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Strictly singular inclusions of rearrangement
invariant spaces and Rademacher spaces

by

Sergei V. Astashkin (Samara), Francisco L. Hernández (Madrid)
and Evgeni M. Semenov (Voronezh)

Abstract. If G is the closure of L∞ in expL2, it is proved that the inclusion between
rearrangement invariant spaces E ⊂ F is strictly singular if and only if it is disjointly
strictly singular and E 6⊃ G. For any Marcinkiewicz space M(ϕ) ⊂ G such that M(ϕ)
is not an interpolation space between L∞ and G it is proved that there exists another
Marcinkiewicz space M(ψ) ( M(ϕ) with the property that the M(ψ) and M(ϕ) norms
are equivalent on the Rademacher subspace. Applications are given and a question of
Milman answered.

1. Introduction. A linear operator between two Banach spaces E and
F is called strictly singular (SS for short), or Kato, if it fails to be an iso-
morphism on any infinite-dimensional subspace (cf. [LT1, 2.c.2]). The class
of all strictly singular operators is a well-known closed operator ideal with
important applications. A weaker notion for Banach lattices, introduced in
[HR], is the following: a bounded operator A from a Banach lattice E to
a Banach space F is said to be disjointly strictly singular (DSS for short)
if there is no disjoint sequence of non-null vectors {xn}∞n=1 in E such that
the restriction of A to the subspace [xn] spanned by the vectors {xn} is an
isomorphism. This is a useful tool in comparing structures of rearrangement
invariant spaces (cf. [HR], [GHSS]).

This paper deals with the strict singularity of inclusions E ⊂ F between
rearrangement invariant (r.i.) function spaces E and F on the interval [0, 1].
That means that the norms of E and F are non-equivalent on any (closed)
infinite-dimensional subspace of E.

The canonical inclusion L∞ ⊂ E is always strictly singular for any r.i.
space E 6= L∞ ([N]), and the case of Lp-spaces is Grothendieck’s classical
result. Furthermore, this property characterizes the space L∞ among all r.i.
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spaces ([GHSS]). Concerning the right extreme inclusion E ⊂ L1, its strict
singularity has been characterized in [HNS] by the condition that the r.i.
space E does not contain the space G, the closure of L∞ in the exponential
Orlicz space expL2. Recall that Rodin and Semenov [RS] (see also [LT2])
proved that the condition E ⊃ G determines precisely the r.i. spaces E for
which the Rademacher function system {rk} is equivalent to the canonical
basis of `2.

One of the aims of this article is to give a complete characterization of
the strict singularity of inclusions between arbitrary r.i. spaces in terms of
disjoint strict singularity. More precisely, it is proved in Section 3 (Theo-
rem 2) that the inclusion E ⊂ F is strictly singular if and only if it is
disjointly strictly singular and the norms of these spaces are not equivalent
on the Rademacher subspace [rn]. This extends some previous results given
in [HNS].

In [RS] the following result was proved for the class of r.i. spaces contained
in G: Under some additional assumptions, the equivalence of the norms in
two r.i. spaces E and F of this class on the Rademacher subspace, i.e.,∥∥∥∑ ckrk

∥∥∥
E
�
∥∥∥∑ ckrk

∥∥∥
F
,

implies the coincidence of E and F up to equivalence of norms, i.e., E = F .
More recently in [A] this result was obtained under a weaker assumption:
the r.i. spaces E and F have to be interpolation spaces between L∞ and G.
It turns out that this interpolation assumption is actually a necessary con-
dition for the above statement to hold. Theorem 9 in Section 4 shows that
for any Marcinkiewicz space M(ϕ) ⊂ G such that M(ϕ) is not an interpo-
lation space between L∞ and G, there exists another Marcinkiewicz space
M(ψ) ( M(ϕ) with the property that the M(ψ)-norm and the M(ϕ)-norm
are equivalent on the Rademacher subspace [rn]. Also a criterion for the strict
singularity of inclusions between Lorentz spaces Λ(ϕ) and Marcinkiewicz
spaces M(ψ) is given (Theorem 11). In particular, for the class of all proper
Lorentz spaces Λ(ϕ) which do not contain G, the norms in Λ(ϕ) and in
the associated Marcinkiewicz space M(ϕ) on the Rademacher subspace are
never equivalent.

The last part of the paper contains some applications. In particular, we
answer in the negative a question of V. Milman [Mi], showing that the r.i.
spaces E = L logλ L and F = L1 satisfy the following conditions: the inclu-
sion E ⊂ F is not strictly singular and any infinite-dimensional subspace of
E on which the norms of E and F are equivalent is an uncomplemented sub-
space of E (Theorem 16). We also prove that any disjointly strictly singular
inclusion between r.i. spaces is weakly compact.

