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The tensor algebra of power series spaces

by

Dietmar Vogt (Wuppertal)

Abstract. The linear isomorphism type of the tensor algebra T (E) of Fréchet spaces
and, in particular, of power series spaces is studied. While for nuclear power series spaces
of infinite type it is always s, the situation for finite type power series spaces is more
complicated. The linear isomorphism T (s) ∼= s can be used to define a multiplication on
s which makes it a Fréchet m-algebra s•. This may be used to give an algebra analogue
to the structure theory of s, that is, characterize Fréchet m-algebras with (Ω) as quotient
algebras of s• and Fréchet m-algebras with (DN) and (Ω) as quotient algebras of s• with
respect to a complemented ideal.

In [8] we calculated the linear isomorphism type of the space s of rapidly
decreasing sequences and all of its complemented subspaces E. It was shown
that T (E) ∼= s whenever dimE ≥ 2. This includes all of the so-called power
series spaces of infinite type, including the space H(Cd) of entire functions
for any dimension d. In the present work we study the tensor algebra of
Fréchet spaces in a more general context.

We use these results to give another proof for the isomorphism theorem
in the case of infinite type power series spaces. The isomorphism T (s) ∼= s
defines a multiplication on s which turns it into a Fréchet m-algebra which
we call s•. Its quotient algebras are all nuclear Fréchet m-algebras with
property (Ω) or, equivalently, which are linearly isomorphic to a quotient
of s, and its quotient algebras with respect to a complemented ideal are
the nuclear Fréchet m-algebras with properties (DN) and (Ω). This gives an
“algebra equivalent” to the structure theory of s as developed in [9].

In the last section we extend our study to the finite type power series
spaces, including e.g. the spaces s0 of very slowly increasing functions and
the spaces H(Dd) of holomorphic functions on the d-dimensional polydisc.
There the situation is much more complicated. But it is interesting to observe
that for E = s0 and E = H(Dd) the results are different, however in the
second case the result does not depend on d. In fact we obtain coincidence
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of T (E) on the same class of power comparable E (or E of type (I)) as in
[2], where the symmetric tensor algebras of infinite type power series spaces
have been investigated.

It should be finally mentioned that Fréchet m-algebras which are lin-
early isomorphic to s play a prominent role in [3] from where some of the
notation below is taken. It might also be interesting to study the continuity
of multiplicative forms on s•, which would solve Michael’s conjecture (for a
similar approach see [6]).

1. The tensor algebra of a Fréchet space. A Fréchet space is a
complete metrizable locally convex space; its topology can be given by a
fundamental system of seminorms ‖ · ‖1 ≤ ‖ · ‖2 ≤ ‖ · ‖3 ≤ · · · . A Fréchet
m-algebra is an algebra over C which is a Fréchet space and admits a fun-
damental system of submultiplicative seminorms.

For a Fréchet space E we set

E⊗n := E ⊗̂ · · · ⊗̂ E,

the n-fold complete π-tensor product, and for any continuous seminorm p
on E we denote by p⊗n the n-fold π-tensor product of p.

With this notation we define

(1.1) T (E) =
{
x = (xn)n∈N ∈

∞∏
n=1

E⊕n :

‖x‖k =
∞∑
n=1

ekn‖xn‖⊕nk <∞ for all k ∈ N
}
.

By defining

x1 ⊗ · · · ⊗ xn × y1 ⊗ · · · ⊗ ym := x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ ym,

T (E) becomes a Fréchet m-algebra. In a natural way E ⊂ T (E) and every
continuous linear map E → A, where A is a Fréchet m-algebra, extends
to a uniquely determined continuous algebra homomorphism T (E)→ A. If
E and F are Fréchet spaces then every continuous linear map ϕ : E → F
extends to a continuous algebra homomorphism T (ϕ) : T (E)→ T (F ).

Obviously, the definition of T (E) is independent of the fundamental sys-
tem of seminorms on E, and T (E) is determined, up to bicontinuous algebra
isomorphism, by its universal property. It is called the tensor algebra of E.

