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Sard’s approximation processes and oblique projections

by

G. Corach, J. I. Giribet, and A. Maestripieri (Buenos Aires)

Abstract. Three problems arising in approximation theory are studied. These prob-
lems have already been studied by Arthur Sard. The main goal of this paper is to use
geometrical compatibility theory to extend Sard’s results and get characterizations of the
sets of solutions.

1. Introduction. In 1950, Arthur Sard [17] proposed an operator-theo-
retic approach to study some problems arising in approximation theory. In
his terminology, a process is an operator T on a Hilbert space H which
is used to approximate x ∈ H in the sense that if δx is the error, then
T (x + δx) approximates x. For a fixed closed subspace S of H, he studied
approximation processes over S, least squares processes on S and curve
fitting processes on S (see definitions below).

Recall that a positive semidefinite operator A and a closed subspace S
are called compatible if there exists a (bounded linear) projection Q with
range S which is self-adjoint with respect to the sesquilinear form 〈ξ, η〉A =
〈Aξ, η〉 for every ξ, η ∈ H, i.e., AQ = Q∗A. Denote by P(A,S) the set
of all projections Q such that AQ = Q∗A and R(Q) = S. If P(A,S) is
not empty, it contains a distinguished element, denoted PA,S , which has
nullspace A(S)⊥	(S∩N(A)) (hereM	N =M∩(M∩N )⊥). Analogously,
denote by P∗(A,S) the set of all projections such that AQ∗ = QA and
R(Q) = S. The notion of compatibility is related to Schur complements
[1, 8, 9, 14], Ando complementability [2, 16], abstract splines in Hilbert
spaces [6, 10, 11, 15], weighted pseudo inverses [7], frame theory [5], signal
processing [12, 13], sampling theory [4, 18], and so on.

It turns out that compatibility allows a geometrical approach to the
technical results of Sard. The main goal of this paper is to characterize the
sets of processes defined by Sard in terms of certain compatibility condi-
tions.
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The main results of the paper are the following:

(a) The set of A-approximation processes over S is not empty if and only
if A is compatible with S⊥; moreover, it coincides with P∗(A,S⊥) +
L(N(A) ∩ S,S).

(b) There exists an A-weighted least squares process on S if and only if
A and S are compatible; in this case, these processes are operators
of the form PA,S + T with T ∈ L(H,S ∩N(A)).

(c) Given positive operators A,B ∈ L(H)+ and a closed subspace S ofH
there exists a B-approximation process which is also an A-weighted
least squares process on S if and only if (A,S) is compatible and the
Dixmier angle between N(A) ∩ S and B(S⊥) is positive.

(d) Given a positive trace class operator A ∈ L(H) and a closed subspace
S of H, there exists an A-curve fitting process on S if and only if
(A,S⊥) is compatible. Furthermore, we give a characterization of
these processes.

2. Preliminaries. Along this work, H denotes a (complex, separable)
Hilbert space with inner product 〈 , 〉. Given two Hilbert spaces H and K,
L(H,K) is the space of bounded linear operators fromH into K, and L(H) =
L(H,H). If T ∈ L(H,K) then T ∗ ∈ L(K,H) denotes the adjoint operator
of T , R(T ) stands for the range of T , and N(T ) for its nullspace. If S is a
closed subspace of H and T is a closed subspace of K, then L(S, T ) will be
identified with the subspace of L(H,K) consisting of all T ∈ L(H,K) such
that R(T ) ⊆ T and S⊥ ⊆ N(T ).

Let L(H)+ be the cone of (semidefinite) positive operators of L(H) and
denote by Q the set of projections of L(H), i.e., Q = {Q ∈ L(H) : Q2 = Q}.

If S and T are two (closed) subspaces of H, denote by S u T the direct
sum of S and T , by S ⊕ T their (direct) orthogonal sum, and set S 	 T =
S ∩ (S ∩ T )⊥. If H = S u T , the oblique projection PS//T onto S along
T is the projection with R(PS//T ) = S and N(PS//T ) = T . In particular,
PS = PS//S⊥ is the orthogonal projection onto S.

Given two subspaces S, T , the cosine of the Friedrichs angle θ(S, T ) ∈
[0, π/2] between them is defined by

c(S, T ) = sup{|〈x, y〉| : x ∈ S 	 T , ‖x‖ < 1, y ∈ T 	 S, ‖y‖ < 1}.

The following conditions are equivalent:

(1) c(S, T ) < 1;
(2) S + T is closed;
(3) S⊥ + T ⊥ is closed;
(4) c(S⊥, T ⊥) < 1.
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The Dixmier angle between S and T is the angle in [0, π/2] whose cosine is
defined by

c0(S, T ) = sup{|〈x, y〉| : x ∈ S, ‖x‖ < 1, y ∈ T , ‖y‖ < 1}.

Observe that in general c(S, T ) ≤ c0(S, T ), and if S∩T = {0} then equality
holds. Notice that if c0(S, T ) < 1 then S ∩ T = {0}.

Given A ∈ L(H)+ consider the (bounded) sesquilinear form in H × H
defined by

〈x, y〉A = 〈Ax, y〉 for x, y ∈ H,

and the corresponding seminorm ‖x‖2A = 〈x, x〉A.
If S is a closed subspace of H and A ∈ L(H)+, the A-orthogonal subspace

to S is given by

S⊥A := {x ∈ H : 〈x, s〉A = 0 for every s ∈ S}.