Some results of this paper have been announced in [SH].
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2. Notation and definitions. Recall that a Banach function space E
of measurable functions on [0, 1] is called rearrangement invariant (r.i. for
short) or symmetric (cf. [LT2, 2.a.1], [KPS, 2.4.1]) if

• |x(t)| ≤ |y(t)| for all t ∈ [0, 1] and y ∈ E imply x ∈ E and ‖x‖E ≤
‖y‖E ,
• if x and y are equimeasurable and y ∈ E, then x ∈ E and ‖x‖E = ‖y‖E .
As usual we assume that every r.i. space E is separable or isomorphic

to the conjugate space of some separable space. If E is an r.i. space then
L∞ ⊂ E ⊂ L1 and ‖x‖L1 ≤ ‖x‖E ≤ ‖x‖L∞ for each x ∈ L∞, assuming
‖χ(0,1)‖E = 1.

Recall some important classes of r.i. spaces. If M is a positive convex
function on [0,∞) with M(0) = 0, then the Orlicz space LM consists of all
measurable functions on [0, 1] for which

‖x‖LM = inf
{
s > 0 :

1�

0

M(|x(t)|/s) dt ≤ 1
}
.

A remarkable example is the Orlicz space LN generated by the function
N(u) = eu

2 − 1. The space LN is non-separable and we will denote by
G the closure of L∞ in LN . Another two special Orlicz spaces that will
be considered here are generated by the functions M(u) = eu

λ − 1 and
M(u) = u logλ(1 + u), for λ > 0, and denoted by expLλ and L logλ L.

Let Ω be the set of all increasing concave functions on [0, 1] with ϕ(0) = 0
and ϕ(1) = 1. Each ϕ ∈ Ω generates the Lorentz space Λ(ϕ) endowed with
the norm

‖x‖Λ(ϕ) =
1�

0

x∗(t) dϕ(t),

and the Marcinkiewicz space M(ϕ) with

‖x‖M(ϕ) = sup
0<τ≤1

ϕ(τ)
τ

τ�

0

x∗(t) dt,

where x∗(t) is the decreasing rearrangement of |x(t)|. For any ϕ ∈ Ω we have
Λ(ϕ) ⊂ M(ϕ) and ‖x‖M(ϕ) ≤ ‖x‖Λ(ϕ) for every x ∈ Λ(ϕ). The spaces Λ(ϕ)
and M(ϕ) coincide up to equivalence of norms if and only if ϕ(+0) > 0 or
limt→0 ϕ(t)/t <∞.

Recall that the fundamental function ϕE of a r.i. space E is defined by
ϕE(t) = ‖χ[0,t]‖E for 0 ≤ t ≤ 1. The function ϕE is quasi-concave, i.e., ϕE(t)
and t/ϕE(t) increase on (0, 1]. Up to equivalence of norms, ϕE is a concave
function. In that case Λ(ϕE) ⊂ E ⊂ M(ϕE) and ‖x‖M(ϕE) ≤ ‖x‖E ≤
‖x‖Λ(ϕ) for every x ∈ Λ(ϕE). The fundamental function ϕE(t) is continuous
for t ∈ (0, 1]. The condition ϕE(+0) > 0 is necessary and sufficient for the
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coincidence of the spaces E and L∞ up to equivalence of norms. If two r.i.
spaces E and F coincide as sets then (by the closed graph theorem) the
norms ‖ · ‖E and ‖ · ‖F are equivalent, and we write E = F .

Let rk(t) = sign(sin 2kπt), k ∈ N, be the Rademacher functions on [0, 1].
It was proved in [RS] (see also [LT2, Thm. 2.b.4]) that for an r.i. space E
the Khinchin inequality ∥∥∥ ∞∑

k=1

ckrk

∥∥∥
E
≤M‖{ck}‖`2

is valid, for some constant M > 0, if and only if E ⊃ G. It follows immedi-
ately that for r.i. spaces E and F with E ⊂ F the inclusion E ⊂ F is not
SS provided that E ⊃ G.

The proofs of some statements of this article will make use of interpo-
lation methods. Therefore we recall some concepts and results in the r.i.
setting.

Let (E,F ) be a pair of r.i. spaces and x ∈ E + F . The Peetre’s K-
functional is defined as

K(t, x, E, F ) = inf{‖u‖E + t‖v‖F : x = u+ v}
for every t > 0. Every Banach lattice Φ on [0,∞) such that min(1, t) ∈ Φ
generates the space (E,F )KΦ of the real interpolation method endowed with
the norm

‖x‖(E,F )KΦ
:= ‖K(·, x, E, F )‖Φ.

