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Multi-dimensional Fejér summability and
local Hardy spaces

by

Ferenc Weisz (Budapest)

Abstract. It is proved that the multi-dimensional maximal Fejér operator defined in
a cone is bounded from the amalgam Hardy space W (hp, `∞) to W (Lp, `∞). This implies
the almost everywhere convergence of the Fejér means in a cone for all f ∈ W (L1, `∞),
which is larger than L1(Rd).

1. Introduction. It is known that the Fejér means σT f of a function
f ∈ L1(R) converge a.e. to f as T → ∞. Moreover, the maximal operator
of the Fejér means σ∗ := supT>0 |σT | is of weak type (1, 1), i.e.

sup
ρ>0

ρλ(σ∗f > ρ) ≤ C‖f‖1 (f ∈ L1(R))

(see Zygmund [17, Vol. I. p. 154]). Móricz [9, 10] also verified that σ∗ is
bounded from Hp(R) to Lp(R) for p = 1. The author extended those results
to all 1/2 < p ≤ 1 in [14].

For multi-dimensional trigonometric-Fourier series Marcinkiewicz and
Zygmund [8] proved that the Fejér means σnf of a function f ∈ L1(Td)
converge a.e. to f as n→∞ provided that n is in a positive cone, i.e., 2−τ ≤
nk/nj ≤ 2τ for all k, j = 1, . . . , d and some τ ≥ 0 (n = (n1, . . . , nd) ∈ Nd).
The analogous convergence also holds for the Fejér means of Fourier trans-
forms, i.e. σT f → f a.e. as T → ∞ and 2−τ ≤ Tk/Tj ≤ 2τ (k, j = 1, . . . , d)
for all f ∈ L1(Rd) (see Weisz [15]). Moreover, the (restricted) maximal op-
erator σ∗ defined in a cone is bounded from Hp(Rd) to Lp(Rd) whenever
d/(d+ 1) < p <∞.

In this paper we will prove sharper inequalities and convergence re-
sults. Goldberg [4] has introduced and investigated the so-called local Hardy
spaces hp(Rd). We will show that σ∗ is bounded from hp(Rd) to Lp(Rd)
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(d/(d+ 1) < p <∞). This extends the results just mentioned, because the
norm of hp(Rd) is smaller than the one of Hp(Rd).

Starting with the local Hardy spaces we introduce new Wiener amal-
gam spaces W (hp, `∞)(Rd). Our main result is that σ∗ is bounded from the
amalgam space W (hp, `∞)(Rd) to W (Lp, `∞)(Rd) (d/(d+ 1) < p <∞) and
from W (L1, `∞)(Rd) to the weak space W (L1,∞, `∞)(Rd). By a density ar-
gument we show that the Fejér means σT f converge a.e. to f as T →∞ and
2−τ ≤ Tk/Tj ≤ 2τ (k, j = 1, . . . , d), provided that f ∈W (L1, `∞)(Rd). This
is a significant generalization of the result for integrable functions, because
W (L1, `∞)(Rd) is a much larger space than L1(Rd).

2. Local Hardy spaces and Wiener amalgams. Let us fix d ≥ 1,
d ∈ N. Let λ be the Lebesgue measure. We use the notation |I| for the
Lebesgue measure of the set I. For x = (x1, . . . , xd), u = (u1, . . . , ud) ∈ Rd

we set u · x :=
∑d

k=1 ukxk. We write briefly Lp(Rd) for the real Lp(Rd, λ)
space with the norm (or quasinorm)

‖f‖p :=
( �

Rd
|f |p dλ

)1/p
(0 < p ≤ ∞).

The weak Lp space, Lp,∞(Rd) (0 < p < ∞), consists of all measurable
functions f for which

‖f‖Lp,∞ := sup
ρ>0

ρλ(|f | > ρ)1/p <∞.

