STUDIA MATHEMATICA 193 (3) (2009)

Strictly singular inclusions of rearrangement invariant spaces and Rademacher spaces

by

SERGEI V. ASTASHKIN (Samara), FRANCISCO L. HERNÁNDEZ (Madrid) and EVGENI M. SEMENOV (Voronezh)

Abstract. If G is the closure of L_{∞} in $\exp L_2$, it is proved that the inclusion between rearrangement invariant spaces $E \subset F$ is strictly singular if and only if it is disjointly strictly singular and $E \not\supseteq G$. For any Marcinkiewicz space $M(\varphi) \subset G$ such that $M(\varphi)$ is not an interpolation space between L_{∞} and G it is proved that there exists another Marcinkiewicz space $M(\psi) \subsetneq M(\varphi)$ with the property that the $M(\psi)$ and $M(\varphi)$ norms are equivalent on the Rademacher subspace. Applications are given and a question of Milman answered.

1. Introduction. A linear operator between two Banach spaces E and F is called *strictly singular* (SS for short), or *Kato*, if it fails to be an isomorphism on any infinite-dimensional subspace (cf. [LT1, 2.c.2]). The class of all strictly singular operators is a well-known closed operator ideal with important applications. A weaker notion for Banach lattices, introduced in [HR], is the following: a bounded operator A from a Banach lattice E to a Banach space F is said to be *disjointly strictly singular* (DSS for short) if there is no disjoint sequence of non-null vectors $\{x_n\}_{n=1}^{\infty}$ in E such that the restriction of A to the subspace $[x_n]$ spanned by the vectors $\{x_n\}$ is an isomorphism. This is a useful tool in comparing structures of rearrangement invariant spaces (cf. [HR], [GHSS]).

This paper deals with the strict singularity of inclusions $E \subset F$ between rearrangement invariant (r.i.) function spaces E and F on the interval [0, 1]. That means that the norms of E and F are non-equivalent on any (closed) infinite-dimensional subspace of E.

The canonical inclusion $L_{\infty} \subset E$ is always strictly singular for any r.i. space $E \neq L_{\infty}$ ([N]), and the case of L_p -spaces is Grothendieck's classical result. Furthermore, this property characterizes the space L_{∞} among all r.i.

2000 Mathematics Subject Classification: Primary 46E30.

Key words and phrases: rearrangement invariant spaces, strict singularity, Rademacher subspace.

spaces ([GHSS]). Concerning the right extreme inclusion $E \subset L_1$, its strict singularity has been characterized in [HNS] by the condition that the r.i. space E does not contain the space G, the closure of L_{∞} in the exponential Orlicz space exp L_2 . Recall that Rodin and Semenov [RS] (see also [LT2]) proved that the condition $E \supset G$ determines precisely the r.i. spaces E for which the Rademacher function system $\{r_k\}$ is equivalent to the canonical basis of ℓ_2 .

One of the aims of this article is to give a complete characterization of the strict singularity of inclusions between arbitrary r.i. spaces in terms of disjoint strict singularity. More precisely, it is proved in Section 3 (Theorem 2) that the inclusion $E \subset F$ is strictly singular if and only if it is disjointly strictly singular and the norms of these spaces are not equivalent on the Rademacher subspace $[r_n]$. This extends some previous results given in [HNS].

In [RS] the following result was proved for the class of r.i. spaces contained in G: Under some additional assumptions, the equivalence of the norms in two r.i. spaces E and F of this class on the Rademacher subspace, i.e.,

$$\left\|\sum c_k r_k\right\|_E \asymp \left\|\sum c_k r_k\right\|_F,$$

implies the coincidence of E and F up to equivalence of norms, i.e., E = F. More recently in [A] this result was obtained under a weaker assumption: the r.i. spaces E and F have to be interpolation spaces between L_{∞} and G. It turns out that this interpolation assumption is actually a necessary condition for the above statement to hold. Theorem 9 in Section 4 shows that for any Marcinkiewicz space $M(\varphi) \subset G$ such that $M(\varphi)$ is not an interpolation space between L_{∞} and G, there exists another Marcinkiewicz space $M(\psi) \subsetneq M(\varphi)$ with the property that the $M(\psi)$ -norm and the $M(\varphi)$ -norm are equivalent on the Rademacher subspace $[r_n]$. Also a criterion for the strict singularity of inclusions between Lorentz spaces $\Lambda(\varphi)$ and Marcinkiewicz spaces $M(\psi)$ is given (Theorem 11). In particular, for the class of all proper Lorentz spaces $\Lambda(\varphi)$ which do not contain G, the norms in $\Lambda(\varphi)$ and in the associated Marcinkiewicz space $M(\varphi)$ on the Rademacher subspace are *never* equivalent.

The last part of the paper contains some applications. In particular, we answer in the negative a question of V. Milman [Mi], showing that the r.i. spaces $E = L \log^{\lambda} L$ and $F = L_1$ satisfy the following conditions: the inclusion $E \subset F$ is not strictly singular and any infinite-dimensional subspace of E on which the norms of E and F are equivalent is an *uncomplemented* subspace of E (Theorem 16). We also prove that any disjointly strictly singular inclusion between r.i. spaces is weakly compact.

Some results of this paper have been announced in [SH].

2. Notation and definitions. Recall that a Banach function space E of measurable functions on [0, 1] is called *rearrangement invariant* (r.i. for short) or symmetric (cf. [LT2, 2.a.1], [KPS, 2.4.1]) if

- $|x(t)| \leq |y(t)|$ for all $t \in [0,1]$ and $y \in E$ imply $x \in E$ and $||x||_E \leq ||y||_E$,
- if x and y are equimeasurable and $y \in E$, then $x \in E$ and $||x||_E = ||y||_E$.

As usual we assume that every r.i. space E is separable or isomorphic to the conjugate space of some separable space. If E is an r.i. space then $L_{\infty} \subset E \subset L_1$ and $||x||_{L_1} \leq ||x||_E \leq ||x||_{L_{\infty}}$ for each $x \in L_{\infty}$, assuming $||\chi_{(0,1)}||_E = 1$.