We have S⊥A = A−1(S⊥) = A(S)⊥.
An operator T ∈ L(H) is A-selfadjoint if 〈Tx, y〉A = 〈x, Ty〉A for every

x, y ∈ H. It is easy to see that T satisfies this condition if and only if
AT = T ∗A.

Definition 2.1. Let A ∈ L(H)+ and S be a closed subspace of H.
The pair (A,S) is compatible if there exists an A-selfadjoint projection with
range S, i.e., the set

P(A,S) = {Q ∈ Q : R(Q) = S, AQ = Q∗A}

is not empty.

Observe that a projection Q is A-selfadjoint if and only if N(Q) ⊆
R(Q)⊥A . It easily follows that (A,S) is compatible if and only if

(2.1) H = S +A−1(S⊥).

Given a compatible pair (A,S), let N = S ∩ A(S)⊥. It is easy to see that
N = S∩N(A). The decomposition H = Su(A(S)⊥	N ) defines the oblique
projection

(2.2) PA,S = PS//A(S)⊥	N .

Since R(PA,S) = S and N(PA,S) ⊆ A(S)⊥ it follows that PA,S ∈ P(A,S).
The set P(A,S) is an affine manifold that, for a given P ∈ P(A,S), can

be parametrized as

P(A,S) = P + L(S⊥,N ).(2.3)

For proofs of these facts see [8, 9].
The following list contains examples of compatible and noncompatible

pairs.
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Example 2.2. Suppose that A ∈ L(H)+ and S is a closed subspace
of H,

(a) If A has closed range, the pair (A,S) is compatible if and only if
N(A) + S is closed, or equivalently c(N(A),S) < 1.

(b) If R(PSAPS) is closed then the pair (A,S) is compatible.
(c) In particular, if PSAPS is invertible in L(S,S) then the pair (A,S)

is compatible, and P(A,S) = {PA,S}. See [3] for a proof.
(d) If S has finite dimension then (A,S) is compatible. This follows

directly from (a).
(e) c0(S⊥, A(S)) < 1 if and only if the pair (A,S) is compatible.

An interesting example where the pair (A,S) is not compatible can be
found in [17, Example 12].

The next two concepts were introduced by A. Sard in [17] in order to
establish necessary and sufficient conditions for the existence of operators
such as approximation, least squares and curve fitting processes.

Definition 2.3. Let T be a closed subspace of H. An operator C ∈
L(H) is proper on T if there exists D ∈ L(H) such that DPT CPT = PT .

Definition 2.4. Let A ∈ L(H)+ and T be a closed subspace of H. An
operator C ∈ L(H) is a companion of A relative to T if it is proper on T
and R(AC∗PT ) ⊆ PT .

There is a close relationship between the compatibility of the pair (A,S)
and the existence of companions of A relative to S⊥; in fact, these two
concepts are equivalent.

Proposition 2.5. Let A ∈ L(H)+ and S be a closed subspace of H.
There exists a companion of A relative to S⊥ if and only if the pair (A,S)
is compatible.

Proof. Suppose that the pair (A,S) is compatible and let E = I−Q∗ for
Q∈P(A,S); obviously E is a projection and R(E)=N(Q∗)=R(Q)⊥=S⊥.
Then EPS⊥EPS⊥ = PS⊥ , i.e., E is proper on S⊥. Furthermore,

AE∗ = A(I −Q) = A−Q∗A = EA,

hence R(AE∗) ⊆ S⊥, which implies that E is a companion of A relative
to S⊥.

Conversely, suppose that C ∈ L(H) is a companion of A relative to S⊥;
a fortiori, C is proper on S⊥. Let D ∈ L(H) be such that DPS⊥CPS⊥ = PS⊥
and consider Q = (I−PS⊥DPS⊥C)∗. It is easy to see that E = PS⊥DPS⊥C
is a projection with range S⊥. Then Q is a projection with R(Q) = S.
Furthermore, since R(AC∗PS⊥) ⊆ S⊥, we have EAE∗ = AE∗, and since
EAE∗ is selfadjoint, it follows that AE∗ = EA, which implies that AQ =
Q∗A, i.e., Q ∈ P(A,S).
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In particular, the above proof shows that if Q is an A-selfadjoint pro-
jection with range S⊥ then E = I −Q∗ is a companion of A relative to S.
However, not every companion is necessarily a projection (see Theorem 3.4
below).

There also exists a link between the compatibility of (A,S) and the
condition of A being proper on S, as shown by the following results.

Lemma 2.6. Let A ∈ L(H)+ and S be a closed subspace of H. Then A
is proper on S if and only if R(PSAPS) = S.

Proof. If A is proper on S, then there exists D ∈ L(H) such that
DPSAPS = PS . Let B = PSAPS ; then B ∈ L(H)+ and R(B) ⊆ S. From
BD∗ = PS , it follows that R(B) = S.

Conversely, from elementary properties of Moore–Penrose inverse,
B†B = PN(B)⊥ = P

R(B∗) and BB† = PR(B). Since B is selfadjoint and
R(B) = S, it follows that BB† = B†B = PS .