Note that Lp,∞(Rd) is a quasi-normed space (see Bergh and Löfström
[1, p. 8]). It is easy to see that for each 0 < p ≤ ∞,

Lp(R) ⊂ Lp,∞(R) and ‖ · ‖Lp,∞ ≤ ‖ · ‖p.
The space of continuous functions with the supremum norm is denoted by
C(R), and Cc(R) denotes the subspace of continuous functions having com-
pact support.

For a measurable function φ on Rd let

φt(x) := t−dφ(x/t) (x ∈ Rd, t > 0).

Given a Schwartz function φ ∈ S(Rd) with
	
Rd φdλ 6= 0 and suppφ ⊂

[0, 1/2]d, the local Hardy space hp(Rd) (0 < p ≤ ∞) consists of all tempered
distributions f for which

‖f‖hp(Rd) := ‖ sup
0<t<1

|f ∗ φt| ‖Lp(Rd) <∞.

Replacing the Lp(Rd) norm by the Lp,∞(Rd) norm, we get the weak local
Hardy space hp,∞(Rd) (0 < p ≤ ∞). Taking the supremum over all 0 <
t < ∞ we obtain the definition of the classical Hardy space Hp(Rd). Other
non-zero Schwartz functions φ define the same spaces and equivalent norms.
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Usually the classical Hardy spaces are investigated. The local Hardy spaces
were introduced in Goldberg [4]. Using these spaces we will get convergence
of Fejér sums for functions from W (L1, `∞)(Rd), which is a much larger
space than L1(Rd).

It is known that the Hardy spaces hp(Rd) and Hp(Rd) are equivalent
to the Lp(Rd) space when 1 < p ≤ ∞, and H1(Rd) ⊂ h1(Rd) ⊂ L1(Rd).
Moreover,

(1) ‖f‖h1,∞ ≤ ‖f‖H1,∞ ≤ C‖f‖1 (f ∈ L1(Rd))

(see e.g. Stein [12, p. 91], Weisz [16, p. 68] and Goldberg [4]).
The atomic decomposition is a useful characterization of Hardy spaces.

A bounded function a is an hp(Rd)-atom if there exists a cube I ⊂ Rd such
that

(i) supp a ⊂ I,
(ii) ‖a‖∞ ≤ |I|−1/p,

(iii) if |I|<1 then
	
I a(x)xk dλ(x) = 0 for all multi-indices k= (k1, . . . , kd)

with |k| ≤ M , where M ≥ [d(1/p − 1)] and [x] denotes the integer
part of x ∈ R.

We will say that a is a type 1 atom if |I| < 1 and a type 2 atom if |I| ≥ 1. If
we require the moment condition in (iii) for all |I| ≥ 1 then we obtain the
definition of Hp(Rd)-atom (see Lu [7, Chapter 1], Stein [12, Chapter 3] and
Goldberg [4]).

Theorem 1. A tempered distribution f is in hp(Rd) (0 < p ≤ 1) if and
only if there exist a sequence (ak, k ∈ N) of hp(Rd)-atoms and a sequence
(µk, k ∈ N) of real numbers such that

(2)
∞∑
k=0

|µk|p <∞ and
∞∑
k=0

µkak = f in the sense of distributions.

Moreover ,

‖f‖hp ∼ inf
( ∞∑
k=0

|µk|p
)1/p

where the infimum is taken over all decompositions of f of the form (2).

Given a (quasi-)Banach space X on Rd, a measurable function f belongs
to the Wiener amalgam space W (X, `q)(Rd) (0 < q ≤ ∞) if