If ‖ · ‖1 ≤ ‖ · ‖2 ≤ · · · is a fundamental system of seminorms for E then
we denote by Ek the respective local Banach spaces and by jnm : Em → En
the canonical linking maps for m ≥ n (see [5]). The local Banach spaces of
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T (E) have the following representation:

(1.2) T (E)k =
{
x = (xn)n∈N ∈

∞∏
n=1

E⊕nk : ‖x‖k =
∞∑
n=1

ekn‖xn‖⊕nk <∞
}
.

The following facts are easy consequences of the definition of the tensor
algebra and its universal property:

(1) If E ∼= F then T (E) ∼= T (F ) with a bicontinuous algebra isomor-
phism.

(2) If q : E → F is a continuous surjective map, then T (q) : T (E) →
T (F ) is a continuous surjective algebra homomorphism.

(3) If F is a complemented subspace of E and P the projection, then
T (F ) is a complemented subalgebra of T (E) with the algebra homo-
morphism T (P ) as projection.

If A is a Fréchet m-algebra then the identity idA extends to a surjective
algebra homomorphism qA : T (A)→ A and we have an exact sequence

0→ JA → T (A)
qA−→ A→ 0

where JA is an ideal in T (A). Obviously, qA has A ↪→ T (A) as a continuous
linear right inverse.

If therefore the Fréchet m-algebras A and B are linearly isomorphic,
they can be considered as quotient algebras of the same algebra T (A) with
respect to different complemented ideals. The same holds for algebras B
which are linearly isomorphic to a quotient of A. However, there the ideals
need not be complemented.

We can improve the assertion (1) above.

Proposition 1.1. Let E and F be Fréchet spaces, then the following
are equivalent :

(1) T (E) ∼= T (F ) with a bicontinuous algebra isomorphism.
(2) E ∼= F .

Proof. We only have to show (1)⇒(2). Let ϕ : T (E) → T (F ) be a
bicontinuous algebra isomorphism. We refer to formula (1.1) and set

T2(E) = {x ∈ T (E) : x1 = 0} = T (E)2,

and likewise for F . Then it is obvious that ϕ maps T2(E) bijectively onto
T2(F ). Let πF be the projection in T (F ) onto F with kernel T2(F ). Then
πF ◦ ϕ|E is an isomorphism from E onto F .

We close this section by two simple examples, which we take from [8]:

• T (C) = H0(C), the space of all entire functions on C which vanish
at 0.
• T (C2) ∼= s, the space of all rapidly decreasing sequences (see below).
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While the first example is the representation (1.1), the second is only
a linear isomorphism. Because we will be using the second assertion, we
repeat, for the convenience of the reader, its simple proof.

We think of C2 as equipped with the `1-norm. Then (C2)⊗n = C2n again
equipped with the `1-norm (see [4, Chap. I, §2, no 2, Cor. 4, p. 61]). So we
obtain, labelling the natural basis of C2n from 2n to 2n+1 − 1:

T (C2) =
{
x = (xj)j∈N ∈ CN : ‖x‖k =

∞∑
n=1

2kn
(2n+1−1∑

j=2n

|xj |
)

for all k
}
.

For 2n ≤ j < 2n+1 we have 2kn ≤ jk < 2k · 2kn. Therefore T (C2) ∼= s.

2. Power series spaces. For any sequence α with 0 ≤ α1 ≤ α2 ≤ · · ·
<∞ and for r = 0 or r =∞ we set

Λr(α) =
{
x = (xj)j∈N : |x|t =

∞∑
j=0

|xj |etαj <∞ for all t < r
}
.

Then Λr(α) with the norms | · |t is a Fréchet space. It is called a power series
space, for r = 0 of finite type, for r =∞ of infinite type.

Of particular importance is the case αn = logn. In this case we set
Λ∞(log n) =: s and Λ0(log n) =: s0. We call s the space of rapidly decreasing
sequences, and s0 the space of very slowly increasing sequences.