Proposition 2.7. Let A ∈ L(H)+ and S be a closed subspace of H.
Then A is proper on S if and only if N = {0} and R(PSAPS) is closed.
In this case (A,S) is compatible, P(A,S) = {PA,S} and PA,S = PS(I +
DPSAPS⊥), where D ∈ L(H) satisfies DPSAPS = PS .

Proof. Let B = PSAPS ; notice that N(B) = N ⊕S⊥. From Lemma 2.6,
if A is proper on S then R(B) = S, therefore it is closed. Also, N(B) = S⊥,
so that N = {0}.

Conversely, if R(B) is closed and N = {0}, then N(B) = S⊥ and
R(B) = R(B) = S. In this case, from [8, Remark 2.12(2)], it follows
that (A,S) is compatible. Observe that if DB = PS then PSDPSB =
PS and R(PSDPS) = S. Let C = PSDPS . Then BC∗ = PS so that
PSC

∗ = B†PS = B†, or C∗ = B† = C. From [8, Remark 2.12(1)], we
get PA,S = PS +B†PSAPS⊥ = PS + PSDPSAPS⊥ .

Notice that if A has closed range, then A is proper on S if and only if
the pair (A,S) is compatible and N = {0}, because the compression PSAPS
has closed range (see [8, Theorem 6.2]).

3. Approximation processes. Let µ be a Lebesgue–Stieltjes measure
on R and let H be the Hilbert space L2(µ). Suppose that (Ω,F , P ) is a
probability space; if z : Ω → R is P -measurable then the expectation of z is
E(z) =

	
Ω z(ω) dP (ω).

Let δx : R×Ω → R be a µ× P -measurable function such that:

(1) for almost every t ∈ R, E(δx(t, ·)) = 0,
(2) for almost every ω ∈ Ω, δx(·, ω) ∈ H,
(3) E(‖δx‖2) =

	
Ω

	
R |δx(ω, t)|2 dµ(t) dP (ω) <∞.
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The variance operator A ∈ L(H)+ of δx is defined by

Ax = E(〈x, δx〉δx) =
�

Ω

δx(ω, ·)
�

R
δx(ω, t)x(t) dµ(t) dP (ω)

for every x ∈ H. As shown in [17, Lemma 2], the variance operator A is a
trace class operator.

In signal processing applications, x is a (finite energy) signal which has to
be estimated and δx a noise measurement. Given the measurement x+δx, we
have to recover the signal x by means of a filter (i.e., an operator) T ∈ L(H).
In general, the reconstructed signal T (x+δx) does not coincide with the sig-
nal x. It may happen that, at least in a suitable set of signals, the expected
value of the reconstructed signal E(T (x + δx)) coincides with x. If there
exist many operators that satisfy our requirement, we add a restriction, for
instance that the incidence of the noise in the reconstructed signal be min-
imized. This problem has been studied in [17] and motivates the definition
of approximation processes.

Definition 3.1. Given a closed subspace T ofH and δx (with the above
assumptions), let U = {T ∈ L(H) : E(T (x+δx)) = x for every x ∈ T }. Then
T ∈ U is called an approximation process over T if E‖Tδx‖2 ≤ E‖Uδx‖2
for every U ∈ U .

Since E(T (x+ δx)) =
	
Ω(Tx+ Tδx(ω, ·)) dP (ω) = Tx, because E(Tδx)

= 0 (see [17, Lemma 3]), every element of U satisfies Tx = x for every x ∈ T ,
or, what is the same, T ⊆ N(I − T ). The quantity E(‖Tδx‖2) is related to
the variance of δx. In fact, if A ∈ L(H)+ is the variance operator of δx, then
E‖Tδx‖2 = Tr(TAT ∗) (see [17, Lemma 3]). The following theorem, due to
Sard, gives a characterization of approximation processes.

Theorem ([17, Theorem 1]). Let A ∈ L(H)+ be the variance operator of
a stochastic process δx and S be a closed subspace of H. Then T ∈ L(H) is
an approximation process over S⊥ with variance A if and only if R(AT ∗) ⊆
S⊥ ⊆ N(I − T ). Moreover, if N(A) ∩ S = {0}, then there exists a unique
approximation process T .

Based on this theorem we state the following definition of a generalized
approximation process, in which we do not constrain A ∈ L(H)+ to be a
trace class operator.

Definition 3.2. Given A ∈ L(H)+ and S a closed subspace of H.
Then T ∈ L(H) is an A-approximation process over S⊥ if R(AT ∗) ⊆ S⊥ ⊆
N(I − T ).

Sard proved [17, Theorem 2] that a necessary and sufficient condition
for the existence of an A-approximation process over S⊥ is that there exists
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a companion of A relative to S⊥, or equivalently, by Proposition 2.5, that
the pair (A,S) is compatible. This suggests a relationship between the set of
A-selfadjoint projections with range S and the A-approximation processes
over S.

For A ∈ L(H)+ and S⊥ a closed subspace, let P∗(A,S⊥) = {Q ∈ Q :
R(Q) = S⊥, AQ∗ = QA}.

Remark 3.3. Observe that P∗(A,S⊥) is an affine manifold, possibly
void: in fact, Q ∈ P∗(A,S⊥) if and only if I −Q∗ ∈ P(A,S). Then by (2.3),
P∗(A,S⊥) = (I−P ∗A,S)+L(N(A)∩S,S⊥). This manifold is contained in the
set of A-approximation processes on S⊥, as shown by the following theorem.