Recall some important classes of r.i. spaces. If M is a positive convex function on $[0, \infty)$ with M(0) = 0, then the *Orlicz space* L_M consists of all measurable functions on [0, 1] for which

$$||x||_{L_M} = \inf \left\{ s > 0 : \int_0^1 M(|x(t)|/s) \, dt \le 1 \right\}.$$

A remarkable example is the Orlicz space L_N generated by the function $N(u) = e^{u^2} - 1$. The space L_N is non-separable and we will denote by G the closure of L_{∞} in L_N . Another two special Orlicz spaces that will be considered here are generated by the functions $M(u) = e^{u^{\lambda}} - 1$ and $M(u) = u \log^{\lambda}(1+u)$, for $\lambda > 0$, and denoted by $\exp L_{\lambda}$ and $L \log^{\lambda} L$.

Let Ω be the set of all increasing concave functions on [0, 1] with $\varphi(0) = 0$ and $\varphi(1) = 1$. Each $\varphi \in \Omega$ generates the *Lorentz space* $\Lambda(\varphi)$ endowed with the norm

$$\|x\|_{\Lambda(\varphi)} = \int_0^1 x^*(t) \, d\varphi(t),$$

and the Marcinkiewicz space $M(\varphi)$ with

$$\|x\|_{M(\varphi)} = \sup_{0 < \tau \le 1} \frac{\varphi(\tau)}{\tau} \int_0^\tau x^*(t) \, dt,$$

where $x^*(t)$ is the decreasing rearrangement of |x(t)|. For any $\varphi \in \Omega$ we have $\Lambda(\varphi) \subset M(\varphi)$ and $||x||_{M(\varphi)} \leq ||x||_{\Lambda(\varphi)}$ for every $x \in \Lambda(\varphi)$. The spaces $\Lambda(\varphi)$ and $M(\varphi)$ coincide up to equivalence of norms if and only if $\varphi(+0) > 0$ or $\lim_{t\to 0} \varphi(t)/t < \infty$.

Recall that the fundamental function φ_E of a r.i. space E is defined by $\varphi_E(t) = \|\chi_{[0,t]}\|_E$ for $0 \le t \le 1$. The function φ_E is quasi-concave, i.e., $\varphi_E(t)$ and $t/\varphi_E(t)$ increase on (0, 1]. Up to equivalence of norms, φ_E is a concave function. In that case $\Lambda(\varphi_E) \subset E \subset M(\varphi_E)$ and $\|x\|_{M(\varphi_E)} \le \|x\|_E \le \|x\|_{\Lambda(\varphi)}$ for every $x \in \Lambda(\varphi_E)$. The fundamental function $\varphi_E(t)$ is continuous for $t \in (0, 1]$. The condition $\varphi_E(+0) > 0$ is necessary and sufficient for the

S. V. Astashkin et al.

coincidence of the spaces E and L_{∞} up to equivalence of norms. If two r.i. spaces E and F coincide as sets then (by the closed graph theorem) the norms $\|\cdot\|_E$ and $\|\cdot\|_F$ are equivalent, and we write E = F.

Let $r_k(t) = \operatorname{sign}(\sin 2^k \pi t), k \in \mathbb{N}$, be the Rademacher functions on [0, 1]. It was proved in [RS] (see also [LT2, Thm. 2.b.4]) that for an r.i. space E the Khinchin inequality

$$\left\|\sum_{k=1}^{\infty} c_k r_k\right\|_E \le M \|\{c_k\}\|_{\ell_2}$$

is valid, for some constant M > 0, if and only if $E \supset G$. It follows immediately that for r.i. spaces E and F with $E \subset F$ the inclusion $E \subset F$ is not SS provided that $E \supset G$.

The proofs of some statements of this article will make use of interpolation methods. Therefore we recall some concepts and results in the r.i. setting.

Let (E, F) be a pair of r.i. spaces and $x \in E + F$. The Peetre's *K*-functional is defined as

$$K(t, x, E, F) = \inf\{\|u\|_E + t\|v\|_F : x = u + v\}$$

for every t > 0. Every Banach lattice Φ on $[0, \infty)$ such that $\min(1, t) \in \Phi$ generates the space $(E, F)_{\Phi}^{K}$ of the real interpolation method endowed with the norm

$$||x||_{(E,F)_{\Phi}^{K}} := ||K(\cdot, x, E, F)||_{\Phi}.$$

The space $(E, F)_{\Phi}^{K}$ has the interpolation property with respect to the pair (E, F), i.e., every linear operator A bounded in E and F is also bounded in $(E, F)_{\Phi}^{K}$ and $||A||_{(E,F)_{\Phi}^{K}} \leq \max(||A||_{E}, ||A||_{F})$. In the classical case of Φ being the lattice on $[0, \infty)$ with the norm

$$||z||_{\Phi} = \left(\int_{0}^{\infty} (t^{-\theta}|z(t)|)^{p} \frac{dt}{t}\right)^{1/p},$$

where $\theta \in (0, 1)$ and $p \in [1, \infty]$ (with the usual modification for $p = \infty$), the interpolation spaces $(E, F)_{\Phi}^{K}$ are denoted by $(E, F)_{\theta,p}$.

We will denote by I(E, F) the set of all interpolation spaces with respect to the pair (E, F). If, for any $x, y \in E + F$ with $K(t, x, E, F) \leq K(t, y, E, F)$ for every t > 0, there exists a linear operator A bounded in E and F and such that x = Ay, then the set I(E, F) is described by the real interpolation method, in the sense that for each space $Q \in I(E, F)$ there exists a Banach lattice Φ such that $\|x\|_Q = \|K(\cdot, x, E, F)\|_{\Phi}$ (cf. [BK]).

If f(x) and g(x) are positive functions on some set A, we shall write $f \approx g$ if there exists C > 0 such that $C^{-1}f(x) \leq g(x) \leq Cf(x)$ for every $x \in A$.

We refer to the monographs [LT2] and [KPS] for the above results on r.i. spaces and to [BK] and [BL] for those on interpolation spaces.

3. Strict singularity via disjoint strict singularity. Given an r.i. space E on [0, 1], we denote by E_0 the closure of L_{∞} in E. The space E_0 is always separable, except for $E = L_{\infty}$.