Moreover, we note that for αn = n we have Λ∞(n) ∼= H(C), the space of
all entire functions in one complex variable, and Λ0(n) ∼= H(D), the space
of holomorphic functions on the open unit disc.

We set rk = k if r = ∞ and rk = −1/k if r = 0. For the tensor algebra
T (Λr(α)) we obtain

T (Λr(α)) =
{
x = (xn,j)n∈N,j∈Nn :

‖x‖k =
∞∑
n=1

∑
j∈Nn

|xn,j |ekn+rk(αj1+···+αjn ) <∞ for all k ∈ N
}
.

We set νn(j) = αj1 + · · ·+αjn for j ∈ Nn and denote by βn(ν), ν = 1, 2, . . . ,
an increasing enumeration of the numbers νn(j), j ∈ Nn.

Then we obtain

(2.1) T (Λr(α)) ∼=
{
x = (xn,ν)n,ν∈N :

‖x‖k =
∑
n,ν

|xn,ν |ekn+rkβn(ν) <∞ for all k ∈ N
}
.

From this representation we immediately derive:
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Lemma 2.1. The tensor algebra of an infinite type power series space is
again an infinite type power series space.

We remark that Λr(α) ∼= Λr(β) if and only if Λr(α) = Λr(β) and this is
equivalent to the existence of a constant C > 0 such that C−1αj ≤ βj ≤ Cαj
for large j (see [5, Proposition 29.1]).

At some point we will assume that log n = O(αn), that is,

(2.2) lim sup
n

log n
αn

<∞.

For r = ∞ this is equivalent to the nuclearity of Λ∞(α). All infinite
type power series spaces which are relevant in analysis belong to this class.
It is not difficult to show that under this condition there is a subsequence
(nk)k∈N of N such that Λr(α) = Λr(log nk).

3. Linear topological properties of tensor algebras of Fréchet
spaces. Throughout this section ∼= will always denote a linear topological
isomorphism. First we see that nuclearity of a Fréchet space is inherited by
its tensor algebra.

Theorem 3.1. A Fréchet space E is nuclear if and only if T (E) is
nuclear.

Proof. If T (E) is nuclear then so is E as an (even complemented) sub-
space. To prove the converse we assume that E is a nuclear Fréchet space.
This means that for every k we find p such that jkk+p : Ek+p → Ek is nuclear.
We have to show that for some q also the linking map Jkk+q : T (E)k+q →
T (E)k is nuclear.

Now with jkk+p also (jkk+p)
⊗n : E⊗nk+p → E⊗nk is nuclear and ν((jkk+p)

⊗n) ≤
ν(jkk+p)

n, where ν(·) denotes the nuclear norm of an operator. We choose
q ≥ p such that ν(jkk+p) < eq and remark that ν(jkk+q) ≤ ν(jkk+p). Then a
straightforward calculation shows that Jkk+q is nuclear.

For our general discussion we need the following lemma.

Lemma 3.2. For any two Fréchet spaces E and F the space T (E) ⊗̂ T (F )
is isomorphic to a complemented subspace of T (E ⊕ F ).

Proof. We have

T (E) ⊗̂ T (F ) =
{
u = (ul,k) ∈

∏
l,k∈N

E⊗l ⊗ F⊗k :

‖u‖m =
∑
n

emn
∑
l+k=n

‖ul,k‖m <∞
}
.
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This space arises in a natural way as a complemented subspace of
T (E ⊕ F ) by decomposing each summand (E ⊕ F )⊗n into 2n direct sum-
mands following from the direct decomposition E ⊕ F .

We call a Fréchet space E shift-stable if E ∼= C⊕E. A power series space
is shift-stable if and only if lim supn→∞ αn+1/αn < ∞. In this case we also
call α shift-stable. Notice that all concrete spaces we will be considering are
shift-stable.

Lemma 3.3. If E is shift-stable then T (E) ∼= s ⊗̂ T (E).