Theorem 3.4. Let A ∈ L(H)+ and S be a closed subspace of H. Let A
be the set of A-approximation processes over S⊥. Then A is not empty if
and only if the pair (A,S) is compatible. In this case,

A = P∗(A,S⊥) + L(N ,S).

Proof. Suppose that T ∈ L(H) is an A-approximation process over S⊥;
then R(AT ∗) ⊆ N(I − T ) so that AT ∗ = TAT ∗ = TA. Therefore T is
A-selfadjoint. From R(AT ∗) ⊆ S⊥, we conclude that PSAT ∗ = 0 = TAPS .
From S⊥ ⊆ N(I − T ), it follows that T = PS⊥ + TPS , and so I − T ∗ =
PS−PST ∗ = PS−PST ∗PS−PST ∗PS⊥ . Let Q = PS−PST ∗PS⊥ ; it is easy to
check that Q is a projection with range S. Also, from AT ∗ = APS⊥+APST ∗,
it follows that AT ∗PS = TAPS = 0 = APST

∗PS . Finally, observing that
A(I − T ∗) = (I − T )A, and that I − T ∗ = Q − PST

∗PS , we infer that
Q ∈ P(A,S). Therefore I −Q+W = T ∗ with W = PST

∗PS ∈ L(S,N ) and
Q ∈ P(A,S).

Conversely, if T ∗ = I−Q+W with Q ∈ P(A,S) and W ∈ L(S,N ), then
it is easy to see that T ∗ is A-selfadjoint. Moreover, R(AT ∗) = R(A(I−Q)) =
R((I −Q∗)A) ⊆ R(I −Q∗) = S⊥ and (I − T )PS⊥ = (Q∗ −W ∗)PS⊥ = 0, so
that S⊥ ⊆ N(I − T ).

An alternative characterization of A is given by

A = {T ∈ L(H) : T = I − P ∗A,S +W for some W ∈ L(N ,H)}.

This follows from the theorem above and (2.3).

4. Weighted least squares processes. Let A ∈ L(H)+, S be a closed
subspace of H and y ∈ H. Any u ∈ S such that

‖y − u‖A = min
x∈S
‖y − x‖A(4.1)

is called a weighted least squares approximation of y in S (with weight A)
(hereafter, A-WLSA).
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In [17], the problem of finding an operator T ∈ L(H) which assigns to
each y ∈ H an A-WLSA is studied. Such an operator is called a weighted
least squares process with weight A (A-WLSP).

Definition 4.1. Let A ∈ L(H)+ and S be a closed subspace of H. Then
T ∈ L(H,S) is an A-weighted least squares process (A-WLSP) on S if for
every y ∈ H, ‖y − Ty‖A ≤ ‖y − s‖A for every s ∈ S.

If the weight A is proper on S, Sard proved that there exists a unique
A-WLSP and it is an A-selfadjoint projection. Later, the same problem,
with different motivations than those of Sard, was studied in [7] and [10]
under the compatibility hypothesis; it was shown that the compatibility of
the pair (A,S) is not only sufficient but also necessary for the existence of an
A-WLSP. We summarize some of these results, more precisely [7, Proposition
4.4] and [10, Theorem 3.2], in the following statement. Notice, however, that
we use the notation of the present paper, which is essentially that of Sard.

Theorem 4.2. Let A ∈ L(H)+ and S be a closed subspace of H. The
following conditions hold :

(1) There exists an A-WLSA on S, for every y ∈ H, if and only if the
pair (A,S) is compatible. In that case, it is unique if and only if
N = {0}.

(2) u ∈ S is an A-WLSA of y if and only if y − u ∈ A(S)⊥.
(3) Every Q ∈ P(A,S) is an A-WLSP on S.

Corollary 4.3. There exists an A-WLSA on S, for every y ∈ S⊥, if
and only if the pair (A,S) is compatible.

Proof. Suppose that, for every ỹ ∈ S⊥, there exists an A-WLSA on S.
Given y ∈ H \ S, let z0 be the A-WLSA of PS⊥y. Then

‖z0 − PS⊥y‖A ≤ ‖z − PS⊥y‖A for every z ∈ S.(4.2)

Let x0 = z0 + PSy and x = z + PSy. Then

‖y − x0‖A ≤ ‖y − x‖A.
Since (4.2) holds for any z ∈ S, we see that x is an arbitrary vector in S,
thus x0 is an A-WLSP for y ∈ H \ S. Furthermore, if y ∈ S, then x0 = y
is an A-WLSA on S, because A ∈ L(H)+. Hence, there exists an A-WLSA
for every y ∈ H, thus, by Theorem 4.2, (A,S) is compatible.

The converse follows directly from Theorem 4.2.

By Proposition 2.7, it is clear that the condition of A being proper on S
is sufficient but not necessary for the existence and uniqueness of A-WSLP.
Furthermore, (3) shows that every element in P(A,S) is an A-WLSP. Notice,
however, that an A-WLSP may not be a projection, as shown by the next
proposition.
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Proposition 4.4. Let A ∈ L(H)+ and S be a closed subspace of H such
that the pair (A,S) is compatible. The operator W ∈ L(H) is an A-WLSP
if and only if W ∈ PA,S + L(H,N ).

Proof. Suppose that W ∈ L(H) is an A-WLSP. Then, by Theorem
4.2(2), for every y ∈ H we have y −Wy ∈ A(S)⊥, i.e.