‖f‖W (X,`q) :=
( ∑
k∈Zd
‖f |[k,k+1)‖

q
X

)1/q
<∞

with the obvious modification for q =∞, where k+1 := (k1 +1, . . . , kd+1).
W (X, c0)(Rd) is defined analogously, where c0 denotes the set of sequences
with limit 0. In this paper we will use the Wiener amalgam spaces for X =
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Lp(Rd), Lp,∞(Rd), hp(Rd), hp,∞(Rd). The closed subspace of W (L∞, `q)(Rd)
containing continuous functions is denoted by W (C, `q)(Rd) (1 ≤ q ≤ ∞).
The space W (C, `1)(Rd) is called the Wiener algebra. It is used quite often
in Gabor analysis, because it provides a convenient and general class of
windows (see e.g. Gröchenig and Heil [5]). As can be seen in Feichtinger and
Weisz [2, 3], it also plays an important role in summability theory. It is easy
to see that

W (L∞, `1)(Rd) ⊂ Lp(Rd) ⊂W (L1, `∞)(Rd) (1 ≤ p ≤ ∞)

and W (Lp, `p)(Rd) = Lp(Rd).

3. Fejér means of Fourier transforms. The Fourier transform of
f ∈ L1(Rd) is

f̂(x) :=
�

Rd
f(t)e−2πıx·t dt (x ∈ Rd),

where ı =
√
−1. If f ∈ Lp(Rd) for some 1 ≤ p ≤ 2 then the Fourier inversion

formula
f(x) =

�

Rd
f̂(u)e2πıx·u du (x ∈ Rd)

holds if f̂ ∈ L1(Rd). This motivates the definition of the Dirichlet integral
stf :

stf(x) :=
t1�

−t1

. . .

td�

−td

f̂(u)e2πıx·u du (t = (t1, . . . , td) ∈ Rd
+).

The Fejér means are defined by

σT f(x) :=
1∏d

j=1 Tj

T1�

0

. . .

Td�

0

stf(x) dt (T = (T1, . . . , Td) ∈ Rd
+).

It is easy to see that

(3) σT f(x) =
�

Rd
f(t)(KT1(x1 − t1)× · · · ×KTd(xd − td)) dt

where

(4) KS(u) := S sinc2(Su) := S

(
sin(πSu)
πSu

)2

(S > 0, u ∈ R, u 6= 0)

is the Fejér kernel. Remark that

(5)
�

R
KS(u) du =

�

R
sinc2(u) du = 1 (S > 0)

(see Zygmund [17, Vol. II, pp. 250–251]).
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The definition of the Fejér means can be extended easily from Lp(Rd)
(1 ≤ p ≤ 2) functions to all f ∈W (L1, `∞)(R) by (3), i.e.

σT f := f ∗ (KT1 × · · · ×KTd) (T ∈ Rd
+).

For a fixed τ ≥ 0 the (restricted) maximal operator is defined by

σ∗f := sup
2−τ≤Tk/Tj≤2τ

k,j=1,...,d

|σT f |.

Equality (3) implies

(6) ‖σ∗f‖∞ ≤ ‖sinc2‖d1‖f‖∞ = ‖f‖∞ (f ∈ L∞(R)).

In this paper the constants C and Cp may vary from line to line, and
the constants Cp depend only on p.

4. Fejér summability and local Hardy spaces. In this section we
generalize the results of Weisz [15] from Hp(Rd) spaces to hp(Rd) and to the
Wiener amalgam Hardy spaces.

Theorem 2. For d/(d+ 1) < p <∞,

‖σ∗f‖p ≤ Cp‖f‖hp (f ∈ hp(Rd))

and
‖σ∗f‖L1,∞ ≤ C‖f‖1 (f ∈ L1(Rd)).

Proof. For simplicity we prove the result for d = 2 only. For d > 2
the verification is very similar. Assume that 2/3 < p ≤ 1 and a is an
arbitrary hp(R)-atom with support I, where I is a cube I = I1 × I2 and
2−K−1 < |I1| = |I2| ≤ 2−K for some K ∈ Z. Let 4I1 denote the interval
with the same center as I1 and with length 4|I1|, and 4I := 4I1 × 4I2. We
may suppose that the center of I is zero. If a is a type 1 atom, i.e. K ≥ 0,
then

(7) ‖σ∗a‖p ≤ Cp,

as proved in [15].
Now suppose that a is a type 2 atom with K < 0. By (5),
�

4I

|σ∗a(x)|p dx ≤
�

4I

sup
T1,T2≥1

∣∣∣ �
R2

a(t)KT1(x1 − t1)KT2(x2 − t2) dt
∣∣∣p dx

≤ Cp22K2−2K .