Proof. By assumption we have E ∼= C2 ⊕ E. Since, by Theorem 4.2,
T (C2) ∼= s, we deduce from Lemma 3.2 that s ⊗̂ T (E) ∼= T (C2) ⊗̂ T (E) is a
complemented subspace of T (C2 ⊕ E) ∼= T (E).

On the other hand, T (E) is obviously isomorphic to a complemented
subspace of s ⊗̂ T (E). Now [7, Proposition 1.2] yields the result.

By using [7, Proposition 1.2] again, Lemma 3.3 implies:

Proposition 3.4. If E and F are Fréchet spaces, E shift-stable, F
isomorphic to a complemented subspace of T (E) and T (E) isomorphic to a
complemented subspace of F , then F ∼= T (E).

We will use the following simple remark:

Lemma 3.5. For any Fréchet space E we have

T (E) ∼= E ⊕ T (E ⊗̂ E)⊕ E ⊗̂ T (E ⊗̂ E).

This shows, in particular, that T (E ⊗̂E) is a complemented subspace of
T (E). We will use Proposition 3.4 to show:

Theorem 3.6. For any shift-stable Fréchet space E we have T (E) ∼=
T (E ⊗̂ E).

Proof. By Lemma 3.5, T (E ⊗̂E) is isomorphic to a complemented sub-
space of T (E). Since E is clearly isomorphic to a complemented subspace
of E ⊗̂ E, the space T (E) is isomorphic to a complemented subspace of
T (E ⊗̂ E). As E is shift-stable, Proposition 3.4 yields the result.

Moreover, from Lemma 3.5 and Theorem 3.6 we get the following coin-
cidences:

Corollary 3.7. For any shift-stable Fréchet space E we have

T (E) ∼= E ⊕ T (E) ∼= E ⊗̂ T (E) ∼= T (E)⊕ T (E).

Proof. By Theorem 3.6 we can write the identity in Lemma 3.5 as

(3.1) T (E) ∼= E ⊕ T (E)⊕ E ⊗̂ T (E).
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So T (E) contains E ⊕ T (E) and E ⊗̂ T (E) as complemented subspaces. As
both contain T (E) as complemented subspace, the first two isomorphisms
follow from Proposition 3.4. The last one then follows from the first two and
equation (3.1).

Finally, we call a Fréchet space E stable if E ⊕ E ∼= E. A power series
space is stable if and only if lim supn→∞ α2n/αn < ∞. In this case we also
call α stable. Clearly, every stable power series space is shift-stable. Notice
that all concrete spaces we will be considering are stable.

Theorem 3.8. For any stable Fréchet space E we have

T (E) ⊗̂ T (E) ∼= T (E).

Proof. By Lemma 3.2, T (E) ⊗̂ T (E) is isomorphic to a complemented
subspace of T (E ⊕ E) ∼= T (E). As T (E) is clearly isomorphic to a comple-
mented subspace of T (E) ⊗̂ T (E), Proposition 3.4 gives the result.

4. The tensor algebra of an infinite type power series space.
The following theorem is contained in [8]. However, its proof here will be
different.

Theorem 4.1. If log n = O(αn), that is, Λ∞(α) is nuclear , then
T (Λ∞(α)) ∼= s.

Proof. By Lemma 2.1 and Theorem 3.1 we know that there is β such
that T (Λ∞(α)) ∼= Λ∞(β) and log n = O(βn).

On the other hand, let π be the canonical projection in Λ∞(α) onto the
span F of the first two natural basis vectors {e1, e2} in Λ∞(α); then T (π)
is a projection in T (Λ∞(α)) onto T (F ) ∼= T (C2) ∼= s. We remark that the
basis vectors in T (C2) which yield the isomorphism to s are products of e1
and e2, therefore a subset of the basis vectors in T (Λ∞(α)) which yield the
isomorphism to Λ∞(β). This implies that there is a subsequence βnk which
is equivalent to log k. In particular, we have βk ≤ βnk = O(log k). Therefore
Λ∞(β) = s.

As a consequence, we have:

Corollary 4.2. T (s) ∼= s.