PROPOSITION 1. Let E and F be r.i. spaces with $E \subset F$. Then the inclusion $E \subset F$ is disjointly strictly singular if and only if the inclusion $E_0 \subset F$ is disjointly strictly singular.

Proof. The "only if" part is evident. Assume that the inclusion $E \subset F$ is not DSS. Thus there exist a disjoint sequence $\{x_k\}_{k=1}^{\infty}$ in E and M > 0 such that

$$\left\|\sum_{k=1}^{n} c_k x_k\right\|_E \le M \left\|\sum_{k=1}^{n} c_k x_k\right\|_F$$

for every $n \in \mathbb{N}$ and $c_k \in \mathbb{R}$. We consider separately the cases (i) $E \subset F_0$ and (ii) $E \not\subset F_0$.

In case (i) we have $x_k \in F_0$ for $k \in \mathbb{N}$. Clearly we can assume $||x_k||_F = 1$ for $k \in \mathbb{N}$. It is well known that $\lim_{k \to 0} ||x\chi_A||_F = 0$ for any $x \in F_0$ (cf. [KPS, 2.4.5]). Hence there exists a sequence $\{A_k\}_{k=1}^{\infty}$ of subsets of [0, 1] with $A_k \subset \text{supp } x_k$ such that $y_k = x_k \chi_{A_k} \in L_\infty \subset E_0$ for $k \in \mathbb{N}$ and

$$\sum_{k=1}^{\infty} \|x_k - y_k\|_F < \frac{1}{2}.$$

Now, by a stability result [LT1, Prop. 1.a.9], the sequences $\{x_k\}$ and $\{y_k\}$ are equivalent in F and

$$\left\|\sum_{k=1}^{n} c_k x_k\right\|_F \le 2\left\|\sum_{k=1}^{n} c_k y_k\right\|_F$$

for every $n \in \mathbb{N}$ and $c_k \in \mathbb{R}$. Since $|\sum_{k=1}^n c_k y_k| \leq |\sum_{k=1}^n c_k x_k|$, we have

$$\left\|\sum_{k=1}^{n} c_{k} y_{k}\right\|_{E} \leq \left\|\sum_{k=1}^{n} c_{k} x_{k}\right\|_{E} \leq M\left\|\sum_{k=1}^{n} c_{k} x_{k}\right\|_{F} \leq 2M\left\|\sum_{k=1}^{n} c_{k} y_{k}\right\|_{F}$$

for any $n \in \mathbb{N}$ and $c_k \in \mathbb{R}$. Therefore the norms $\|\cdot\|_E$ and $\|\cdot\|_F$ are equivalent on the span of $\{y_k\}$ in E_0 and the inclusion $E_0 \subset F$ is not DSS.

(ii) Consider now the case $E \not\subset F_0$. Since $E_0 \subset F_0$ we have $E \setminus E_0 \not\subset F_0$ and $(E \setminus E_0) \cap (F \setminus F_0) \neq \emptyset$. Choose $z = z^* \in (E \setminus E_0) \cap (F \setminus F_0)$. Then

$$d_E(z, L_{\infty}) = a > 0, \quad d_F(z, L_{\infty}) = b > 0$$

where $d_E(z, L_{\infty}) = \inf\{||z - u||_E : u \in L_{\infty}\}$. Since we have $||z\chi_{(0,\tau)}||_E =$

S. V. Astashkin et al.

$$\begin{split} \lim_{\varepsilon \to 0} \|z\chi_{(\varepsilon,\tau)}\|_E \text{ and } \|z\chi_{(0,\tau)}\|_E \geq a \text{ for } 0 < \tau \leq 1, \text{ it follows that} \\ \lim_{\varepsilon \to 0} \|z\chi_{(\varepsilon,\tau)}\|_E \geq a. \end{split}$$

Similarly we have $\lim_{\varepsilon \to 0} ||z\chi_{(\varepsilon,\tau)}||_F \ge b$ for $0 < \tau \le 1$. Hence we can construct a sequence $\tau_k \downarrow 0$ such that

$$||z\chi_{(\tau_{k+1},\tau_k)}||_E \ge a/2$$
 and $||z\chi_{(\tau_{k+1},\tau_k)}||_F \ge b/2$

for every natural k. Let $z_k := z\chi_{(\tau_{k+1},\tau_k)}$ for $k \in \mathbb{N}$. Clearly, $z_k \in L_{\infty} \subset E_0 \subset F_0$ and

$$\frac{a}{2} \max_{k \in \mathbb{N}} |c_k| \le \left\| \sum_{k=1}^{\infty} c_k z_k \right\|_E \le \|z\|_E \max_{k \in \mathbb{N}} |c_k|$$

and

$$\frac{b}{2} \max_{k \in \mathbb{N}} |c_k| \le \left\| \sum_{k=1}^{\infty} c_k z_k \right\|_F \le \|z\|_F \max_{k \in \mathbb{N}} |c_k|,$$

for any sequence $\{c_k\} \in c_0$. Hence the sequence $\{z_k\}_{k=1}^{\infty}$ is equivalent in E_0 and in F_0 to the canonical basis of c_0 . Consequently, the inclusion $E_0 \subset F$ is not DSS.

Recall that G is the closure of L_{∞} in exp L_2 . We can now prove the main result of this section.

THEOREM 2. Let E and F be r.i. spaces with $E \subset F$. The inclusion $E \subset F$ is strictly singular if and only if it is disjointly strictly singular and $E \not\supseteq G$.

Proof. The case of E separable has been proved in [HNS, Theorem 5], so we assume that E is non-separable. Suppose that the inclusion $E \subset F$ is not SS and $E \not\supseteq G$. We have to prove that the inclusion $E \subset F$ is not DSS. Let Q denote the (closed) infinite-dimensional subspace of E on which the norms $\|\cdot\|_E$ and $\|\cdot\|_F$ are equivalent. Now, if the norms of E and L_1 were equivalent on Q, we would have $E \supset G$, by Theorem 1 of [HNS]. Therefore, we can assume that the norms of E and L_1 are not equivalent on Q.