〈Wy − y, z〉A = 0 for every z ∈ S.

Hence,

0 = 〈Wy − y, PA,Sx〉A = 〈Wy − PA,Sy, x〉A for every x ∈ H,

because R(W ) ⊆ S, and L = W − PA,S ∈ L(H,N ).
Conversely, suppose that W = PA,S + L, where L ∈ L(H,N ); then, by

Proposition 4.2 and the comments above, it is easy to see that, given y ∈ H,
〈Wy − y, z〉A = 〈PA,Sy − y, z〉A = 0 for every z ∈ S.

An interesting problem, which naturally occurs in some signal processing
applications, is the following: given a closed subspace S and A,B ∈ L(H)+,
find a B-approximation process over S which is also an A-WLSP on S. In
[17], this problem has been studied under the assumption that the weight A
is proper on S. In this section we study this problem under the assumption
that the pair (A,S) is compatible.

The next result shows that the set of B-approximation processes over
S which are also A-WLSP on S is the intersection of the affine manifolds
P∗(B,S) and P(A,S). Notice that if T is a B-approximation process and
also an A-WLSP on S, then T is a projection. If N = {0}, in particular if
A is proper on S, the problem of finding B-approximation processes which
are also A-WLSP on S reduces to checking if PA,S ∈ P∗(B,S).

Observe that, by Theorems 3.4 and 4.2, the compatibility of the pairs
(A,S) and (B,S⊥) is necessary for the existence of B-approximation pro-
cesses which are also A-WLSP over S.

Lemma 4.5. Let A,B ∈ L(H)+ and S be a closed subspace such that the
pairs (A,S) and (B,S⊥) are compatible.Then T ∈ L(H) is a B-approxima-
tion process over S and also an A-WLSP on S if and only if T ∈ P∗(B,S)∩
P(A,S).

Proof. If T ∈ P(A,S) ∩ P∗(B,S), then by Proposition 4.4 and Theo-
rem 3.4, it follows that T is an A-WLSP and also an approximation process.

Conversely, suppose that T is a B-approximation process over S. By
Theorem 3.4, T = (I − Q)∗ + Z, where Q ∈ P(B,S⊥) and Z ∈ L(N(B) ∩
S⊥,S⊥). If T is an A-WLSP in S then R(T ) ⊆ S, which implies that
S⊥ ⊆ R(T )⊥ = N(T ∗). Since T ∗ = (I − Q) + Z we have Zx = 0 for every
x ∈ S⊥, i.e., T = (I −Q)∗ ∈ P∗(B,S). Also, by Proposition 4.4, T = P +R
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with P ∈ P(A,S) and R ∈ L(S, N(A) ∩ S). Since T is a projection with
range S, it is easy to see that R = 0, and so T ∈ P(A,S) ∩ P∗(B,S).

The next theorem states necessary and sufficient conditions for the non-
emptiness of P(A,S)∩P∗(B,S), and hence for the existence of approxima-
tion processes which are also A-WLSP on S.

Theorem 4.6. Let A,B ∈ L(H)+ and S be a closed subspace of H.
Let N = N(A) ∩ S and M = N(B) ∩ S⊥. The following conditions are
equivalent :

(1) P(A,S) ∩ P∗(B,S) 6= ∅.
(2) (A,S) is compatible, AB(S⊥) ⊆ S⊥ and c0(N , B(S⊥)) < 1.
(3) (B,S⊥) is compatible, BA(S) ⊆ S and c0(M, A(S)) < 1.

Proof. (1)⇒(2): Suppose that Q = PS//T ∈ P(A,S) ∩ P∗(B,S). Since
Q ∈ P(A,S), we have T ⊆ A−1(S⊥). Analogously, Q∗ = PT ⊥//S⊥ ∈
P (B, T ⊥), because Q ∈ P∗(B,S); therefore S⊥ ⊆ B−1(T ). Then B(S⊥) ⊆
T ⊆ A−1(S⊥), i.e. AB(S⊥) ⊆ S⊥. Furthermore, B(S⊥)∩N ⊆ T ∩N = {0},
so c(B(N ,S⊥))=c0(N , B(S⊥)) and c(N , B(S⊥))<c(N , T )<c(S, T )<1.

(2)⇒(1): Suppose AB(S⊥) ⊆ S⊥, N ∩B(S⊥) = {0} and c0(N , B(S⊥))
< 1. Then B(S⊥) uN is a closed subspace of A−1(S⊥). Let W be a closed
subspace with B(S⊥)uNuW = A−1(S⊥). Let T = B(S⊥)uW ⊆ A−1(S⊥);
observe that H = S u T , and define Q = PS//T . Since N(Q) ⊆ A−1(S⊥),
we have Q ∈ P(A,S) (see Preliminaries). Furthermore, since B(S⊥) ⊆ T , it
follows that N(Q∗) = S⊥ ⊆ B−1(T ), i.e., Q∗ is a B-selfadjoint projection.
Thus Q ∈ P(A,S) ∩ P∗(B,S).

(1)⇔(3) follows analogously.

Notice that the compatibility of the pair (A,S) and the conditions
AB(S⊥) ⊆ S⊥ and c0(N , B(S⊥)) < 1 imply the compatibility of the pair
(B,S⊥).