We obtain a complete characterization of the Fréchet spaces E with
T (E) ∼= s.

Theorem 4.3. For any Fréchet space E the following are equivalent :

(1) T (E) ∼= s.
(2) E is isomorphic to a complemented subspace of s and dimE ≥ 2.
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Proof. (1) implies (2) because E is a complemented subspace of T (E).
If, on the other hand, (2) is satisfied, then we may assume that E is a com-
plemented subspace of s. Let P be the projection. Then T (P ) is a projection
in T (s) ∼= s onto T (E). So T (E) is a complemented subspace of s. We choose
a 2-dimensional subspace F ⊂ E. Let π be a projection in E onto F . Then
T (π) is a projection in T (E) onto T (F ) ∼= s. Therefore s is isomorphic to a
complemented subspace of T (E). By [7, Proposition 1.2] we conclude that
T (E) ∼= s.

Clearly, Theorem 4.3 contains Theorem 4.1. However, the latter gives in
its special case a more precise description of an isomorphism which we will
now use.

The isomorphism in Theorem 4.1, hence also in Corollary 4.2, is of a
special type: the basis vectors in T (s) which yield the isomorphism to s
are pure (tensor) products of canonical basis vectors in s. They are ordered
in such a way that the norms are increasing. We now fix such an ordering,
that is, a special such isomorphism. Then this isomorphism equips the space
s with a multiplication which turns it into a Fréchet m-algebra, which we
call s•. The multiplication in s• is of special form: products of basis vectors
are basis vectors.

In what follows, isomorphisms with s and its quotients or complemented
subspaces are understood to be linear isomorphisms, and isomorphisms
with s• and its quotients to be Fréchet algebra isomorphisms.

The multiplicative equivalent of Theorem 4.3 is:

Theorem 4.4. For a Fréchet space E the following are equivalent :

(1) T (E) ∼= s•.
(2) E ∼= s.

Proof. This is a consequence of Proposition 1.1 and Corollary 4.2.

The considerations at the end of Section 1 and the characterization of
the quotient spaces and complemented subspaces of s in [9] (see also [5, §31])
now lead immediately to the following results, which give a Fréchet algebra
equivalent to these characterizations.

Theorem 4.5. For a Fréchet m-algebra A the following are equivalent :

(1) A is isomorphic to a quotient of s.
(2) A is nuclear and has property (Ω).
(3) A is isomorphic to a quotient of s• with respect to a closed ideal.

Theorem 4.6. For a Fréchet m-algebra A the following are equivalent :

(1) A is isomorphic to a complemented subspace of s.
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(2) A is nuclear and has properties (DN) and (Ω).
(3) A is isomorphic to a quotient of s• with respect to a complemented

ideal.

For the definition and basic properties of the invariants (DN) and (Ω)
see e.g. [5, §29].

5. The tensor algebra of finite type power series spaces. Now we
will determine the linear isomorphism type of the tensor algebra for certain
power series spaces of finite type.

Theorem 5.1. T (s0) ∼= H(C) ⊗̂ s0.

Proof. We refer to formula (2.1) and want to estimate the numbers
βn(ν). For that we put, for r ≥ 0,

mn(r) = #{j ∈ Nn : νn(j) ≤ r} = #
{
j ∈ Nn :

n∑
ν=1

log jν ≤ r
}
.

Counting only the j with j2 = · · · = jn = 1 we see that

mn(r) ≥ [er] ≥ er − 1.

For a reverse estimate we refer to the proof of [8, Theorem 5] and obtain

mn(r) ≤ er
n−1∑
k=0

(
n− 1
k

)
rk

k!
≤ 2n−1er

n−1∑
k=0

rk

k!
≤ en+2r.

This yields
ν ≤ mn(βn(ν)) ≤ en+2βn(ν),

hence

βn(ν) ≥ 1
2

(log ν − n).

On the other hand, for all r < βn(ν) we have

ν ≥ mn(r) ≥ er − 1.

