, then LR2 (Σ) is dense
and not closed in LN2 (Σ). If Σ is a bounded Lipschitz surface, then LR2 (Σ)
is a closed subspace of LN2 (Σ) of finite codimension. In particular , if D+ is
Lipschitz diffeomorphic to the unit ball , then the codimension is 4 and

LR2 (Σ) =
{
f ∈ LN2 (Σ) ; f0 = fn =

�

Σ

ν ∧ fn−1 dσ =
�

Σ

ν y f1 dσ = 0
}
,

where fk : Σ →
∧k Rn denotes the k-vector part of f .

Proof. Since N+L2 and N−L2 are invariant under Γ , we may consider
tangential and normal multivector fields separately. Moreover, the two op-
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erators d and δ acting in Rn satisfy

δ(Fen) = (dF )en,

and upon taking the normal part of the trace of this identity, Proposi-
tion 3.6(i) shows that Γ (fen) = (Γf)en for all tangential f ∈ N+L2. Thus
the actions of Γ on N+L2 and N−L2 are similar, and it suffices to consider
Γ = dΣ acting on tangential multivector fields. Here the stated results are
well known facts from de Rham cohomology.

Instead of working with the projections E± andN±, it is often convenient
to work with the associated reflection operators E := E+ − E− and N :=
N+ −N−, where E2 = N2 = I, which explains the naming. Here E is the
principal value Cauchy singular integral from Theorem 2.2 and

Nf = νf̂ν

is the operator which reflects a multivector field across Σ. Following the
boundary equation method developed in [3, 4], we shall make use of the
rotation operator

ENf(x) = p.v.
�

Σ

E(y − x)f̂(y)ν(y) dσ(y).

The important connection between EN and the restricted projections above
is that

I + EN = 2(E+N+ + E−N−), N(I + EN)N = 2(N+E+ +N−E−),

I − EN = 2(E+N− + E−N+), N(I − EN)N = 2(N+E− +N−E+).

For example, this shows that I + EN is the direct sum of the restricted
projections E+ : N+L2 → E+L2 and E− : N−L2 → E−L2. Thus, in order
to prove that all eight restricted projections are Fredholm operators, it suf-
fices to prove that the two operators I±EN are Fredholm operators on the
full space L2(Σ;

∧
). We record the following generalization of Theorem 3.3,

which was proved in [2, Theorem 4.15] through Rellich estimates involving
a pair of monogenic fields F± : D± →

∧
Rn and the method of continuity.

Theorem 3.9. Let Σ be a strongly Lipschitz surface. Then λ + EN :
L2(Σ) → L2(Σ) is a Fredholm operator with index zero for all λ ∈ R (and
more generally in a double sector around the real axis).

The last result we shall need is the following analogue of Theorem 3.3
for the subspaces LR2 (Σ), LN2 (Σ) and LD2 (Σ).

Theorem 3.10. All four projections E± and N± leave each of the sub-
spaces LR2 (Σ), LN2 (Σ) and LD2 (Σ) invariant and act boundedly in them. All
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eight restricted projections

N+ : E±Lx2 → N+Lx2 , N− : E±Lx2 → N−Lx2 ,

E+ : N±Lx2 → E+Lx2 , E− : N±Lx2 → E−Lx2

are Fredholm operators, for x = R,N,D. All eight maps are injective when
x = R, i.e. when acting in the range LR2 (Σ), for all strongly Lipschitz sur-
faces Σ.

Proof. That E± and N± act boundedly in all three subspaces is clear
from (i) and (ii) in Definition 3.5. As noted above, the Fredholm property
of all eight restricted projections will follow if we prove that I ± EN are
Fredholm operators on Lx2(Σ).

(1) Fredholmness of the operators acting in LN2 (Σ) and LD2 (Σ) follows
from Theorem 3.9 and the method of continuity. For details, we refer to [2,
Theorem 4.15], where it was shown that I ± EN are Fredholm operators
with index zero on L2(Σ), LD2 (Σ) and LN2 (Σ).