Next we integrate over (R \ 4I1)× 4I2. We can see from (4) that

(8) |KS(u)| ≤ CS, |KS(u)| ≤ C

S|u|2
(u ∈ R \ {0}, S ∈ R+).
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Equality (3) implies that

|σTa(x)| ≤ Cp22K/p
�

I1

C

T1(x1 − t1)2
dt1.

We may suppose that xi > 0 (i = 1, 2). If x1 ∈ [i2−K , (i+ 1)2−K) (i ≥ 1)
then

|σ∗a(x)| ≤ Cp22K/p
�

I1

1
(i2−K − 2−K−1)2

dt1 ≤ Cp2K(2/p+1)i−2

and so

�

R\4I1

�

4I2

|σ∗a(x)|p dx ≤
∞∑
i=1

(i+1)2−K�

i2−K

�

4I2

|σ∗a(x)|p dx ≤ Cp
∞∑
i=1

2Kpi−2p,

which is bounded, because K < 0. The integral over 4I1 × (R \ 4I2) can be
estimated in the same way.

Similarly, if x1 ∈ [i12−K , (i1 + 1)2−K) and x2 ∈ [i22−K , (i2 + 1)2−K)
(i1, i2 ≥ 1) then

|σTa(x)| ≤ Cp22K/p
�

I1

C

T1(x1 − t1)2
dt1

�

I2

C

T2(x2 − t2)2
dt2

and
|σ∗a(x)| ≤ Cp2K(2/p+2)i−2

1 i−2
2 .

Thus

�

R\4I1

�

R\4I2

|σ∗a(x)|p dx ≤
∞∑
i1=1

∞∑
i2=1

(i1+1)2−K�

i12−K

(i2+1)2−K�

i22−K

|σ∗a(x)|p dx

≤ Cp
∞∑
i1=1

∞∑
i2=1

22Kpi−2p
1 i−2p

2 ≤ Cp,

which shows (7) for type 2 atoms as well as the theorem.

Recall that Theorem 2 was known for Hp(Rd) spaces (see Weisz [15]).
The result for hp(Rd) is stronger, because ‖ · ‖hp ≤ ‖ · ‖Hp . Next we show
the boundedness of σ∗ on Wiener amalgam Hardy spaces.

Theorem 3. If d/(d+ 1) < p <∞ then

(9) ‖σ∗f‖W (Lp,`∞) ≤ Cp‖f‖W (hp,`∞) (f ∈W (hp, `∞)(Rd))

and

(10) ‖σ∗f‖W (L1,∞,`∞) ≤ Cp‖f‖W (L1,`∞) (f ∈W (L1, `∞)(Rd)).
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Proof. We are going to prove the result again for d = 2 only. The proof is
similar for higher dimensions. Let 2/3 < p ≤ 1 and f |[j,j+1) =

∑∞
l=0 µj,laj,l

be an atomic decomposition of f |[j,j+1) ∈ hp(R2) such that
∞∑
l=0

|µj,l|p ≤ Cp‖f |[j,j+1)‖
p
hp
≤ Cp‖f‖pW (hp,`∞).

Since suppφ ⊂ [0, 1/2]2, it follows that supp f |[j,j+1) ∗ φt ⊂ [j, j + 3/2),
where j ∈ Z2, 0 < t < 1. So we may suppose that supp aj,l ⊂ [j, j + 3/2).
Thus

�

[k,k+1)

|σ∗f(x)|p dx ≤
∑
j∈Z2

�

[k,k+1)

|σ∗(f |[j,j+1))(x)|p dx(11)

≤
∑
j∈Z2

∞∑
l=0

|µj,l|p
�

[k,k+1)

|σ∗aj,l(x)|p dx

for each fixed k ∈ Z2. Denote one of the atoms aj,l by a and suppose that it
is supported in a cube I = I1× I2 with 2−K−1 < |I1| = |I2| ≤ 2−K for some
K ∈ Z. Then I ⊂ [j, j + 3/2).