We first deal with the case of F separable. Consider the real interpolation space $E_1 := (E, F)_{\theta,p}$ for some $0 < \theta < 1$ and 1 . The separabilityof <math>F implies $\lim_{\text{meas } A \to 0} \|x\chi_A\|_F = 0$ for any $x \in F$, so also for $x \in E$. Hence $K(t, x, E, F) = K(t, x, E_0, F)$ for $x \in F$, which implies that $E_1 = (E_0, F)_{\theta,p}$ (cf. [BL, Thm. 3.4.2]). Therefore E_1 is also separable and $E \subset E_1 \subset F$ with $E_1 \neq F$.

Now, since the norms of E, E_1 and F are equivalent on Q, the norms of E_1 and L_1 are not. Hence, applying the Kadec–Pełczyński method ([LT2], see [HNS, Thm. 5]) we can find a normalized sequence $\{x_n\}$ in Q and a sequence of disjoint measurable sets $A_n \subset \operatorname{supp} x_n, n \in \mathbb{N}$, such that $y_n := x_n \chi_{A_n} \in L_\infty$ and the sequence $\{x_n\}$ is equivalent to $\{y_n\}$ in E_1 and in F.

274

Now, using that the fact $|\sum c_n y_n| \leq |\sum c_n x_n|$ and the equivalence of the norms of E and E_1 on $[x_n]$, we have

$$\left\|\sum_{n} c_{n} y_{n}\right\|_{E} \leq \left\|\sum_{n} c_{n} x_{n}\right\|_{E}$$
$$\leq M_{1} \left\|\sum_{n} c_{n} x_{n}\right\|_{E_{1}} \leq M_{2} \left\|\sum_{n} c_{n} y_{n}\right\|_{E_{1}} \leq M_{3} \left\|\sum_{n} c_{n} y_{n}\right\|_{E}$$

for any scalar sequence $\{c_n\}$ and for some constants $M_1, M_2, M_3 > 0$. Therefore, the sequences $\{x_n\}$ and $\{y_n\}$ are also equivalent in E. Thus the norms of E and F are equivalent on $[y_n]$ and the inclusion $E \subset F$ is not DSS.

Finally, assume that E and F are non-separable. We distinguish two cases: $E \subset F_0$ and $E \not\subset F_0$. If $E \subset F_0$, this inclusion cannot be SS and since F_0 is separable, we deduce as earlier that the inclusion $E \subset F$ is not DSS. In the case of $E \not\subset F_0$, we get the same conclusion by proceeding as in the second part of the proof of Proposition 1.

Notice that Theorem 2 may be reformulated as follows: the inclusion $E \subset F$ is strictly singular if and only if it is disjointly strictly singular and the norms of E and F are not equivalent on the Rademacher subspace $[r_n]$.

COROLLARY 3. Let E and F be r.i. spaces with $E \subset F$ and $E \not\supseteq G$. If the norms of E and F are equivalent on $[r_n]$ then there exists a disjoint sequence $\{x_n\}$ in E for which the norms of E and F are equivalent on $[x_n]$.

COROLLARY 4. Let E and F be r.i. spaces with $E \subset F$. The inclusion $E \subset F$ is strictly singular if and only if the inclusion $E_0 \subset F$ is strictly singular.

Proof. The "only if" part is trivial. Suppose that the inclusion $E \subset F$ is not SS. It follows from Theorem 2 that either $E \supset G$, or the inclusion $E \subset F$ is not DSS. If $E \supset G$ then $E_0 \supset G$ since G is separable. And if the inclusion $E \subset F$ is not DSS then, by Proposition 1, neither is the inclusion $E_0 \subset F$; all the more, it is not SS.

4. Strict singularity and Rademacher spaces. In this section we study couples of r.i. spaces E and F "close" to L_{∞} with equivalence of norms on the Rademacher subspace. For that we will make use of some interpolation results.

Given a r.i. space E, consider the sequence space R(E) of Rademacher coefficients $\{a_k\}$ endowed with the norm

$$\|\{a_k\}\|_{R(E)} = \left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{E}$$

It is easy to check that R(E) is an interpolation space between ℓ_1 and ℓ_2 ,

i.e., $R(E) \in I(\ell_1, \ell_2)$. Moreover, it is known that the set $I(\ell_1, \ell_2)$ is described by the real interpolation method (cf. [LS]). Therefore there exists a Banach lattice F of measurable functions on $[0, \infty)$ with respect to the measure dt/tsuch that $\min(1, t) \in F$ and

(1)
$$R(E) = (\ell_1, \ell_2)_F^K = \{a \in \ell_2 : K(t, a, \ell_1, \ell_2) \in F\}$$

(cf. [BK, Thms. 4.4.5 and 4.4.38]).

We can consider the r.i. space \widetilde{E} associated to E defined by

$$\widetilde{E} := (L_{\infty}, G)_F^K$$

with its canonical norm $||x||_{\widetilde{E}} = ||K(\cdot, x, L_{\infty}, G)||_F$, where G is the closure of L_{∞} in $L_N \equiv \exp L_2$. It is known ([A, Thm. 1.4]) that $R(E) = R(\widetilde{E})$, i.e.,

(2)
$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{\widetilde{E}} \asymp \left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{E}$$

Moreover, $E = \tilde{E}$ if and only if $E \in I(L_{\infty}, G)$ ([A, Thm. 1.5]).

Given $x \in L_N$, denote by Sx the function

(3)
$$Sx(t) := \log^{1/2} \frac{e}{t} \sup_{0 < u \le t} x^*(u) \log^{-1/2} \frac{e}{u}$$

for $0 < t \le 1$. The following statement gives a simple description of the r.i. space \widetilde{E} .

PROPOSITION 5. If E is an r.i. space then $||x||_{\widetilde{E}} \asymp ||Sx||_E$.