To show that I ±EN are Fredholm operators on LR2 (Σ), note that this
is immediate from Lemma 3.8 and the result for LN2 (Σ) when Σ is bounded.
In the case of a Lipschitz graph, consider the commutative diagram

0 // LN2 (Σ) i //

I±EN
��

LD2 (Σ) Γ //

I±EN
��

LR2 (Σ) //

I±EN
��

0

0 // LN2 (Σ) i // LD2 (Σ) Γ // LR2 (Σ) // 0

Note that the rows are exact, i.e. the inclusion map i is injective, Γ is surjec-
tive and N(Γ ) = R(i) = LN2 (Σ). It has been shown that the first two vertical
maps are Fredholm operators. We can now apply a general technique, the
five lemma, to deduce that I ± EN : LR2 (Σ)→ LR2 (Σ) is a Fredholm oper-
ator as well. For details concerning the five lemma for Fredholm operators
we refer to Pryde [10].

(2) It remains to show injectivity on LR2 (Σ). For this, it suffices to show
that E±LR2 ∩N±LR2 = {0} for all four intersections. If Σ is a Lipschitz graph,
then the result follows from Theorem 3.3 since in this case E±L2 ∩ N±L2

= {0}. Assuming thatΣ is a bounded Lipschitz surface, consider for example
E−LR2 ∩ N+LR2 , and let F = dU = −δU , where F and U are monogenic
in D−, with N∗(U), N∗(F ) ∈ L2(Σ), and U,F → 0 as x→∞, while νyF = 0
on Σ. An application of Stokes’ theorem shows that� �

D−

|F |2 dx =
�

Σ

〈U, ν y F 〉 dσ(y)−
� �

D−

〈U, δF 〉 dx = 0,

and therefore F = 0. Note that the asymptotics of the Cauchy kernel E(x)
shows that |U | . |x|1−n, |F | . |x|−n and |δF | . |x|−1−n as x→∞, so that
both D− integrals are convergent.
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A similar argument shows that the other three intersections also equal
{0}.

Corollary 3.11. If 1 ≤ k ≤ n−1, then the Hardy space E±LN2 (Σ;
∧k)

of boundary traces of two-sided monogenic k-vector fields in D± is infinite-
dimensional.

Proof. Consider the Fredholm operator

E± : N+LN2 → E±LN2 .

By Proposition 3.7, this maps k-vector fields to k-vector fields. Since the
space of tangential f ∈ N+L2(Σ;

∧k) such that dΣf = 0 is infinite-dimen-
sional, the corollary follows.

4. Hilbert transforms for k-vector fields. In this section we prove
the following main result of this paper, which extends Theorem 2.4 to more
general k-vector fields.

Theorem 4.1. Let D ⊂ Rn be a Lipschitz graph, interior or exterior
domain, and assume that 1 ≤ k ≤ n − 1. Let U : D →

∧k Rn be such that
δdU = 0 = dδU and N∗(U), N∗(dU), N∗(δU) ∈ L2(Σ). If D is an exterior
domain, also assume that U, dU, δU → 0 as x → ∞. If D is an interior
domain, also assume that δU = 0 if k = 1 and dU = 0 if k = n − 1. Then
there are unique Cauchy type harmonic conjugates V1 : D →

∧k−2 Rn and
V2 : D →

∧k+2 Rn such that

‖N∗(V1)‖2 + ‖N∗(V2)‖2 . ‖N∗(U)‖2 + ‖N∗(dU)‖2 + ‖N∗(δU)‖2.

Before the proof of the theorem, we make some remarks. In the scalar
case, we could apply the known results from Theorem 2.5 on Lp-invertibility
of the classical double layer potential operator to prove existence and unique-
ness of Cauchy type conjugate functions in Theorem 2.4. For k-vector fields,
1 ≤ k ≤ n− 1, Theorem 2.5 is no longer available. In particular, we do not
obtain any Lp-results for p > 2, since the atomic estimates in the proof of
Theorem 2.5 use in an essential way the fact that the equation is scalar. In-
stead, we make use of a natural L2-based boundary function space, LD2 (Σ),
of mixed 0 and 1 order regularity. The key observation is that both dU
and δU are (two-sided) monogenic when U is a two-sided harmonic k-vector
field. Thus, in order to apply the well established L2-theory for BVPs, we
need to require that N∗(U), N∗(dU) and N∗(δU) belong to L2.