If N = {0}, the hypotheses which guarantee the existence of B-approxi-
mation processes over S which are also A-WLSP on S reduce to AB(S⊥) ⊆
S⊥. Then we recover, under the compatibility hypothesis, the result proved
in [17, Theorem 4] for an A ∈ L(H)+ which is proper on S.

The next result gives alternative conditions for the existence of B-appro-
ximation processes which are also A-WLSP on S. This will be useful to
construct such operators. Recall that PT is the orthogonal projection onto T .

Lemma 4.7. Suppose that A,B ∈ L(H)+ and S is a closed subspace
such that the pairs (A,S) and (B,S⊥) are compatible. Let P ∈ P(A,S),
Q ∈ P(B,S⊥), N = N(A) ∩ S and M = N(B) ∩ S⊥. Then the following
conditions are equivalent :
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(1) P(A,S) ∩ P∗(B,S) 6= ∅,
(2) A(I − P −Q∗)PM⊥ = 0,
(3) B(I − P ∗ −Q)PN⊥ = 0.

Proof. (1)⇒(2): Let T ∈ P(A,S) ∩ P∗(B,S). Then, by Lemma 4.5, T
is an A-WLSP over S and a B-approximation process over S. By (2.3) and
Remark 3.3,

T = P + L1 = (I −Q∗) + L2,(4.3)

where L1 ∈ L(S⊥,N ) and L2 ∈ L(M,S).
Thus I − Q∗ − P = L1 − L2. Let Z = I − Q∗ − P ; it is easy to see

that R(Z) ⊆ S and Z(M⊥) ⊆ N (because M⊥ ⊆ N(L2)). Consequently,
A(I −Q∗ − P )PM⊥ = 0.

(2)⇒(1): Suppose that A(I − Q∗ − P )PM⊥ = 0. Let Z = I − Q∗ − P .
Observe that Z(S) = 0 and R(Z) ⊆ S. Furthermore, Z(M⊥) ⊆ N . Let
L1 = ZPM⊥ and L2 = ZPM.

Then Z = L1 +L2 = I−Q∗−P , or equivalently, 1−Q∗−L2 = P +L1. If
T = 1−Q∗−L2 = P +L1, then T ∈ P(A,S)∩P∗(B,S); in fact, R(L1) ⊆ N
and L1(S) = 0 (because S ⊆ M⊥ and Z(S) = 0) so that L1 ∈ L(S⊥,N ).
Also, M⊥ ⊆ N(L2) and R(L2) ⊆ S, so L2 ∈ L(M,S).

Thus (I−Q∗)−L2 = P +L1. Set T = P +L1 = (I−Q∗)−L2. It follows
that T ∈ (P + L(S⊥,N )) ∩ ((I −Q∗) + L(S,M)∗).

(1)⇔(3) is analogous to (1)⇔(2).

The following theorem gives a parametrization of the set ofB-approxima-
tion processes which are also A-WLSP on S, i.e., the set P(A,S)∩P∗(B,S).

Theorem 4.8. Let A,B ∈ L(H)+ and let S be a closed subspace such
that P(A,S)∩P∗(B,S) 6= ∅. Let N = N(A)∩S andM = N(B)∩S⊥. Then

P(A,S) ∩ P∗(B,S) = (I − P ∗B,S⊥)PM⊥ + PA,SPM + L(M,N ).

Proof. If E = (I − P ∗
B,S⊥)PM⊥ + PA,SPM + C for some C ∈ L(M,N ),

then

AE = A((I − P ∗B,S⊥)PM⊥ + PA,SPM)

= APA,S −APA,SPM⊥ +APM⊥ −AP ∗B,S⊥PM⊥ = APA,S ,

since, by Lemma 4.7, A(I−PA,S−P ∗B,S⊥)PM⊥ = 0. Thus E is A-selfadjoint.
Furthermore, since S ⊆ M⊥ and C = CPM, it follows that E2 = E.
Moreover, it is easy to see that EPS = PS , so E ∈ P(A,S). Analogously,
E ∈ P∗(B,S⊥). Therefore E is a B-approximation process and also an
A-WLSP on S.

Conversely, let Q ∈ P(A,S)∩P∗(B,S) and C = Q− (I −P ∗
B,S⊥)PM⊥ −

PA,SPM. Then CPM⊥ = QPM⊥ − (I − P ∗
B,S⊥)PM⊥ . Since Q ∈ P∗(B,S⊥),

it follows that Q = (I − P ∗
B,S⊥) + W with W ∈ L(M,S). Hence QPM⊥ =
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(I − P ∗
B,S⊥)PM⊥ , so that CPM⊥ = 0. Furthermore, since Q ∈ P(A,S),

we have Q = PA,S + W̃ with W̃ ∈ L(S⊥,N ). Therefore, C = CPM =
PA,SPM−W̃PM−PA,SPM, so that R(C) ⊆ N . Thus,Q ∈ (I−P ∗

B,S⊥)PM⊥+
PA,SPM + L(M,N ).