The space (E,F )KΦ has the interpolation property with respect to the pair
(E,F ), i.e., every linear operator A bounded in E and F is also bounded
in (E,F )KΦ and ‖A‖(E,F )KΦ

≤ max(‖A‖E , ‖A‖F ). In the classical case of Φ
being the lattice on [0,∞) with the norm

‖z‖Φ =
(∞�

0

(t−θ|z(t)|)p dt
t

)1/p

,

where θ ∈ (0, 1) and p ∈ [1,∞] (with the usual modification for p =∞), the
interpolation spaces (E,F )KΦ are denoted by (E,F )θ,p.

We will denote by I(E,F ) the set of all interpolation spaces with respect
to the pair (E,F ). If, for any x, y ∈ E+F with K(t, x, E, F ) ≤ K(t, y, E, F )
for every t > 0, there exists a linear operator A bounded in E and F and
such that x = Ay, then the set I(E,F ) is described by the real interpolation
method, in the sense that for each space Q ∈ I(E,F ) there exists a Banach
lattice Φ such that ‖x‖Q = ‖K(·, x, E, F )‖Φ (cf. [BK]).

If f(x) and g(x) are positive functions on some set A, we shall write
f � g if there exists C > 0 such that C−1f(x) ≤ g(x) ≤ Cf(x) for every
x ∈ A.
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We refer to the monographs [LT2] and [KPS] for the above results on r.i.
spaces and to [BK] and [BL] for those on interpolation spaces.

3. Strict singularity via disjoint strict singularity. Given an r.i.
space E on [0, 1], we denote by E0 the closure of L∞ in E. The space E0 is
always separable, except for E = L∞.

Proposition 1. Let E and F be r.i. spaces with E ⊂ F . Then the
inclusion E ⊂ F is disjointly strictly singular if and only if the inclusion
E0 ⊂ F is disjointly strictly singular.

Proof. The “only if” part is evident. Assume that the inclusion E ⊂ F
is not DSS. Thus there exist a disjoint sequence {xk}∞k=1 in E and M > 0
such that ∥∥∥ n∑

k=1

ckxk

∥∥∥
E
≤M

∥∥∥ n∑
k=1

ckxk

∥∥∥
F

for every n ∈ N and ck ∈ R. We consider separately the cases (i) E ⊂ F0

and (ii) E 6⊂ F0.
In case (i) we have xk ∈ F0 for k ∈ N. Clearly we can assume ‖xk‖F = 1

for k ∈ N. It is well known that limmeasA→0 ‖xχA‖F = 0 for any x ∈ F0 (cf.
[KPS, 2.4.5]). Hence there exists a sequence {Ak}∞k=1 of subsets of [0, 1] with
Ak ⊂ suppxk such that yk = xkχAk ∈ L∞ ⊂ E0 for k ∈ N and

∞∑
k=1

‖xk − yk‖F <
1
2
.

Now, by a stability result [LT1, Prop. 1.a.9], the sequences {xk} and {yk}
are equivalent in F and∥∥∥ n∑

k=1

ckxk

∥∥∥
F
≤ 2
∥∥∥ n∑
k=1

ckyk

∥∥∥
F

for every n ∈ N and ck ∈ R. Since |
∑n

k=1 ckyk| ≤ |
∑n

k=1 ckxk|, we have∥∥∥ n∑
k=1

ckyk

∥∥∥
E
≤
∥∥∥ n∑
k=1

ckxk

∥∥∥
E
≤M

∥∥∥ n∑
k=1

ckxk

∥∥∥
F
≤ 2M

∥∥∥ n∑
k=1

ckyk

∥∥∥
F

for any n ∈ N and ck ∈ R. Therefore the norms ‖·‖E and ‖·‖F are equivalent
on the span of {yk} in E0 and the inclusion E0 ⊂ F is not DSS.

(ii) Consider now the case E 6⊂ F0. Since E0 ⊂ F0 we have E \ E0 6⊂ F0

and (E \ E0) ∩ (F \ F0) 6= ∅. Choose z = z∗ ∈ (E \ E0) ∩ (F \ F0). Then

dE(z, L∞) = a > 0, dF (z, L∞) = b > 0

where dE(z, L∞) = inf{‖z − u‖E : u ∈ L∞}. Since we have ‖zχ(0,τ)‖E =
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limε→0 ‖zχ(ε,τ)‖E and ‖zχ(0,τ)‖E ≥ a for 0 < τ ≤ 1, it follows that
lim
ε→0
‖zχ(ε,τ)‖E ≥ a.