Just as in the scalar case, the Cauchy type harmonic conjugate functions
to a k-vector field U can be calculated using a generalized double layer
potential operator. Indeed, according to (6), the Cauchy integral maps
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V2

h

(C±)k+2

88qqqqqqqqqqqqq (C±)k //

(C±)k−2 &&MMMMMMMMMMMMM U

V1

Thus, we need to solve for h in the generalized double layer potential equa-
tion (C±h)k = U .

Corollary 4.2. Let D± ⊂ Rn be a Lipschitz graph, interior or exterior
domain, and let 1 ≤ k ≤ n − 1. Then the range and null space of (C±)k,
with domain LD2 (Σ;

∧k), are

R((C±)k) = {U : D± →
∧k Rn;

δdU = 0 = dδU, N∗(U), N∗(δU), N∗(dU) ∈ L2(Σ)},
N((C±)k) = {F |Σ ; F : D∓ →

∧k Rn, dF = 0 = δF, N∗(F ) ∈ L2(Σ)},
with the same modifications of R((C±)k) as in Theorem 4.1 when D± is an
exterior domain and when D± is an interior domain and k = 1, n− 1, and
where F → 0 as x→∞ when D∓ is an exterior domain and F ∈ N((C±)k).
The operator

(C±)k : LD2 (Σ;
∧k)/N((C±)k)→ R((C±)k)

is an isomorphism. Thus, if U ∈ R((C±)k), its Cauchy type harmonic con-
jugates are

V1 = (C±((C±)k)−1U)k−2 and V2 = (C±((C±)k)−1U)k+2.

Proof. If U ∈ R((C±)k), i.e. if U = (C±h)k for some dipole density h ∈
LD2 (Σ;

∧k), then it follows that U is harmonic andN∗(U), N∗(δU), N∗(dU) ∈
L2(Σ). But δdU = −δδ(C±h)k+2 = 0, so U is in fact two-sided harmonic.
The reverse inclusion follows from the existence proof of Theorem 4.1 below.

Clearly, if F : D∓ →
∧k Rn satisfies dF = 0 = δF and N∗(F ) ∈ L2(Σ),

then F |Σ belongs to the Hardy subspace for the complementary domain
D∓. In particular, C±(F |Σ) = 0 and F |Σ ∈ N((C±)k). The reverse inclusion
follows from the uniqueness proof of Theorem 4.1 below.

Remark 4.3. According to (7), the classical double layer potential is the
compression of the Cauchy integral to the subspace of scalar-valued func-
tions. In Corollary 4.2, identifying a harmonic function with its boundary
trace, we have generalized this by compressing the Cauchy integral/Hardy
projection E± to the operator (E±)k, acting in the subspace of k-vector
fields. Other useful compressions of the Cauchy integral use instead the
subspaces of tangential or normal multivector fields N±L2(Σ), which are
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relevant for BVPs. For example, consider the BVP in Example 3.2 consist-
ing in finding F : D+ →

∧
Rn satisfying the Hodge–Dirac equation, with a

prescribed normal part g of the trace f = F |Σ . Equivalently, we look for a
Hardy function f ∈ E+L2 satisfyingN−f = g. Making the Ansatz f = E+h,
with h ∈ N−L2, we obtain instead a double layer type equation N−E+h = g
in the subspace N−L2. As shown in [4], the well-posedness of the BVP is
essentially equivalent to the compressed Cauchy integral N−E+|N−L2

be-
ing an isomorphism. We note that these types of compressions to N±L2 in
general have better properties than the compressions (E±)k|L2(Σ;

Vk) used
in Corollary 4.2, as N±E±|N±L2

are Fredholm operators.