Proof. It follows from [M, Cor. 2.2] that there exist absolute constants $C_1, C_2, \beta > 0$ such that for all $a \in \ell_2$,

$$\left(\sum_{k=1}^{\infty} a_k r_k\right)^*(t) \le C_1 K(\log^{1/2} (e/t), a, \ell_1, \ell_2)$$

and

$$\left(\sum_{k=1}^{\infty} a_k r_k\right)^* (\beta t) \ge C_2 K(\log^{1/2} (e/t), a, \ell_1, \ell_2)$$

for every $0 < t \le 1$. Hence

(4)
$$||a||_{R(E)} \asymp ||K(\log^{1/2}(e/t), a, \ell_1, \ell_2)||_E$$

The sets of K-functionals corresponding to the Banach pairs (L_{∞}, G) and (ℓ_1, ℓ_2) coincide up to equivalence ([A]). If $x \in \tilde{E}$, then $K(t, x, L_{\infty}, G) \in F$ and there exists $a \in l_2$ such that

(5)
$$K(t, x, L_{\infty}, G) \asymp K(t, a, \ell_1, \ell_2)$$

for t > 0. Hence $a \in R(E)$ and, by (4), we have $K(\log^{1/2}(e/t), a, \ell_1, \ell_2) \in E$. Using (5) we get $K(\log^{1/2}(e/t), x, L_{\infty}, G) \in E$. Similar arguments show that the converse holds: if $K(\log^{1/2} (e/t), x, L_{\infty}, G) \in E$, then $x \in \tilde{E}$. Thus the space \tilde{E} and the (Banach) space endowed with the norm $||K(\log^{1/2} (e/t), \cdot, L_{\infty}, G)||_E$ coincide as sets, so, by the closed graph theorem, both norms are equivalent, i.e.,

(6)
$$||x||_{\widetilde{E}} \asymp ||K(\log^{1/2}(e/t), x, L_{\infty}, G)||_{E}.$$

Finally, it is easy to see that

(7)
$$K(t, x, L_{\infty}, G) = K(t, x, L_{\infty}, L_N)$$

for any $x \in G$ and t > 0. And it is well known ([Lo]) that

$$\|x\|_{L_N} \asymp \|x\|_{M(\varphi_0)}$$

for $x \in L_N$ where $\varphi_0(t) = \log^{-1/2} (e/t)$, and clearly, $L_{\infty} = M(\varphi_1)$ for the function $\varphi_1(t) = 1$. Therefore we can consider the Banach pair (L_{∞}, L_N) as a pair of Marcinkiewicz spaces and apply a formula for the K-functional from [CN]. Thus we have

(9)
$$K(\log^{1/2}(e/t), x, L_{\infty}, L_N) \asymp \log^{1/2}(e/t) \sup_{0 < u \le t} x^*(u) \log^{-1/2}(e/u),$$

and the needed equivalence follows now from (6)-(9).

Note that $Sx(t) \ge x^*(t)$. Hence the above proposition implies that $\widetilde{E} \subset E$ and $\|x\|_E \le C \|x\|_{\widetilde{E}}$ for every $x \in \widetilde{E}$ and some constant C > 0. In particular, $\varphi_E(t) \le C \varphi_{\widetilde{E}}(t)$ for every $t \in [0, 1]$.

We can now give a characterization of the Lorentz and Marcinkiewicz spaces which are interpolation spaces between L_{∞} and G.

PROPOSITION 6. Let $\psi \in \Omega$.

- (i) A Lorentz space $\Lambda(\psi)$ belongs to the set $I(L_{\infty}, G)$ if and only if $\varphi_{\widetilde{\Lambda(\psi)}}(t) \leq C\psi(t)$ for some C > 0 and $0 \leq t \leq 1$.
- (ii) A Marcinkiewicz space $M(\psi)$ belongs to the set $I(L_{\infty}, L_N)$ if and only if $\varphi_{\widetilde{M(\psi)}}(t) \leq C\psi(t)$ for some C > 0 and $0 \leq t \leq 1$.

Proof. (i) If $\Lambda(\psi) \in I(L_{\infty}, G)$ then $\Lambda(\psi) = \Lambda(\psi)$ ([A]) and hence the functions $\varphi_{\widehat{\Lambda(\psi)}}$ and ψ are equivalent.

Conversely, if $\varphi_{\widehat{\Lambda(\psi)}}(t) \leq C\psi(t)$, then Proposition 5 implies that the quasi-linear operator S on $\Lambda(\psi)$ defined in (3) is uniformly bounded on the set of characteristic functions. Hence [KPS, Lemma 2.5.2] shows that S is bounded in $\Lambda(\psi)$. Therefore $\|Sx\|_{\Lambda(\psi)} \leq C\|x\|_{\Lambda(\psi)}$ for some C > 0, and Proposition 5 yields $\widehat{\Lambda(\psi)} = \Lambda(\psi)$, and hence $\Lambda(\psi) \in I(L_{\infty}, G)$.

(ii) If $M(\psi) \in I(L_{\infty}, L_N)$ then $M(\psi) \cap G \in I(L_{\infty}, G)$. Indeed, since the set $I(L_{\infty}, L_N)$ can be described by the real interpolation method ([A]) we have $M(\psi) = (L_{\infty}, L_N)_F^K$ for some Banach lattice F on $[0, \infty)$. And, by (7),

we have $M(\psi) \cap G = (L_{\infty}, G)_F^K$. This means that $M(\psi) \cap G \in I(L_{\infty}, G)$ and $M(\psi) \cap G = M(\psi) \cap G$. Moreover, since $M(\psi) \subset L_N$ the fundamental functions of the spaces $M(\psi)$ and $M(\psi) \cap G$ are equivalent, and

$$\left\|\sum a_k r_k\right\|_{M(\psi)} \asymp \left\|\sum a_k r_k\right\|_{M(\psi)\cap G},$$

therefore $\widetilde{M(\psi)} = M(\psi) \cap G$. Hence,

$$\varphi_{\widetilde{M(\psi)}}(t) \asymp \varphi_{\widetilde{M(\psi)} \cap G}(t) \asymp \varphi_{M(\psi) \cap G}(t) \asymp \varphi_{M(\psi)}(t) = \psi(t).$$

Let us now prove the converse. Assume $\varphi_{\widetilde{M(\psi)}}(t) \leq C\psi(t)$. Then, by Proposition 5, there is C > 0 such that

(10)
$$\|S\chi_{(0,\tau)}\|_{M(\psi)} \le C\psi(\tau)$$

for $\tau \in [0, 1]$. Now, since

(11)
$$S\chi_{(0,\tau)}(t) = \begin{cases} 1, & 0 < t \le \tau \\ \left(\frac{\log(e/t)}{\log(e/\tau)}\right)^{1/2}, & \tau \le t \le 1, \end{cases}$$

and $\int_{0}^{t} \log^{1/2} (e/s) \, ds \approx t \log^{1/2} (e/t)$, for $0 < t \le 1$, we get