Similarly we have limε→0 ‖zχ(ε,τ)‖F ≥ b for 0 < τ ≤ 1. Hence we can
construct a sequence τk ↓ 0 such that

‖zχ(τk+1,τk)‖E ≥ a/2 and ‖zχ(τk+1,τk)‖F ≥ b/2
for every natural k. Let zk := zχ(τk+1,τk) for k ∈ N. Clearly, zk ∈ L∞ ⊂
E0 ⊂ F0 and

a

2
max
k∈N
|ck| ≤

∥∥∥ ∞∑
k=1

ckzk

∥∥∥
E
≤ ‖z‖E max

k∈N
|ck|

and
b

2
max
k∈N
|ck| ≤

∥∥∥ ∞∑
k=1

ckzk

∥∥∥
F
≤ ‖z‖F max

k∈N
|ck|,

for any sequence {ck} ∈ c0. Hence the sequence {zk}∞k=1 is equivalent in E0

and in F0 to the canonical basis of c0. Consequently, the inclusion E0 ⊂ F
is not DSS.

Recall that G is the closure of L∞ in expL2. We can now prove the main
result of this section.

Theorem 2. Let E and F be r.i. spaces with E ⊂ F . The inclusion
E ⊂ F is strictly singular if and only if it is disjointly strictly singular and
E 6⊃ G.

Proof. The case of E separable has been proved in [HNS, Theorem 5],
so we assume that E is non-separable. Suppose that the inclusion E ⊂ F is
not SS and E 6⊃ G. We have to prove that the inclusion E ⊂ F is not DSS.
Let Q denote the (closed) infinite-dimensional subspace of E on which the
norms ‖ · ‖E and ‖ · ‖F are equivalent. Now, if the norms of E and L1 were
equivalent on Q, we would have E ⊃ G, by Theorem 1 of [HNS]. Therefore,
we can assume that the norms of E and L1 are not equivalent on Q.

We first deal with the case of F separable. Consider the real interpolation
space E1 := (E,F )θ,p for some 0 < θ < 1 and 1 < p < ∞. The separability
of F implies limmeasA→0 ‖xχA‖F = 0 for any x ∈ F , so also for x ∈ E. Hence
K(t, x, E, F ) = K(t, x, E0, F ) for x ∈ F , which implies that E1 = (E0, F )θ,p
(cf. [BL, Thm. 3.4.2]). Therefore E1 is also separable and E ⊂ E1 ⊂ F with
E1 6= F .

Now, since the norms of E,E1 and F are equivalent on Q, the norms of
E1 and L1 are not. Hence, applying the Kadec–Pełczyński method ([LT2],
see [HNS, Thm. 5]) we can find a normalized sequence {xn} in Q and a
sequence of disjoint measurable sets An ⊂ suppxn, n ∈ N, such that yn :=
xnχAn ∈ L∞ and the sequence {xn} is equivalent to {yn} in E1 and in F .
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Now, using that the fact |
∑
cnyn| ≤ |

∑
cnxn| and the equivalence of the

norms of E and E1 on [xn], we have∥∥∥∑
n

cnyn

∥∥∥
E
≤
∥∥∥∑

n

cnxn

∥∥∥
E

≤M1

∥∥∥∑
n

cnxn

∥∥∥
E1

≤M2

∥∥∥∑
n

cnyn

∥∥∥
E1

≤M3

∥∥∥∑
n

cnyn

∥∥∥
E

for any scalar sequence {cn} and for some constantsM1,M2,M3 > 0. There-
fore, the sequences {xn} and {yn} are also equivalent in E. Thus the norms
of E and F are equivalent on [yn] and the inclusion E ⊂ F is not DSS.

Finally, assume that E and F are non-separable. We distinguish two
cases: E ⊂ F0 and E 6⊂ F0. If E ⊂ F0, this inclusion cannot be SS and since
F0 is separable, we deduce as earlier that the inclusion E ⊂ F is not DSS.
In the case of E 6⊂ F0, we get the same conclusion by proceding as in the
second part of the proof of Proposition 1.

Notice that Theorem 2 may be reformulated as follows: the inclusion
E ⊂ F is strictly singular if and only if it is disjointly strictly singular and
the norms of E and F are not equivalent on the Rademacher subspace [rn].

Corollary 3. Let E and F be r.i. spaces with E ⊂ F and E 6⊃ G.
If the norms of E and F are equivalent on [rn] then there exists a disjoint
sequence {xn} in E for which the norms of E and F are equivalent on [xn].

Corollary 4. Let E and F be r.i. spaces with E ⊂ F . The inclusion
E ⊂ F is strictly singular if and only if the inclusion E0 ⊂ F is strictly
singular.

Proof. The “only if” part is trivial. Suppose that the inclusion E ⊂ F
is not SS. It follows from Theorem 2 that either E ⊃ G, or the inclusion
E ⊂ F is not DSS. If E ⊃ G then E0 ⊃ G since G is separable. And if the
inclusion E ⊂ F is not DSS then, by Proposition 1, neither is the inclusion
E0 ⊂ F ; all the more, it is not SS.

4. Strict singularity and Rademacher spaces. In this section we
study couples of r.i. spaces E and F “close” to L∞ with equivalence of norms
on the Rademacher subspace. For that we will make use of some interpolation
results.