Uniqueness proof of Theorem 4.1. Assume that h ∈ L2(Σ;
∧k) is such

that its Cauchy extension satisfies U = (C±h)k = 0. We aim to prove that
h ∈ LN2 (Σ) and C±h = 0, so that the Cauchy type harmonic conjugates
V1 = (C±h)k−2 and V2 = (C±h)k+2 vanish.

Define monogenic fields

Ṽ1(x) := C±(N−h)(x) = ±
�

Σ

E(y − x)(ν(y) y h(y)) dσ(y),

Ṽ2(x) := C±(N+h)(x) = ±
�

Σ

E(y − x)(ν(y) ∧ h(y)) dσ(y)

for x ∈ D±, so that V1 = (Ṽ1)k−2, V2 = (Ṽ2)k+2 and (Ṽ1)k + (Ṽ2)k = U
= 0 by assumption. It follows that dV2 = ((d + δ)Ṽ2)k+3 = 0 and δV2 =
−d(Ṽ2)k = d(Ṽ1)k = ((d + δ)Ṽ1)k+1 = 0. Thus V2 and therefore Ṽ2 are
two-sided monogenic and

(10) Γ (E±N+h) = 0.

Similarly, it follows that Γ (E±N−h) = 0.
We first show that (10) implies that h1 := N+h has regularity h1 ∈

LD2 (Σ). Note that E±h1 = 1
2(I ± E)h1 = 1

2(I ± EN)h1, and consider the
commutative diagram

LD2 (Σ) I±EN //

i

��

LD2 (Σ)

i

��
L2(Σ) I±EN // L2(Σ)

where the inclusion i is dense. Moreover, as explained in the proof of Theo-
rem 3.10, the method of continuity shows that I ±EN are Fredholm opera-
tors with index zero on both L2(Σ) and LD2 (Σ). Since (I±EN)h1 ∈ LD2 (Σ),
a general regularity theorem for Fredholm operators [2, Proposition 4.16]
shows that h1 ∈ LD2 (Σ). Similarly, N−h ∈ LD2 (Σ).



182 A. Axelsson et al.

We have shown that E±(ΓN+h) = 0 = E±(ΓN−h), i.e. ΓN+h ∈
E∓LR2 ∩ N+LR2 and ΓN−h ∈ E∓LR2 ∩ N−LR2 . Thus Theorem 3.10 shows
that Γ (N+h) = Γ (N−h) = 0, so that h ∈ LN2 (Σ). According to Proposi-
tion 3.7(i), we have V1 = V2 = 0 and thus C±h = 0.

Existence proof of Theorem 4.1. Assume that U : D →
∧k Rn is two-

sided harmonic in the sense that δdU = 0 = dδU , where N∗(U), N∗(dU),
N∗(δU) ∈ L2(Σ). If D is an exterior domain, also assume that U, dU, δU → 0
as x→∞. If D is an interior domain, also assume that δU = 0 if k = 1 and
dU = 0 if k = n− 1.

We aim to construct V1 : D →
∧k−2 Rn and V2 : D →

∧k+2 Rn and a
dipole density h ∈ LD2 (Σ;

∧k) such that C±h = V1 + U + V2 and

‖N∗(V1)‖2 + ‖N∗(V2)‖2 + ‖h‖D . ‖N∗(U)‖2 + ‖N∗(dU)‖2 + ‖N∗(δU)‖2.

(1) We first construct a tangential k-vector field h2 ∈ N+LD2 (Σ;
∧k) such

that dU = d(C±h2). To this end, consider the singular integral equation

N+E±h̃2 = N+(dU |Σ).