(12)
$$\frac{1}{t} \int_{0}^{t} S\chi_{(0,\tau)}(s) \, ds \asymp \chi_{(0,\tau)}(t) + \left(\frac{\tau}{t} + \left(\frac{\log(e/t)}{\log(e/\tau)}\right)^{1/2}\right) \chi_{(\tau,1)}(t) \\ \asymp S\chi_{(0,\tau)}(t).$$

Hence

(13)
$$\|S\chi_{(0,\tau)}\|_{M(\psi)} \asymp \left(\log\frac{e}{\tau}\right)^{-1/2} \sup_{\tau \le t \le 1} \psi(t) \log^{1/2}\frac{e}{t}.$$

Therefore (10) can be rewritten as

$$\frac{\psi(t)}{\psi(\tau)} \le C_1 \left(\frac{\log(e/\tau)}{\log(e/t)}\right)^{1/2}, \quad 0 < \tau \le t \le 1.$$

Since $\varphi_{L_N}(t) = \log^{-1/2}(e/t)$ the above inequality proves, by [S], that $M(\psi) \in I(L_{\infty}, L_N)$.

COROLLARY 7. Let E be an r.i. space with $E \in I(L_{\infty}, G)$. Then the Marcinkiewicz space $M(\varphi_E)$ belongs to $I(L_{\infty}, L_N)$.

Proof. We have $E \subset M(\varphi_E)$ (cf. [KPS, Thm. 2.5.7]) and, using [A] once more, we get $E = \widetilde{E} \subset \widetilde{M(\varphi_E)} \subset M(\varphi_E)$. Now, since E and $M(\varphi_E)$ have the same fundamental functions, the spaces $\widetilde{M(\varphi_E)}$ and $M(\varphi_E)$ have equivalent fundamental functions. This implies, by Proposition 6 above, that $M(\varphi_E) \in I(L_{\infty}, L_N)$.

COROLLARY 8. Given a Marcinkiewicz space $M(\varphi)$, there exists a Marcinkiewicz space $M(\psi)$ with $M(\psi) \in I(L_{\infty}, L_N)$ such that $\widetilde{M(\varphi)} = M(\psi) \cap G$.

Proof. Let ψ denote the fundamental function of $\widetilde{M(\varphi)}$. Since $\widetilde{M(\varphi)} \in I(L_{\infty}, G)$, Corollary 7 yields $M(\psi) \in I(L_{\infty}, L_N)$. Now, from the inclusions $\widetilde{M(\varphi)} \subset M(\psi) \cap G \subset M(\varphi)$ and (2), we deduce that

$$\left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{\widetilde{M(\varphi)}} \asymp \left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{M(\psi)\cap G} \asymp \left\|\sum_{k=1}^{\infty} a_k r_k\right\|_{M(\varphi)}$$

for all sequences $a \in \ell_2$. Since it was proved in Proposition 6 that $M(\psi) \cap G \in I(L_{\infty}, G)$, an application of [A, Thm. 1.5] shows that $\widetilde{M(\varphi)} = M(\psi) \cap G$.

We are now in a position to present one of the main results of this section.

THEOREM 9. If a Marcinkiewicz space $M(\varphi) \subset G$ does not belong to $I(L_{\infty}, G)$, then there exists another Marcinkiewicz space $M(\psi)$ such that $M(\psi) \subsetneq M(\varphi)$ and $R(M(\varphi)) = R(M(\psi))$.

Proof. We have $\widetilde{M(\varphi)} \subset M(\varphi) \subset G$. Hence, by Corollary 8, if ψ is the fundamental function of $\widetilde{M(\varphi)}$ then $\widetilde{M(\varphi)} = M(\psi) \cap G = M(\psi)$ and $M(\psi) \in I(L_{\infty}, G)$. Moreover, the Marcinkiewicz spaces $M(\varphi)$ and $M(\psi)$ do not coincide because $M(\varphi) \notin I(L_{\infty}, G)$. Finally, by (2), we have $R(M(\varphi)) = R(M(\psi))$.

An analogous result is also valid for Lorentz spaces.

THEOREM 10. If a Lorentz space $\Lambda(\varphi) \subset G$ does not belong to $I(L_{\infty}, G)$, then there exists another Lorentz space $\Lambda(\psi)$ such that $\Lambda(\psi) \subsetneq \Lambda(\varphi)$ and $R(\Lambda(\varphi)) = R(\Lambda(\psi)).$

Proof. Let $X := \Lambda(\varphi)$. Since $X \in I(L_{\infty}, G)$ and $\Lambda(\varphi) \notin I(L_{\infty}, G)$, we have $X \subsetneq \Lambda(\varphi)$. It is easily checked that the Köthe dual X' satisfies $X' \supsetneq M(t/\varphi)$. Therefore, there exists a positive decreasing function $a(\cdot) \in X'$ such that

$$a(t) \ge \varphi'(t)$$
 (0 < t ≤ 1) and $\limsup_{t \to +0} \frac{1}{\varphi(t)} \int_{0}^{t} a(s) \, ds = \infty.$

Define $\psi(t) := \int_0^t a(s) \, ds \ (0 \le t \le 1)$. Since for every $x \in X$ we have

$$\int_{0}^{1} x^{*}(t) \, d\psi(t) = \int_{0}^{1} x^{*}(t) a(t) \, dt < \infty,$$

it follows that $X \subset \Lambda(\psi)$. Moreover, $\Lambda(\psi) \subsetneq \Lambda(\varphi)$, so the equality $R(\Lambda(\varphi)) = R(\Lambda(\psi))$ follows from (2).

In particular, the above inclusions $M(\psi) \subset M(\varphi)$ and $\Lambda(\psi) \subset \Lambda(\varphi)$ are not strictly singular and, by Corollary 3, not disjointly strictly singular either. By contrast, we have the following:

THEOREM 11. Let $\varphi, \psi \in \Omega$ be such that $\Lambda(\varphi) \subset M(\psi)$. The inclusion $\Lambda(\varphi) \subset M(\psi)$ is strictly singular if and only if $\Lambda(\varphi) \not\supseteq G$ and $\psi(+0) = 0$.