Throughout this proof we may assume that ji ≥ ki for i = 1, 2. In (11)
we have to integrate over

[k, k + 1) = ([k, k + 1) ∩ 4I) ∪ ([k, k + 1) ∩ (R \ 4I1)× 4I2)

∪ ([k, k + 1) ∩ 4I1 × (R \ 4I2))

∪ ([k, k + 1) ∩ (R \ 4I1)× (R \ 4I2)).

We do this in four steps.

Step 1: Integrating over [k, k + 1) ∩ 4I. It is easy to see that this set is
empty if j1 ≥ k1 + 4 or j2 ≥ k2 + 4. For ki ≤ ji ≤ ki + 3 (i = 1, 2) we have,
by (5),

�

[k,k+1)∩4I

|σ∗a(x)|p dx

≤
�

4I

sup
T1,T2≥1

∣∣∣ �
R2

a(t)KT1(x1 − t1)KT2(x2 − t2) dt
∣∣∣p dx ≤ Cp22K2−2K

and so∑
j∈Z2

∞∑
l=0

|µj,l|p
�

[k,k+1)∩4I

|σ∗aj,l(x)|p dx ≤ Cp
k1+3∑
j1=k1

k2+3∑
j2=k2

∞∑
l=0

|µj,l|p

≤ Cp‖f‖pW (hp,`∞).
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Step 2: Integrating over [k, k+ 1)∩ (R \ 4I1)× 4I2. This set is empty if
j2 ≥ k2 + 4. If a is a type 1 atom then�

[k,k+1)∩(R\4I1)×4I2

|σ∗a(x)|p dx ≤
�

(R\4I1)×4I2

|σ∗a(x)|p dx ≤ Cp

by (7). If a is a type 2 atom and j1 = k1, k1 + 1, then the left hand side is 0,
because |I1| ≥ 1 and so [k, k + 1) ∩ (R \ 4I1)× 4I2 is empty. Thus

k1+1∑
j1=k1

∑
j2∈Z

∞∑
l=0

|µj,l|p
�

[k,k+1)∩(R\4I1)×4I2

|σ∗aj,l(x)|p dx

≤ Cp
k1+1∑
j1=k1

k2+3∑
j2=k2

∞∑
l=0

|µj,l|p ≤ Cp‖f‖pW (hp,`∞).

Assume that j1 ≥ k1 + 2. If a is a type 1 atom then let

A1(x1, t2) :=
x1�

−∞
a(t1, t2) dt1, A(x1, x2) :=

x2�

−∞
A1(x1, t2) dt2

(x ∈ R2). Observe that

(12) ‖A1‖∞ ≤ Cp2−K(1−2/p), ‖A‖∞ ≤ Cp2−K(2−2/p).

Integrating by parts in t1 we can see that

σTa(x) =
�

I1

�

I2

a(t)KT1(x1 − t1)KT2(x2 − t2) dt(13)

=
�

I2

A1(ν1, t2)KT1(x1 − ν1)KT2(x2 − t2) dt2

+
�

I1

�

I2

A1(t)K ′T1
(x1 − t1)KT2(x2 − t2) dt

=: B1,T (x) +B2,T (x),

where Ii = [µi, νi] (i = 1, 2). Using (8) we conclude that

|B1,T (x)| ≤ Cp2−K(1−2/p) C

T1(x1 − ν1)2
T22−K ≤ Cp2−K(2−2/p)(j1 − k1)−2,

because x1 ∈ (k1, k1 + 1) and ν1 ∈ I1 ⊂ [j1, j1 + 3/2). It is easy to see that

(14) |K ′S(u)| ≤ CS2, |K ′S(u)| ≤ C

|u|2
(u ∈ R \ {0}, S ∈ R+).