From the assumption, dU is a monogenic field, and Proposition 3.6(i) shows
that N+(dU |Σ) ∈ LR2 (Σ). We claim that the compressed Cauchy integral

N+E± : N+LR2 (Σ) −→ N+LR2 (Σ)

is an isomorphism. As it is the composition of E± : N+LR2 (Σ)→ E±LR2 (Σ)
and N+ : E±LR2 (Σ) → N+LR2 (Σ), it follows from Theorem 3.10 that it is
an injective Fredholm operator. Using the operator algebra for boundary
value problems, developed in [4], we see that

λ2 − 4(N+E+N+ +N−E−N−) = (λN)2 − (N + E)2

= (λ+ 1 + EN)N(λ− 1− EN)N,

λ2 − 4(N+E−N+ +N−E+N−) = (λN)2 − (N − E)2

= (λ+ 1− EN)N(λ− 1 + EN)N.

The right hand sides are seen to be Fredholm operators in LR2 (Σ) for all
real λ as in part (1) of the proof of Theorem 3.10. Applying the left hand
sides to f ∈ N+LR2 (Σ), so that N−f = 0, shows that λ2 − N+E± :
N+LR2 (Σ) → N+LR2 (Σ) are all Fredholm operators. Since these operators
clearly are invertible for large enough λ, the method of continuity shows that
N+E± : N+LR2 (Σ)→ N+LR2 (Σ) has index zero, and therefore is surjective,
since it has been shown to be injective.

Solving the equation, we obtain a unique h̃2 ∈ N+LR2 (Σ) such that

N+(E±h̃2 − (dU)|Σ) = 0,

where we verify that (dU)|Σ ∈ E±LN2 (Σ). It is here we need the topological
assumption on Σ. If Σ is an unbounded graph, then N−L2 ∩ E±L2 = {0}.
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On the other hand, if D+ is Lipschitz diffeomorphic to the unit ball and
1 ≤ k ≤ n−3, then (dU)|Σ ∈ E±LR2 (Σ) according to Lemma 3.8. If k = n−1
then dU = 0 ∈ E±LR2 (Σ) by assumption. Finally, if k = n− 2 then Stokes’
theorem shows that �

Σ

ν ∧ (dU) dσ = ±
�

D±

d(dU) dx = 0

since d2 = 0. (Note that Stokes’ theorem is applicable in D− since |dU | .
|x|−n as x→∞.) Thus E±h̃2− (dU)|Σ ∈ E±LR2 ∩N−LR2 , which equals {0}
by Theorem 3.10. In either case, we conclude that

dU = d(C±h2)

for some h2 ∈ N+LD2 (Σ) such that h̃2 = Γh2 and ‖N∗(U)‖2 +‖N∗(dU)‖2 &
‖h̃2‖R ≈ ‖h̃2‖2 + ‖h2‖2.

A similar argument proves that

δU = δ(C±h1)

for some h1 ∈ N−LD2 (Σ) such that ‖h1‖2+‖Γh1‖2 . ‖N∗(U)‖2+‖N∗(δU)‖2.
(2) To construct Cauchy type harmonic conjugates V1 and V2, write

Ṽi := C±hi, i = 1, 2. Then

d(U − (Ṽ1)k − (Ṽ2)k) = dU − 0− dU = 0,

δ(U − (Ṽ1)k − (Ṽ2)k) = δU − δU − 0 = 0,

so that (U − (Ṽ1)k − (Ṽ2)k)|Σ ∈ E±LN2 . Thus, defining a dipole density

h := (U − (Ṽ1)k − (Ṽ2)k)|Σ + h1 + h2 ∈ LD2 (Σ;
∧k),

V1 := (Ṽ1)k−2 and V2 := (Ṽ2)k+2 gives

C±h = U − (Ṽ1)k − (Ṽ2)k + Ṽ1 + Ṽ2 = V1 + U + V2.

Since ‖N∗(V1)‖2 + ‖N∗(V2)‖2 . ‖N∗(U)‖2 + ‖h1‖2 + ‖h2‖2 . ‖N∗(U)‖2 +
‖N∗(dU)‖2 + ‖N∗(δU)‖2 and ‖h‖D . ‖(U − (Ṽ1)k − (Ṽ2)k)|Σ‖2 + ‖h1‖D +
‖h2‖D . ‖N∗(U)‖2 + ‖N∗(dU)‖2 + ‖N∗(δU)‖2, the proof of Theorem 4.1 is
complete.