Given a r.i. space E, consider the sequence space R(E) of Rademacher
coefficients {ak} endowed with the norm

‖{ak}‖R(E) =
∥∥∥ ∞∑
k=1

akrk

∥∥∥
E
.

It is easy to check that R(E) is an interpolation space between `1 and `2,
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i.e., R(E) ∈ I(`1, `2). Moreover, it is known that the set I(`1, `2) is described
by the real interpolation method (cf. [LS]). Therefore there exists a Banach
lattice F of measurable functions on [0,∞) with respect to the measure dt/t
such that min(1, t) ∈ F and

(1) R(E) = (`1, `2)KF = {a ∈ `2 : K(t, a, `1, `2) ∈ F}
(cf. [BK, Thms. 4.4.5 and 4.4.38]).

We can consider the r.i. space Ẽ associated to E defined by

Ẽ := (L∞, G)KF
with its canonical norm ‖x‖ eE = ‖K(·, x, L∞, G)‖F , where G is the closure
of L∞ in LN ≡ expL2. It is known ([A, Thm. 1.4]) that R(E) = R(Ẽ), i.e.,

(2)
∥∥∥ ∞∑
k=1

akrk

∥∥∥ eE �
∥∥∥ ∞∑
k=1

akrk

∥∥∥
E
.

Moreover, E = Ẽ if and only if E ∈ I(L∞, G) ([A, Thm. 1.5]).
Given x ∈ LN , denote by Sx the function

(3) Sx(t) := log1/2 e

t
sup

0<u≤t
x∗(u) log−1/2 e

u

for 0 < t ≤ 1. The following statement gives a simple description of the r.i.
space Ẽ.

Proposition 5. If E is an r.i. space then ‖x‖ eE � ‖Sx‖E.

Proof. It follows from [M, Cor. 2.2] that there exist absolute constants
C1, C2, β > 0 such that for all a ∈ `2,( ∞∑

k=1

akrk

)∗
(t) ≤ C1K(log1/2 (e/t), a, `1, `2)

and ( ∞∑
k=1

akrk

)∗
(βt) ≥ C2K(log1/2 (e/t), a, `1, `2)

for every 0 < t ≤ 1. Hence

(4) ‖a‖R(E) � ‖K(log1/2 (e/t), a, `1, `2)‖E .

The sets ofK-functionals corresponding to the Banach pairs (L∞, G) and
(`1, `2) coincide up to equivalence ([A]). If x ∈ Ẽ, then K(t, x, L∞, G) ∈ F
and there exists a ∈ l2 such that

(5) K(t, x, L∞, G) � K(t, a, `1, `2)

for t > 0. Hence a ∈ R(E) and, by (4), we have K(log1/2 (e/t), a, `1, `2) ∈ E.
Using (5) we get K(log1/2 (e/t), x, L∞, G) ∈ E.
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Similar arguments show that the converse holds: if K(log1/2 (e/t), x,
L∞, G) ∈ E, then x ∈ Ẽ. Thus the space Ẽ and the (Banach) space en-
dowed with the norm ‖K(log1/2 (e/t), ·, L∞, G)‖E coincide as sets, so, by
the closed graph theorem, both norms are equivalent, i.e.,

(6) ‖x‖ eE � ‖K(log1/2 (e/t), x, L∞, G)‖E .
Finally, it is easy to see that

(7) K(t, x, L∞, G) = K(t, x, L∞, LN )

for any x ∈ G and t > 0. And it is well known ([Lo]) that

(8) ‖x‖LN � ‖x‖M(ϕ0)

for x ∈ LN where ϕ0(t) = log−1/2 (e/t), and clearly, L∞ = M(ϕ1) for the
function ϕ1(t) = 1. Therefore we can consider the Banach pair (L∞, LN )
as a pair of Marcinkiewicz spaces and apply a formula for the K-functional
from [CN]. Thus we have

(9) K(log1/2 (e/t), x, L∞, LN ) � log1/2 (e/t) sup
0<u≤t

x∗(u) log−1/2 (e/u),

and the needed equivalence follows now from (6)–(9).

Note that Sx(t) ≥ x∗(t). Hence the above proposition implies that Ẽ ⊂ E
and ‖x‖E ≤ C‖x‖ eE for every x ∈ Ẽ and some constant C > 0. In particular,
ϕE(t) ≤ Cϕ eE(t) for every t ∈ [0, 1].

We can now give a characterization of the Lorentz and Marcinkiewicz
spaces which are interpolation spaces between L∞ and G.

Proposition 6. Let ψ ∈ Ω.