5. Curve fitting processes. Suppose that H = L2(µ) and δx =
δx(t, ω) is a stochastic process, as defined in Section 3. Given a linearly
independent set {vn}n∈I={1,...,N} that spans a (finite-dimensional) subspace
S of H and the variance operator of δx, A ∈ L(H)+, Sard [17] studied the
problem of finding {wn}n∈I ⊆ H such that

E
(∑
n∈I
〈wn, x+ δx〉vn

)
= x for every x ∈ S,(5.1)

and minimize

E
(∑
n∈I
|〈wn, δx〉|2

)
.(5.2)

In [17, Lemmas 15 and 16], it was proved that

E
(∑
n∈I
|〈wn, δx〉|2

)
=
∑
n∈I
〈wn, wn〉A.

In this section we generalize this problem and study the existence of
solutions under the assumption that {vn}n∈I⊆Z is a frame for a (possibly
infinite-dimensional) closed subspace S of H. First, we introduce some def-
initions and results.

Definition 5.1. Let S be a closed subspace of H. The set V = {vn}n∈I
⊆ S is a frame for S if there exist constants γ1, γ2 > 0 such that

γ1‖x‖2 ≤
∑
n∈I
|〈x, vn〉|2 ≤ γ2‖x‖2 for every x ∈ S.(5.3)

If the set V = {vn}n∈I is also linearly independent then it is called a
Riesz basis of S.

Let S be a closed subspace of H and let V = {vn}n∈I be a frame for S.
Let K be a (separable) Hilbert space and B = {en}n∈I an orthonormal basis
of K. By (5.3), there exists a unique F ∈ L(K,H) such that Fen = vn for
every n ∈ I. The triplet (F,B,K) is called the synthesis operator of V, and
the analysis operator of V is F ∗ ∈ L(H,K) given by F ∗x =

∑
n∈I〈x, vn〉en.

The operator T = FF ∗ ∈ L(H) does not depend on the synthesis operator
F but only on the frame V = {vn}n∈I (see [5]), i.e., if (F1,K1,B1) is another
synthesis operator for V then T = F1F

∗
1 = FF ∗; T is called the frame

operator of V.
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The restriction of T to the subspace S is invertible; moreover, from (5.3),
γ1PS ≤ PSTPS ≤ γ2PS and so (1/γ1)PS ≤ PST

†PS ≤ (1/γ2)PS , where T †

denotes the Moore–Penrose inverse of T .
Based on the above definitions, the problem stated in (5.1) and (5.2)

and solved by Sard can be rewritten as follows. Let V = {vn}n∈I={1,...,N} be
a basis of a closed subspace S and (F, {en}n∈I ,CN ) its synthesis operator
(where {en}n∈I is the canonical basis in CN ). Find G0 ∈ L(CN ,H) such
that

(1) G0 satisfies FG∗0PS = PS ,
(2)

∑
n〈G0ek, G0ek〉A ≤

∑
n〈Gek, Gek〉A for every G ∈ L(CN ,H) such

that FG∗PS = PS .

Notice that
∑

n〈Gek, Gek〉A = Tr(G∗AG). Based on this reformulation
of the original problem, we give the following definition.

Definition 5.2. Let H and K be two (separable) Hilbert spaces, A ∈
L(H)+ a trace class operator and S a closed subspace of H. Let V = {vn}n∈I
be a frame for S and (F,B,K) a synthesis operator of V. Then FG∗0 is an
A-curve fitting process on S if

Tr(G∗0AG0) = min{Tr(G∗AG) : G ∈ L(K,H), FG∗PS = PS}.

As we will show later, the problem of finding such a G0 ∈ L(K,H)
is related to an abstract spline problem. We first characterize the set of
(bounded linear) operators satisfying condition (1).

Lemma 5.3. Let V = {vn}n∈I be a frame for a closed subspace S, let
(F,B,K) be a synthesis operator for V, and T = FF ∗. Then G ∈ L(K,H)
satisfies FG∗PS = PS if and only if GPN(F )⊥ = T †F + L(N(F )⊥,S⊥).

Proof. Since R(T ) = R(F ) = S, it follows that PS = TT †. Suppose that
G ∈ L(K,H) satisfies FG∗PS = PS . Then F (F ∗T †−G∗)F = 0. Since R(F ∗)
is closed, it follows that F ∗(T †F−G)PN(F )⊥ = 0, so R((T †F−G)PN(F )⊥) ⊆
N(F ∗) = S⊥. Let W = GPN(F )⊥ − T †FPN(F )⊥ = GPN(F )⊥ − T †F . Then
R(W ) ⊆ S⊥ and N(F ) ⊆ N(W ), thus GPN(F )⊥ ∈ T †F + L(N(F )⊥,S⊥).

Conversely, suppose that GPN(F )⊥ = T †F+W with W ∈ L(N(F )⊥,S⊥).
Then F ∗(T †F−G)PN(F )⊥ = 0, which implies that PN(F )⊥(G∗−F ∗T †)F = 0,
so R((G∗ − F ∗T †)F ) ⊆ N(F ), i.e., F (G∗ − F ∗T †)F = 0, so that FG∗PS
= PS .

If V = {vn}n∈I is a Riesz basis of S, then N(F ) = 0 and Lemma 5.3
asserts that FG∗PS = PS if and only if G = T †F + L(K,S⊥).
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Given two Hilbert spaces H and K, C ∈ L(H,K), M a closed subspace
of H and ξ ∈ H, an abstract spline interpolant to ξ is any element in the set

sp(C,M, ξ) = {η ∈ ξ +M : ‖Cη‖ = min
σ∈M

‖C(ξ + σ)‖}.