5. Other types of harmonic conjugates. Recall from the discussion
in the introduction that if U : D →

∧k Rn is a two-sided harmonic k-vector
field, then two fields V1 : D →

∧k−2 Rn and V2 : D →
∧k+2 Rn are said to be

conjugate to U if (d+δ)(V1 +U +V2) = 0. As noted, further conditions need
to be imposed on V1, V2 for this problem to be well-posed, i.e. for Vi to be
(essentially) unique. Theorems 2.4 and 4.1 show that the problem becomes
well posed if Vi are required to be Cauchy type harmonic conjugates. The
following proposition expresses this condition as a boundary condition.
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Proposition 5.1. Assume that V1 and V2 are harmonic conjugates to
U in D = D+, with N∗(U), N∗(V1), N∗(V2) ∈ L2(Σ). Then they are of
Cauchy type if and only if there exists U− : D− →

∧k Rn with harmonic
conjugates V −1 : D− →

∧k−2 Rn and V −2 : D− →
∧k+2 Rn in D−, with

N∗(U−), N∗(V −1 ), N∗(V −2 ) ∈ L2(Σ) (and decay at infinity when D− is an
exterior domain), such that

V1|Σ + V −1 |Σ = 0 and V2|Σ + V −2 |Σ = 0.

Proof. Recall that by definition, Vi are of Cauchy type if there exists
h : Σ →

∧k Rn such that C+h = V1 + U + V2. In this case, V −1 + U− +
V −2 := C−h has the required properties since E+h+ E−h = h. Conversely,
if V −1 + U− + V −2 has the required properties, let h := U |Σ + U−|Σ =
(V1+U+V2)|Σ+(V −1 +U−+V −2 )|Σ : Σ →

∧k Rn. Then C+h = V1+U+V2.

Note that since Cauchy type conjugates are defined in terms of the
Cauchy integral, which concerns the interplay between monogenic fields in
D+ and D−, the boundary condition above is a transmission problem, i.e.
a jump relation between pairs of monogenic fields in D±.

We end this paper with a construction of harmonic conjugates which
differ from the Cauchy type ones in general. To avoid technicalities, we shall
only consider interior domains, i.e. D is assumed to be Lipschitz diffeomor-
phic to the unit ball. (Unlike the situation for the Cauchy type conjugates,
this second construction does not involve the complementary domain D−.)

Consider the exterior and interior derivative operators d and δ in (2).
These are formally (anti-) adjoint in the sense that

	
Rn〈δF (x), G(x)〉 dx =

−
	
Rn〈F (x), dG(x)〉 dx for all F,G ∈ C∞0 (Rn;

∧
), which is a consequence of

the definition (4) of the interior product. On the domain D, on the other
hand, an application of Stokes’ theorem shows that

�

D

〈δF,G〉 dx+
�

D

〈F, dG〉 dx =
�

Σ

〈ν y F,G〉 dσ =
�

Σ

〈F, ν ∧G〉 dσ.

Thus, in order to make d and −δ mutually adjoint in L2(D;
∧

), one needs to
impose either tangential boundary conditions on δ (so that ν y F |Σ = 0) or
normal boundary conditions on d (so that ν ∧G|Σ = 0). If these boundary
conditions are imposed on the operators in a suitable weak sense, then one
obtains two pairs of densely defined, closed and adjoint operators (−δ, d)
and (−δ, d) in L2(D;

∧
), where the domains of the operators are

D(δ) = {F ∈ L2 ; δF ∈ L2}, D(δ) = {F ∈ L2 ; δF ∈ L2, ν y F |Σ = 0},
D(d) = {G ∈ L2 ; dG ∈ L2}, D(d) = {G ∈ L2 ; dG ∈ L2, ν ∧G|Σ = 0},

i.e. δ is δ with tangential boundary conditions and d is d with normal bound-
ary conditions. For further details, we refer to [5, Section 4]. The following
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proposition summarizes relevant facts from the theory of Hodge decompo-
sitions that we need below to construct harmonic conjugates.