Proof. The necessity part is well known. If $\Lambda(\varphi) \supset G$ then $R(\Lambda(\varphi)) = R(M(\psi)) = \ell_2$ ([RS]). In the case when $\psi(+0) > 0$ we have $M(\psi) = L_{\infty} = \Lambda(\varphi)$.

Conversely, since $\psi(+0) = 0$ we have $M(\psi) \neq L_{\infty}$, and clearly $\Lambda(\varphi) \neq L_1$. Hence the spaces $\Lambda(\varphi)$ and $M(\psi)$ do not coincide. Thus the statement is known for the left extreme case of $\Lambda(\varphi) = L^{\infty}$ ([N]) and also for the right extreme case of $M(\psi) = L^1$ since $\Lambda(\varphi) \not\supseteq G$ ([HNS, Thm. 1]). Now, using the fact that any normalized disjoint sequence in $\Lambda(\varphi)$ (resp. $M(\psi)$) contains a subsequence equivalent to the canonical basis of ℓ_1 [FJT] (resp. of c_0 , cf. [Se]) we deduce that the inclusion $\Lambda(\varphi) \subset M(\psi)$ is DSS. Hence, by Theorem 2, it is also SS.

In particular: the canonical inclusion $\Lambda(\varphi) \subset M(\varphi)$ is strictly singular if and only if $\Lambda(\varphi) \not\supseteq G$ and $\varphi(+0) = 0$.

A direct consequence is

COROLLARY 12. Let $\varphi \in \Omega$. Then $R(\Lambda(\varphi)) = R(M(\varphi))$ if and only if $\Lambda(\varphi) \supset G$ or $\varphi(+0) > 0$.

5. Applications. In this section we give some applications of the main results.

PROPOSITION 13. Let E and F be r.i. spaces with $E \not\supseteq G$. If

(14)
$$\int_{0}^{1} \left(\frac{t}{\varphi_{E}(t)}\right)' \varphi_{F}'(t) dt < \infty,$$

then $E \subset F$ and this inclusion is strictly singular.

Proof. It was proved in Theorem 3.1 of [GHSS] that condition (14) implies the inclusion $E \subset F$ and that this inclusion is DSS. Hence, using Theorem 2, we get the statement.

COROLLARY 14. Let E and F be r.i. spaces such that $\varphi_E(t) \ge a \log^{-\alpha}(e/t)$ and $\varphi_F(t) \le b \log^{-\beta}(e/t)$ for some $0 < \alpha < \min(\beta, 1/2)$ and constants a, b > 0. Then the inclusion $E \subset F$ is strictly singular.

Proof. We may assume that the functions $t/\varphi_E(t)$ and φ_F are concave on (0, 1]. Then $(t/\varphi_E(t))'$ and φ'_F decrease on (0, 1]. Now, applying twice the property 2.2.19 in [KPS], we get

$$\int_{0}^{1} \left(\frac{t}{\varphi_{E}(t)}\right)' \varphi_{F}'(t) dt \leq \int_{0}^{1} \left(\frac{t}{a \log^{-\alpha}(e/t)}\right)' \left(b \log^{-\beta} \frac{e}{t}\right)' dt$$
$$\leq \frac{b\beta}{a} \int_{0}^{1} \log^{\alpha-\beta-1} \frac{e}{t} \frac{dt}{t} = \frac{b\beta}{a(\beta-\alpha)} < \infty.$$

By [KPS, Thm. 2.5.7]), the assumption $\alpha < 1/2$ implies $E \subsetneq G$. Hence the statement follows from the above proposition.

PROPOSITION 15. Let E and F be r.i. spaces with $E \subset F$. If the inclusion $E \subset F$ is disjointly strictly singular then the inclusion operator is weakly compact.

Proof. We can assume that $E \subset F_0$. Indeed, otherwise, reasoning as in the proof of Proposition 1 we construct a disjoint sequence $\{z_k\}$ in E_0 which is equivalent in E_0 and in F_0 to the canonical basis of c_0 . So the inclusion $E \subset F$ is not DSS.

Now, let $E \subset F$ with F separable, hence order continuous. Assume that $E \subset F$ is not weakly compact. Consider the real interpolation space $(E, F)_{\theta,p}$ for $0 < \theta < 1, 1 < p < \infty$, which is not reflexive by [B, Thm. 3.1]. Hence the lattice $(E, F)_{\theta,p}$ contains a subspace Q isomorphic to ℓ_1 or to c_0 (cf. [LT2]). Now if Q is isomorphic to ℓ_1 , we find, by [B, Prop. 2.3.3], that the inclusion $E \hookrightarrow F$ preserves an ℓ_1 -isomorphic copy. In the case of Q isomorphic to c_0 , an analogous statement is also true [Ma, Cor. 4.1]. Now, using ([Me, Thms. 3.4.11–3.4.17]), we deduce that $E \subset F$ also preserves a disjoint ℓ_1 -sequence or a disjoint c_0 -sequence.

V. Milman [Mi] posed the following question: Given two Banach spaces E and F and a non-strictly singular operator A from E into F, does there exist a *complemented* subspace Q in E such that the restriction of the operator A to Q is an isomorphism?

We give a negative answer to this question using the above results. First note that the inclusions $L \log^{\lambda} L \subset L_1$ are not strictly singular for $\lambda > 0$ because the Rademacher spaces satisfy $R(L \log^{\lambda} L) = R(L_1) = \ell_2$.

Recall that an operator $A : E \to F$ between two Banach spaces E and F is said to be *strictly cosingular* (or *Pełczyński*) if there is no infinitedimensional space H and onto operators $h : E \to H$ and $g : F \to H$ such that h = gA. Note that this class of operators is somewhat related by duality to strictly singular operators ([P]).