See [6, 11, 15].
The following result [10, Theorem 3.2] establishes the relation between

compatibility and the existence of abstract spline interpolants.

Theorem 5.4. Let C ∈ L(H,K) and M be a closed subspace of H.
The set sp(C,M, ξ) is not empty , for every ξ ∈ H, if and only if the pair
(C∗C,M) is compatible. Moreover , in this case, sp(C,M, ξ) = {(I −Q)ξ :
Q ∈ P(C∗C,M)}.

Based on this theorem, we can give conditions for the existence ofA-curve
fitting processes.

Theorem 5.5. Let A ∈ L(H)+ be a trace class operator , S a closed
subspace of H, V = {vn}n∈I a frame for S, (F,B = {en}n∈I ,K) the synthesis
operator of V, and T = FF ∗. Then there exists an A-curve fitting process
on S if and only if the pair (A,S⊥) is compatible. Moreover , in this case,
given Q ∈ P(A,S⊥), G0 = (I − Q)T †F is such that FG0 is an A-curve
fitting process on S.

Proof. Let I1, I2 ⊆ I be such that I1 ∪I2 = I, {εn}n∈I1 is an orthonor-
mal basis of N(F ) and {εn}n∈I2 is an orthonormal basis of N(F )⊥.

Let Q ∈ P(A,S⊥). Then applying Lemma 5.3 it is easy to see that
G0 = (I −Q)T †F ∈ L(K,H) satisfies FG∗0PS = PS .

Suppose that G ∈ L(K,H) satisfies FG∗PS = PS . Then, by Lemma 5.3,

GPN(F )⊥εn ∈ T †Fεn + S⊥,

and by Theorem 5.4, ‖A1/2(I −Q)T †Fεn‖ ≤ ‖A1/2h‖ for every h ∈ T †Fεn
+ S⊥. Hence

Tr(G∗0AG0) =
∑
n∈I
‖G0εn‖2A =

∑
n∈I
‖(I −Q)T †Fεn‖2A

=
∑
n∈I2

‖(I −Q)T †Fεn‖2A ≤
∑
n∈I2

‖GPN(F )⊥εn‖2A =
∑
n∈I2

‖Gεn‖2A

≤
∑
n∈I2

‖Gεn‖2A +
∑
n∈I1

‖Gεn‖2A = Tr(G∗AG),

since
∑

n∈I1 ‖Gεn‖A ≥ 0.
Conversely, if FG∗PS = PS then, by Lemma 5.3, G = T †F +W +R for

some W ∈ L(N(F )⊥,S⊥) and R ∈ L(N(F ),H). Suppose that G0 = T †F +
W0 + R0, with W0 ∈ L(N(F )⊥,S⊥) and R0 ∈ L(N(F ),H), is an A-curve
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fitting process. Then, for every W ∈ L(N(F )⊥,S⊥) and R ∈ L(N(F ),H),∑
n

‖G0εn‖2A ≤
∑
n

‖(T †F +W +R)εn‖2A.

Let R = 0. Since
∑

n ‖G0εn‖2A =
∑

n∈I2 ‖(T
†F+W0)εn‖2A+

∑
n∈I1 ‖R0εn‖2A,

it follows that for every W ∈ L(N(F )⊥,S⊥),∑
n∈I2

‖T †Fεn +W0εn‖2A ≤
∑
n∈I2

‖T †Fεn +Wεn‖2A(5.4)

Given y ∈ S (y 6= 0), let v = F ∗y. Then v satisfies T †Fv = y. Given n0 ∈
I2, let εn0 = v/‖v‖ and {εn}n6=n0 be such that {εn}n∈I2 is an orthonormal
basis of N(F )⊥. For x ∈ S⊥, let Wx ∈ L(N(F )⊥,S⊥) be such that Wxεn0 =
−x and Wxεn = W0εn for every n ∈ I2, n 6= n0. By (5.4) it follows that∥∥∥∥ y

‖v‖
− (−W0εn0)

∥∥∥∥
A

≤
∥∥∥∥ y

‖v‖
− x
∥∥∥∥
A

for any x ∈ S⊥. Thus, x0 = −‖v‖W0εn0 is an A-WLSA of y. Therefore, by
Corollary 4.3, the pair (A,S⊥) is compatible.

The following result gives an expression for a subset of A-curve fitting
processes; notice that this expression does not depend on the frame V, but
only on the subspace S.

Corollary 5.6. Let A ∈ L(H)+ be a trace class operator and S be a
closed subspace of H such that the pair (A,S⊥) is compatible. Then W ∈
P∗(A,S) is an A-curve fitting process on S.

Proof. Suppose that V = {vn}n∈I is a frame for S, (F,B = {en}n∈I ,K)
is the synthesis operator of V, and T = FF ∗. Let Q ∈ P(A,S⊥). By Theo-
rem 5.5, if G0 = (I −Q)T †F then FG∗0 is an A-curve fitting process on S.
Since FG∗0 = F ((I −Q)T †F )∗ = TT †(I −Q∗) = (I −Q∗), it follows that if
W ∈ P∗(A,S), then W is an A-curve fitting process on S.

The previous corollary relates the set of A-curve fitting processes to the
set of A-approximation processes. In fact, an A-curve fitting process exists if
and only if an A-approximation process does. A similar result can be found
in [17, Corollary of Theorem 5] for finite-dimensional spaces.
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