This, (5) and (12) imply that

|B2,T (x)| ≤ Cp2−K(1−2/p)
�

I1

C

(x1 − t1)2
dt1 ≤ Cp2−K(2−2/p)(j1 − k1)−2.
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Hence �

[k,k+1)∩(R\4I1)×4I2

|σ∗a(x)|p dx ≤
�

(k1,k1+1)×4I2

|σ∗a(x)|p dx

≤ Cp2−K(2p−2)(j1 − k1)−2p2−K

and
∞∑

j1=k1+2

∑
j2∈Z

∞∑
l=0

|µj,l|p
�

[k,k+1)∩(R\4I1)×4I2

|σ∗aj,l(x)|p dx

≤ Cp
∞∑

j1=k1+2

k2+3∑
j2=k2

∞∑
l=0

|µj,l|p2−K(2p−1)(j1 − k1)−2p ≤ Cp‖f‖pW (hp,`∞).

Similarly, if a is a type 2 atom then the first line of (13) yields

|σTa(x)| ≤ Cp22K/p
�

I1

C

T1(x1 − t1)2
dt1 ≤ Cp2K(2/p−1)(j1 − k1)−2

and so
∞∑

j1=k1+2

∑
j2∈Z

∞∑
l=0

|µj,l|p
�

[k,k+1)∩(R\4I1)×4I2

|σ∗aj,l(x)|p dx

≤ Cp
∞∑

j1=k1+2

k2+3∑
j2=k2

∞∑
l=0

|µj,l|p2K(1−p)(j1 − k1)−2p ≤ Cp‖f‖pW (hp,`∞),

because K ≤ 0.

Step 3: Integrating over [k, k + 1) ∩ 4I1 × (R \ 4I2). This case can be
handled similarly to Step 2.

Step 4: Integrating over [k, k + 1) ∩ (R \ 4I1)× (R \ 4I2). First assume
that ji = ki, ki + 1 (i = 1, 2). Similarly to Step 2, (7) implies�

[k,k+1)∩(R\4I1)×(R\4I2)

|σ∗a(x)|p dx ≤
�

(R\4I1)×(R\4I2)

|σ∗a(x)|p dx ≤ Cp

if a is a type 1 atom. For a type 2 atom the left hand side is again 0. Thus
k1+1∑
j1=k1

k2+1∑
j2=k2

∞∑
l=0

|µj,l|p
�

[k,k+1)∩(R\4I1)×(R\4I2)

|σ∗aj,l(x)|p dx

≤ Cp
k1+1∑
j1=k1

k2+1∑
j2=k2

∞∑
l=0

|µj,l|p ≤ Cp‖f‖pW (hp,`∞).

Next suppose that j1 ≥ k1 + 2 and j2 = k2, k2 + 1. The left hand side
is 0 as above if a is a type 2 atom. For a type 1 atom we integrate by parts
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in (13) with respect to t2:

σTa(x) = −
�

I2

A(ν1, t2)KT1(x1 − ν1)K ′T2
(x2 − t2) dt2

+
�

I1

A(t1, ν2)K ′T1
(x1 − t1)KT2(x2 − ν2) dt1

−
�

I1

�

I2

A(t)K ′T1
(x1 − t1)K ′T2

(x2 − t2) dt

=: C1,T (x) + C2,T (x) + C3,T (x).

One can easily prove from the estimates in (8) that

(15) |KS(t)| ≤ CS2η−1

|t|2(1−η) (t ∈ R \ {0}, S ∈ R+)

where 0 ≤ η ≤ 1 is arbitrary. Similarly, for 0 ≤ η ≤ 1, (14) implies

(16) |K ′S(t)| ≤ CS2η

|t|2(1−η) (t ∈ R \ {0}, S ∈ R+).