(i) A Lorentz space Λ(ψ) belongs to the set I(L∞, G) if and only if
ϕ
Λ̃(ψ)

(t) ≤ Cψ(t) for some C > 0 and 0 ≤ t ≤ 1.
(ii) A Marcinkiewicz space M(ψ) belongs to the set I(L∞, LN ) if and

only if ϕ
M̃(ψ)

(t) ≤ Cψ(t) for some C > 0 and 0 ≤ t ≤ 1.

Proof. (i) If Λ(ψ) ∈ I(L∞, G) then Λ̃(ψ) = Λ(ψ) ([A]) and hence the
functions ϕ

Λ̃(ψ)
and ψ are equivalent.

Conversely, if ϕ
Λ̃(ψ)

(t) ≤ Cψ(t), then Proposition 5 implies that the
quasi-linear operator S on Λ(ψ) defined in (3) is uniformly bounded on the
set of characteristic functions. Hence [KPS, Lemma 2.5.2] shows that S is
bounded in Λ(ψ). Therefore ‖Sx‖Λ(ψ) ≤ C‖x‖Λ(ψ) for some C > 0, and
Proposition 5 yields Λ̃(ψ) = Λ(ψ), and hence Λ(ψ) ∈ I(L∞, G).

(ii) If M(ψ) ∈ I(L∞, LN ) then M(ψ) ∩G ∈ I(L∞, G). Indeed, since the
set I(L∞, LN ) can be described by the real interpolation method ([A]) we
have M(ψ) = (L∞, LN )KF for some Banach lattice F on [0,∞). And, by (7),



278 S. V. Astashkin et al.

we have M(ψ) ∩ G = (L∞, G)KF . This means that M(ψ) ∩ G ∈ I(L∞, G)

and M(ψ) ∩G = ˜M(ψ) ∩G. Moreover, since M(ψ) ⊂ LN the fundamental
functions of the spaces M(ψ) and M(ψ) ∩G are equivalent, and∥∥∥∑ akrk

∥∥∥
M(ψ)

�
∥∥∥∑ akrk

∥∥∥
M(ψ)∩G

,

therefore M̃(ψ) = ˜M(ψ) ∩G. Hence,
ϕ
M̃(ψ)

(t) � ϕ ˜M(ψ)∩G
(t) � ϕM(ψ)∩G(t) � ϕM(ψ)(t) = ψ(t).

Let us now prove the converse. Assume ϕ
M̃(ψ)

(t) ≤ Cψ(t). Then, by
Proposition 5, there is C > 0 such that

(10) ‖Sχ(0,τ)‖M(ψ) ≤ Cψ(τ)

for τ ∈ [0, 1]. Now, since

(11) Sχ(0,τ)(t) =


1, 0 < t ≤ τ(

log(e/t)
log(e/τ)

)1/2

, τ ≤ t ≤ 1,

and
	t
0 log1/2 (e/s) ds � t log1/2 (e/t), for 0 < t ≤ 1, we get

1
t

t�

0

Sχ(0,τ)(s) ds � χ(0,τ)(t) +
(
τ

t
+
(

log(e/t)
log(e/τ)

)1/2)
χ(τ,1)(t)(12)

� Sχ(0,τ)(t).

Hence

(13) ‖Sχ(0,τ)‖M(ψ) �
(

log
e

τ

)−1/2

sup
τ≤t≤1

ψ(t) log1/2 e

t
.

Therefore (10) can be rewritten as

ψ(t)
ψ(τ)

≤ C1

(
log(e/τ)
log(e/t)

)1/2

, 0 < τ ≤ t ≤ 1.

Since ϕLN (t) = log−1/2(e/t) the above inequality proves, by [S], thatM(ψ) ∈
I(L∞, LN ).

Corollary 7. Let E be an r.i. space with E ∈ I(L∞, G). Then the
Marcinkiewicz space M(ϕE) belongs to I(L∞, LN ).

Proof. We have E ⊂ M(ϕE) (cf. [KPS, Thm. 2.5.7]) and, using [A]

once more, we get E = Ẽ ⊂ M̃(ϕE) ⊂ M(ϕE). Now, since E and M(ϕE)

have the same fundamental functions, the spaces M̃(ϕE) and M(ϕE) have
equivalent fundamental functions. This implies, by Proposition 6 above, that
M(ϕE) ∈ I(L∞, LN ).
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Corollary 8. Given a Marcinkiewicz space M(ϕ), there exists a Mar-
cinkiewicz space M(ψ) with M(ψ)∈I(L∞, LN ) such that M̃(ϕ)=M(ψ)∩G.