Hence ν ≥ eβn(ν) − 1 and therefore

βn(ν) ≤ log(ν + 1) ≤ log 2 + log ν.

Consequently,

kn− 1
k
βn(ν) ≤

(
k +

1
2

)
n− 1

2k
log ν ≤ 2kn− 1

2k
log ν

and

kn− 1
k
βn(ν) ≥ −1

k
log 2 + kn− 1

k
log ν.



198 D. Vogt

If for x = (xn,ν)n,ν∈N we set

|x|k =
∑
n,ν

|xn,ν |ekn−k
−1 log ν ,

i.e. the standard norms in H(C) ⊗̂π s0, then we have

1
2
|x|k ≤ ‖x‖k ≤ |x|2k.

This completes the proof.

Due to Lemma 3.3 we can put Theorem 5.1 in a more symmetric form.

Corollary 5.2. T (s0) ∼= s ⊗̂ s0.

It is impossible for T (s0) to be the common tensor algebra for all com-
plemented subspaces of s0. This has nuclearity reasons and is due to Theo-
rem 3.1.

Recall that D = {z ∈ C : |z| < 1}. We will now study the tensor algebra
of H(D) ∼= Λ0(n). Proceeding as in the proof of Theorem 5.1 we have to
estimate

mn(r) = #
{
j ∈ Nn :

n∑
ν=1

jν ≤ r
}
.

Comparing with the volume of the standard simplex in Rn we obtain

mn(r) ≤ rn

n!
≤ mn(r +

√
n)

and therefore

ν ≤ mn(βn(ν)) ≤ βn(ν)n

n!
,

which implies
1
e
nν1/n ≤ (n!ν)1/n ≤ βn(ν)

as a lower estimate. We get an upper estimate from

ν ≥ mn(r) ≥ (r −
√
n)n

n!
for all r < βn(ν), which implies, upon replacing r with βn(ν),

βn(ν) ≤ (n!ν)1/n +
√
n ≤ 2nν1/n.

So we have
1
3
nν1/n ≤ βn(ν) ≤ 2nν1/n.
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Definition. We set

TΛ0 :=
{
x = (xn,ν)n,ν∈N :

‖x‖k =
∑
n,ν

|xn,ν |en(k−k−1ν1/n) <∞ for all k ∈ N
}
.

Hence we have proved

Lemma 5.3. T (H(D))) ∼= TΛ0.

Since for the d-dimensional polydisc Dd we have H(Dd) ∼= H(D)⊗d we
immediately deduce from Theorem 3.6 and Lemma 5.3:

Theorem 5.4. T (H(Dd)) ∼= TΛ0 for all dimensions d.

We will generalize this result to a larger class of finite type power series
spaces.

Definition. We call an exponent sequence α power comparable if there
are c > 0 and 0 < a ≤ b so that

1
c
na ≤ αn ≤ cnb

for all n ∈ N.

To exploit this condition we need the following well known lemma
(cf. [1]), for which we give a simple proof for the convenience of the reader.

Lemma 5.5. If α is stable and αn ≤ C βn for all n and some C > 0 then
there is a subsequence kn of N and D > 0 such that

1
D
αkn ≤ βn ≤ Dαkn

for all n ∈ N. In particular , Λr(β) is a complemented subspace of Λr(α) for
r = 0,∞.

Proof. We set
mn := sup{m : αm ≤ Cβn};

then mn ≥ n. We put kn = mn + n and obtain

αkn ≤ α2mn ≤ λαmn ≤ λCβn ≤ λαmn+1 ≤ λαkn ,
which completes the proof.

Theorem 5.6. If α is stable and power comparable then T (Λ0(α)) ∼=
TΛ0.