THEOREM 16. Let $0 < \lambda < 1/2$. If Q is a subspace of $L \log^{\lambda} L$ on which the $L \log^{\lambda} L$ -norm and the L_1 -norm are equivalent, then Q is not complemented in $L \log^{\lambda} L$. *Proof.* Suppose the contrary and denote by P a projection from $L \log^{\lambda} L$ onto Q. There exists a reflexive r.i. space E with $L \log^{\lambda} L \subset E \subset L_1$ ([FS]). Therefore Q is a reflexive subspace of L_1 . It follows from Rosenthal's theorem [R, Thm. 8] that Q embeds isomorphically into L_p for some p > 1, i.e., there exists an operator $T : (Q, \| \cdot \|_{L_1}) \to L_p$ which is an isomorphism onto its image. Set Z = T(Q).

Now, consider the inclusion operator $i: L_p \hookrightarrow L \log^{\lambda} L$ which is not strictly cosingular since there exist onto operators $R = TPi: L_p \to Z$ and $TP: L \log^{\lambda} L \to Z$ with TPi = R. On the other hand, by Corollary 14, the adjoint operator $i^*: \exp L_{\mu} \hookrightarrow L_{p'}$ is SS because $\mu > 2$ (here $\mu = 1/\lambda$ and p' = p/(p-1)). Hence, using [P, Prop. 1] we conclude that the inclusion operator i is strictly cosingular, which gives a contradiction. Thus the subspace Q cannot be complemented in $L \log^{\lambda} L$ (and hence not in L_1 either).

Note that the assumption $0 < \lambda < 1/2$ is essential since the Rademacher subspace $[r_n]$ is complemented in $L \log^{\lambda} L$ for $\lambda \ge 1/2$ (cf. [LT2, Prop. 2.b.4]).

Acknowledgements. The first and the third authors were partly supported by the Russian Fund of Basic Research grants 07-01-96603–a and 08-01-00226-a, respectively. The second author was partly supported by Spanish grants MEC MTM 2008-02652 and S/C PR 07-15837.

References

- [A] S. V. Astashkin, About interpolation of subspaces of rearrangement invariant spaces generated by Rademacher system, Int. J. Math. Math. Sci. 25 (2001), 451–465.
- [B] B. Beauzamy, Espaces d'interpolation réels : topologie et géométrie, Lecture Notes in Math. 666, Springer, Berlin, 1978.
- [BL] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
- [BK] Yu. A. Brudnyĭ and N. Ya. Krugljak, Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam, 1991.
- [CN] M. Cwikel and P. Nilsson, Interpolation of Marcinkiewicz spaces, Math. Scand. 56 (1985), 29–42.
- [FJT] T. Figiel, W. B. Johnson and L. Tzafriri, On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces, J. Approx. Theory 13 (1975), 395–412.
- [FS] C. Franchetti and E. M. Semenov, A Hilbert space characterization among function spaces, Anal. Math. 21 (1995), 85–93.
- [GHSS] A. García del Amo, F. L. Hernández, V. M. Sánchez and E. M. Semenov, Disjointly strictly-singular inclusions between rearrangement invariant spaces, J. London Math. Soc. 62 (2000), 239–252.
- [HNS] F. L. Hernández, S. Ya. Novikov and E. M. Semenov, Strictly singular embeddings between rearrangement invariant spaces, Positivity 7 (2003), 119–124.

- [HR] F. L. Hernández and B. Rodríguez-Salinas, On l^p-complemented copies in Orlicz spaces II, Israel J. Math. 68 (1989), 27–55.
- [KPS] S. G. Krein, Ju. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Amer. Math. Soc., Providence, RI, 1982.
- [LT1] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Springer, Berlin, 1977.
- [LT2] —, —, Classical Banach Spaces. II. Function Spaces, Springer, Berlin, 1979.
- [Lo] G. G. Lorentz, Relations between function spaces, Proc. Amer. Math. Soc. 12 (1961), 127–132.
- [LS] G. G. Lorentz and T. Shimogaki, Interpolation theorems for the pair of spaces (L^1, L^p) and (L^q, L^∞) , Trans. Amer. Math. Soc. 159 (1973), 207–221.
- [Ma] M. Mastyło, Interpolation Banach lattices containing no isomorphic copies of c₀, J. Math. Anal. Appl. 341 (2008), 676–688.
- [Me] P. Meyer-Nieberg, *Banach Lattices*, Springer, 1991.
- [Mi] V. D. Milman, Operators of class C_0 and C_0^* , in: Theory of Functions, Functional Analysis and Applications 10, Kharkov, 1970, 15–26 (in Russian).
- [M] S. J. Montgomery-Smith, The distribution of Rademacher sums, Proc. Amer. Math. Soc. 109 (1990), 517–522.
- [N] S. Ya. Novikov, Boundary spaces for inclusion map between rearrangement invariant spaces, Collect. Math. 44 (1997), 211–215.
- [P] A. Pełczyński, On strictly singular and strictly cosingular operators. I. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 31–36.
- [RS] V. A. Rodin and E. M. Semenov, Rademacher series in symmetric spaces, Anal. Math. 1 (1975), 207–222.
- [R] H. P. Rosenthal, On subspaces of L^p , Ann. of Math. 97 (1973), 344–373.
- [Se] E. M. Semenov, On the stability of the real interpolation method in the class of rearrangement invariant spaces, in: Function Spaces, Interpolation Spaces, and Related Topics (Haifa, 1995), Israel Math. Conf. Proc. 13, Bar-Ilan Univ., Ramat Gan, 1999, 172–182.
- [SH] E. M. Semenov and F. L. Hernández, Strictly singular and disjointly strictly singular inclusions, Dokl. Ross. Akad. Nauk 413 (2007), 461–462 (in Russian).
- [S] R. Sharpley, Characterization of intermediate spaces of M_{φ} , in: Linear Operators and Approximation II (Oberwolfach, 1974), P. L. Butzer and B. Sz.-Nagy (eds.), Birkhäuser, 1976, 205–214.

Department of MathematicsDepartment of Mathematical AnalysisSamara State UniversityMadrid Complutense UniversitySamara 443029, Russia28040 Madrid, SpainE-mail: astashkn@ssu.samara.ruE-mail: pacoh@mat.ucm.es

Department of Mathematics Voronezh State University Voronezh 394006, Russia E-mail: semenov@func.vsu.ru

> Received October 6, 2008 Revised version December 11, 2008

(6425)