Proof. Let ψ denote the fundamental function of M̃(ϕ). Since M̃(ϕ) ∈
I(L∞, G), Corollary 7 yields M(ψ) ∈ I(L∞, LN ). Now, from the inclusions
M̃(ϕ) ⊂M(ψ) ∩G ⊂M(ϕ) and (2), we deduce that∥∥∥ ∞∑

k=1

akrk

∥∥∥
M̃(ϕ)

�
∥∥∥ ∞∑
k=1

akrk

∥∥∥
M(ψ)∩G

�
∥∥∥ ∞∑
k=1

akrk

∥∥∥
M(ϕ)

for all sequences a ∈ `2. Since it was proved in Proposition 6 thatM(ψ)∩G ∈
I(L∞, G), an application of [A, Thm. 1.5] shows that M̃(ϕ) = M(ψ) ∩G.

We are now in a position to present one of the main results of this section.

Theorem 9. If a Marcinkiewicz space M(ϕ) ⊂ G does not belong to
I(L∞, G), then there exists another Marcinkiewicz space M(ψ) such that
M(ψ) ( M(ϕ) and R(M(ϕ)) = R(M(ψ)).

Proof. We have M̃(ϕ) ⊂ M(ϕ) ⊂ G. Hence, by Corollary 8, if ψ is
the fundamental function of M̃(ϕ) then M̃(ϕ) = M(ψ) ∩ G = M(ψ) and
M(ψ) ∈ I(L∞, G). Moreover, the Marcinkiewicz spaces M(ϕ) and M(ψ) do
not coincide becauseM(ϕ) 6∈ I(L∞, G). Finally, by (2), we have R(M(ϕ)) =
R(M(ψ)).

An analogous result is also valid for Lorentz spaces.

Theorem 10. If a Lorentz space Λ(ϕ) ⊂ G does not belong to I(L∞, G),
then there exists another Lorentz space Λ(ψ) such that Λ(ψ) ( Λ(ϕ) and
R(Λ(ϕ)) = R(Λ(ψ)).

Proof. Let X := Λ̃(ϕ). Since X ∈ I(L∞, G) and Λ(ϕ) 6∈ I(L∞, G), we
have X ( Λ(ϕ). It is easily checked that the Köthe dual X ′ satisfies X ′ )
M(t/ϕ). Therefore, there exists a positive decreasing function a(·) ∈ X ′ such
that

a(t) ≥ ϕ′(t) (0 < t ≤ 1) and lim sup
t→+0

1
ϕ(t)

t�

0

a(s) ds =∞.

Define ψ(t) :=
	t
0 a(s) ds (0 ≤ t ≤ 1). Since for every x ∈ X we have

1�

0

x∗(t) dψ(t) =
1�

0

x∗(t)a(t) dt <∞,

it follows thatX ⊂ Λ(ψ). Moreover, Λ(ψ) ( Λ(ϕ), so the equality R(Λ(ϕ)) =
R(Λ(ψ)) follows from (2).
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In particular, the above inclusions M(ψ) ⊂ M(ϕ) and Λ(ψ) ⊂ Λ(ϕ)
are not strictly singular and, by Corollary 3, not disjointly strictly singular
either. By contrast, we have the following:

Theorem 11. Let ϕ,ψ ∈ Ω be such that Λ(ϕ) ⊂ M(ψ). The inclusion
Λ(ϕ) ⊂M(ψ) is strictly singular if and only if Λ(ϕ) 6⊃ G and ψ(+0) = 0.

Proof. The necessity part is well known. If Λ(ϕ) ⊃ G then R(Λ(ϕ)) =
R(M(ψ)) = `2 ([RS]). In the case when ψ(+0) > 0 we have M(ψ) = L∞ =
Λ(ϕ).

Conversely, since ψ(+0)=0 we have M(ψ) 6=L∞, and clearly Λ(ϕ) 6=L1.
Hence the spaces Λ(ϕ) and M(ψ) do not coincide. Thus the statement is
known for the left extreme case of Λ(ϕ) = L∞ ([N]) and also for the right
extreme case ofM(ψ) = L1 since Λ(ϕ) 6⊃ G ([HNS, Thm. 1]). Now, using the
fact that any normalized disjoint sequence in Λ(ϕ) (resp. M(ψ)) contains a
subsequence equivalent to the canonical basis of `1 [FJT] (resp. of c0, cf. [Se])
we deduce that the inclusion Λ(ϕ) ⊂M(ψ) is DSS. Hence, by Theorem 2, it
is also ß.

In particular: the canonical inclusion Λ(ϕ) ⊂M(ϕ) is strictly singular if
and only if Λ(ϕ) 6⊃ G and ϕ(+0) = 0.

A direct consequence is

Corollary 12. Let ϕ ∈ Ω. Then R(Λ(ϕ)) = R(M(ϕ)) if and only if
Λ(ϕ) ⊃ G or ϕ(+0) > 0.

5. Applications. In this section we give some applications of the main
results.

Proposition 13. Let E and F be r.i. spaces with E 6⊃ G. If

(14)
1�

0

(
t

ϕE(t)

)′
ϕ′F (t) dt <∞,

then E ⊂ F and this inclusion is strictly singular.