Proof. First we note that for any ν ∈ Z we have

Λ0(n2ν ) ⊗̂ Λ0(n2ν ) ∼= Λ0(n2ν−1
)

and H(D) ∼= Λ0(n2ν ) with ν = 0.
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From Theorem 3.6 we deduce that T (Λ0(n2ν )) ∼= T (Λ0(n)) ∼= TΛ0 for
all ν ∈ Z. Since α is power comparable we may assume that for some ν ∈ N
and c > 0 we have

1
c
n2−ν ≤ αn ≤ cn2ν

for all n ∈ N.
From Lemma 5.5 applied to the stable sequences n2−ν and αn we deduce

that T (Λ0(α)) is isomorphic to a complemented subspace of T (Λ0(n2−ν )) ∼=
TΛ0, and TΛ0

∼= T (Λ0(n2ν )) is isomorphic to a complemented subspace of
T (Λ0(α)). From Proposition 3.4 we obtain the result.

We also consider the following condition:

Definition. We say that α is of type (I) if there is p ∈ N so that

1 < inf
n

αpn
αn
≤ sup

n

αpn
αn

<∞.

This condition was introduced in [2, Proposition 4.7] and shown to be
equivalent to α being stable and (n−βαn)n increasing for some β > 0.

To consider exponent sequences of type (I) is interesting in our context
as for those sequences the linear isomorphism type of the symmetric tensor
algebra S(Λ∞(α)) has been calculated in [2, Theorem 5.5] as S(Λ∞(α)) ∼=
Λ∞(β) where βn = α[log(n+1)] log(n+ 1).

Lemma 5.7. If α is of type (I) then it is stable and power comparable.

Proof. We may assume that α1 = 1. If

1 < q = inf
n

αpn
αn
≤ sup

n

αpn
αn

= Q

then we have
qν ≤ αpν ≤ Qν

for all ν ∈ N0. For pν ≤ n ≤ pν+1 this gives, with a = log q
log p and b = logQ

log p ,

1
q
na ≤ qν ≤ αpν ≤ αn ≤ αpν+1 ≤ Qν+1 ≤ Qnb,

which completes the proof.

Hence we obtain

Corollary 5.8. If α is of type (I) then T (Λ0(α)) ∼= TΛ0.

6. The space TΛ0. The space TΛ0 is a nuclear (see Theorem 3.1)
double indexed sequence space of the class of power spaces of mixed type.
This class was introduced by Zahariuta in [10] (see also Zahariuta [11, §2]).
They are Köthe spaces given by matrices of the form bj,k = e(λjk−1/k)aj

with lim supλj > 0, lim inf λj = 0. In our case, with j = (n, ν), we have
an,ν = nν1/n and λn,ν = ν−1/n.
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To understand the asymptotics of the an,ν and to write the space in a
single-indexed form we estimate the increasing arrangement γµ, µ ∈ N, of
the set {nν1/n : n, ν ∈ N}.

For this we need to estimate

M(t) = #{(n, ν) : nν1/n ≤ t} = #{(n, ν) : ν ≤ (t/n)n}.
For every n ≤ t we have [(t/n)n] pairs (n, ν) satisfying the estimates. There-
fore

M(t) =
[t]∑
n=1

[(t/n)n] .

This immediately gives M(t) ≤ et. For a lower estimate we use the summand
with n = [t/e]. We obtain

M(t) ≥ [en] ≥ et/e−1 − 1.

Proceeding as in the calculations in the previous section we obtain

logµ ≤ γµ ≤ log(µ+ 1) + (e+ 1).

Therefore we may replace γµ by log µ and write TΛ0 in the following form:

TΛ0 =
{
x = (xµ)µ∈N : ‖x‖k =

∞∑
µ=1

|xµ|eknµ−k
−1 logµ <∞

}
.

The sequence (nµ)µ∈N consists of integers and it takes on every integer value
infinitely often. Moreover, without the knµ-term we would have s0, which is
not nuclear. The knµ-term provides nuclearity.

Finally, let us remark that all the finite type power series spaces in
question are complemented subspaces of s0, hence TΛ0 is a complemented
subspace of T (s0) ∼= H(C) ⊗̂ s0. If we visualize the elements of this space as
matrices, then TΛ0 in the above representation consists of matrices which
have in every column exactly one entry and in every row infinitely many
sparsely distributed entries.
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