Proposition 5.2. Assume that D ⊂ Rn is Lipschitz diffeomorphic to
the unit ball.

(i) If F ∈ L2(D;
∧k) satisfies dF = 0, and 2 ≤ k ≤ n, then there exists

a unique V ∈ L2(D;
∧k−1) such that δV = 0, ν y V |Σ = 0 and

F = dV.

If k = 1, then such a V exists, but is unique only up to constant
scalar functions.

(ii) If F ∈ L2(D;
∧k) satisfies δF = 0, and 0 ≤ k ≤ n − 2, then there

exists a unique V ∈ L2(D;
∧k+1) such that dV = 0, ν ∧V |Σ = 0 and

F = δV.

If k = n− 1, then such a V exists, but is unique only up to constant
n-vector fields.

In terms of operators, this result means that

d : N(δ;
∧k−1)→ N(d;

∧k) and δ : N(d;
∧k+1)→ N(δ;

∧k)

are injective (except when k = 1 and k = n − 1 respectively) and surjec-
tive unbounded operators. This follows from [5, Theorem 1.3] together with
Poincaré’s lemma. Here N(T ;

∧k) := N(T ) ∩ L2(D;
∧k).

Definition 5.3. Given a two-sided harmonic field U : D± →
∧k Rn,

i.e. δdU = 0 = dδU , we say that V1 : D →
∧k−2 Rn and V2 : D →

∧k+2 Rn

are Hodge type harmonic conjugates to U if (d+ δ)(V1 +U + V2) = 0 and if
ν y V1|Σ = 0 and ν ∧ V2|Σ = 0.

Our main result in this section is the following theorem, which shows
that the boundary condition imposed on Hodge type harmonic conjugates
yields a well posed problem.

Theorem 5.4. Assume that D ⊂ Rn is Lipschitz diffeomorphic to the
unit ball , let 0 ≤ k ≤ n and let U ∈ L2(D;

∧k) be such that dU, δU ∈
L2(D;

∧
) and δdU = 0 = dδU . If k = n − 1, assume that dU = 0,

and if k = 1, assume that δU = 0. Then there exist Hodge type har-
monic conjugates V1, V2 to U in D such that ‖V1‖L2(D) . ‖δU‖L2(D) and
‖V2‖L2(D) . ‖dU‖L2(D). The conjugates are unique, except if k = 2, when
V1 is unique modulo constants, and if k = n− 2, when V2 is unique modulo
constants.

Proof. Apply Proposition 5.2(i) to F = δU , and Proposition 5.2(ii) to
F = dU .
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Remark 5.5. (1) In the complex plane, when n = 2 and k = 0, harmonic
conjugates in general are unique modulo constants. In particular, Hodge type
conjugates coincide with Cauchy type conjugates, modulo constants. Note
that all V = V2 : D →

∧2 R2 are normal on the boundary, since ν∧V |Σ = 0.
(2) For general domains D, Cauchy type harmonic conjugates and Hodge

type conjugates will not coincide in general when n ≥ 3, not even when
k = 0. To see this, note that there is no reason for the Cauchy type conjugate

V (x) =
�

Σ

(E(y − x) ∧ ν(y))h(y) dσ(y), h : Σ →
∧0 Rn

to satisfy ν ∧ V |Σ = 0. However, they do coincide, for all 0 ≤ k ≤ n, when
D is a sphere. To see this for the unit sphere, note that the normal vector
ν(y) in this case is y, so

V2(x) =
�

Σ

E(y − x) ∧ ν(y) ∧ h(y) dσ(y) = −x ∧
�

Σ

y ∧ h(y) dσ(y)
σn−1|y − x|n

is normal on Σ. Similarly, the Cauchy type conjugate V1 is seen to be tan-
gential on Σ in this case. Hence they coincide with the Hodge conjugates
by uniqueness in Theorem 5.4 (modulo constants when k = 2, n− 2).
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