Proof. It was proved in Theorem 3.1 of [GHSS] that condition (14) im-
plies the inclusion E ⊂ F and that this inclusion is DSS. Hence, using
Theorem 2, we get the statement.

Corollary 14. Let E and F be r.i. spaces such that ϕE(t)≥a log−α(e/t)
and ϕF (t) ≤ b log−β(e/t) for some 0 < α < min(β, 1/2) and constants
a, b > 0. Then the inclusion E ⊂ F is strictly singular.

Proof. We may assume that the functions t/ϕE(t) and ϕF are concave
on (0, 1]. Then (t/ϕE(t))′ and ϕ′F decrease on (0, 1]. Now, applying twice the
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property 2.2.19 in [KPS], we get
1�

0

(
t

ϕE(t)

)′
ϕ′F (t) dt ≤

1�

0

(
t

a log−α (e/t)

)′(
b log−β

e

t

)′
dt

≤ bβ

a

1�

0

logα−β−1 e

t

dt

t
=

bβ

a(β − α)
<∞.

By [KPS, Thm. 2.5.7]), the assumption α < 1/2 implies E ( G. Hence the
statement follows from the above proposition.

Proposition 15. Let E and F be r.i. spaces with E ⊂ F . If the inclusion
E ⊂ F is disjointly strictly singular then the inclusion operator is weakly
compact.

Proof. We can assume that E ⊂ F0. Indeed, otherwise, reasoning as in
the proof of Proposition 1 we construct a disjoint sequence {zk} in E0 which
is equivalent in E0 and in F0 to the canonical basis of c0. So the inclusion
E ⊂ F is not DSS.

Now, let E ⊂ F with F separable, hence order continuous. Assume that
E ⊂ F is not weakly compact. Consider the real interpolation space (E,F )θ,p
for 0 < θ < 1, 1 < p <∞, which is not reflexive by [B, Thm. 3.1]. Hence the
lattice (E,F )θ,p contains a subspace Q isomorphic to `1 or to c0 (cf. [LT2]).
Now if Q is isomorphic to `1, we find, by [B, Prop. 2.3.3], that the inclusion
E ↪→ F preserves an `1-isomorphic copy. In the case of Q isomorphic to c0,
an analogous statement is also true [Ma, Cor. 4.1]. Now, using ([Me, Thms.
3.4.11–3.4.17]), we deduce that E ⊂ F also preserves a disjoint `1-sequence
or a disjoint c0-sequence.

V. Milman [Mi] posed the following question: Given two Banach spaces E
and F and a non-strictly singular operator A from E into F , does there exist
a complemented subspace Q in E such that the restriction of the operator A
to Q is an isomorphism?

We give a negative answer to this question using the above results. First
note that the inclusions L logλ L ⊂ L1 are not strictly singular for λ > 0
because the Rademacher spaces satisfy R(L logλ L) = R(L1) = `2.

Recall that an operator A : E → F between two Banach spaces E and
F is said to be strictly cosingular (or Pełczyński) if there is no infinite-
dimensional space H and onto operators h : E → H and g : F → H such
that h = gA. Note that this class of operators is somewhat related by duality
to strictly singular operators ([P]).

Theorem 16. Let 0 < λ < 1/2. If Q is a subspace of L logλ L on which
the L logλ L-norm and the L1-norm are equivalent , then Q is not comple-
mented in L logλ L.
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Proof. Suppose the contrary and denote by P a projection from L logλ L
onto Q. There exists a reflexive r.i. space E with L logλ L ⊂ E ⊂ L1 ([FS]).
Therefore Q is a reflexive subspace of L1. It follows from Rosenthal’s theorem
[R, Thm. 8] that Q embeds isomorphically into Lp for some p > 1, i.e., there
exists an operator T : (Q, ‖ · ‖L1) → Lp which is an isomorphism onto its
image. Set Z = T (Q).

Now, consider the inclusion operator i : Lp ↪→ L logλ L which is not
strictly cosingular since there exist onto operators R = TPi : Lp → Z and
TP : L logλ L → Z with TPi = R. On the other hand, by Corollary 14,
the adjoint operator i∗ : expLµ ↪→ Lp′ is SS because µ > 2 (here µ =
1/λ and p′ = p/(p − 1)). Hence, using [P, Prop. 1] we conclude that the
inclusion operator i is strictly cosingular, which gives a contradiction. Thus
the subspace Q cannot be complemented in L logλ L (and hence not in L1

either).

Note that the assumption 0 < λ < 1/2 is essential since the Rademacher
subspace [rn] is complemented in L logλ L for λ ≥ 1/2 (cf. [LT2, Prop. 2.b.4]).
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