If x1 ∈ (k, k + 1) and x2 ∈ ((µ2 + ν2)/2 − (i + 1)2−K , (µ2 + ν2)/2 − i2−K)
(i ≥ 1) (the center of I2 is (µ2 + ν2)/2) then use (15) and (16) with η = 1/4
to obtain

|C1,T (x)| ≤ Cp2−K(2−2/p) CT 2η−1
1

(x1 − ν1)2(1−η)

�

I2

CT 2η
2

(x2 − t2)2(1−η) dt2

≤ Cp2−K(2−2/p)(j1 − k1)−2(1−η)22K(1−η)i−2(1−η)2−K

= Cp2−K(3/2−2/p)(j1 − k1)−3/2i−3/2

and
|C2,T (x)| ≤ Cp2−K(2−2/p)

�

I1

CT 2η
1

(x1 − t1)2(1−η) dt1
CT 2η−1

2

(x2 − ν2)2(1−η)

= Cp2−K(3/2−2/p)(j1 − k1)−3/2i−3/2.

Hence for m = 1, 2,

∞∑
j1=k1+2

k2+1∑
j2=k2

∞∑
l=0

|µj,l|p
�

[k,k+1)∩(R\4I1)×(R\4I2)

|Cm,T (x)|p dx

≤
∞∑

j1=k1+2

k2+1∑
j2=k2

∞∑
l=0

|µj,l|p
�

[k1,k1+1)×(R\4I2)

|Cm,T (x)|p dx
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≤
∞∑

j1=k1+2

k2+1∑
j2=k2

∞∑
l=0

|µj,l|p
∞∑
i=1

k1+1�

k1

(µ2+ν2)/2−i2−K�

(µ2+ν2)/2−(i+1)2−K

|Cm,T (x)|p dx

≤ Cp
∞∑

j1=k1+2

k2+1∑
j2=k2

∞∑
l=0

∞∑
i=1

|µj,l|p2−K(3p/2−2)(j1 − k1)−3p/2i−3p/22−K

≤ Cp‖f‖pW (hp,`∞).

For the third term we have

|C3,T (x)| ≤ Cp2−K(2−2/p)
�

I1

C

(x1 − t1)2
dt1

�

I2

C

(x2 − t2)2
dt2

≤ Cp2−K(2−2/p)2−K(j1 − k1)−222Ki−22−K

= Cp2−K(2−2/p)(j1 − k1)−2i−2

and
∞∑

j1=k1+2

k2+1∑
j2=k2

∞∑
l=0

|µj,l|p
�

[k,k+1)∩(R\4I1)×(R\4I2)

|C3,T (x)|p dx

≤
∞∑

j1=k1+2

k2+1∑
j2=k2

∞∑
l=0

|µj,l|p
∞∑
i=1

k1+1�

k1

(µ2+ν2)/2−i2−K�

(µ2+ν2)/2−(i+1)2−K

|C3,T (x)|p dx

≤ Cp
∞∑

j1=k1+2

k2+1∑
j2=k2

∞∑
l=0

∞∑
i=1

|µj,l|p2−K(2p−2)(j1 − k1)−2pi−2p2−K

≤ Cp‖f‖pW (hp,`∞).

The case j1 = k1, k1 + 1 and j2 ≥ k2 + 2 can be handled similarly.
Finally, we suppose that ji ≥ ki + 2 for i = 1, 2. If a is a type 1 atom

and x ∈ (k, k + 1) then

|C1,T (x)| ≤ Cp2−K(2−2/p) C

T1(x1 − ν1)2
�

I2

C

(x2 − t2)2
dt2

≤ Cp2−K(3−2/p)(j1 − k1)−2(j2 − k2)−2,

|C2,T (x)| ≤ Cp2−K(2−2/p)
�

I1

C

(x1 − t1)2
dt1

C

(x2 − ν2)2

≤ Cp2−K(3−2/p)(j1 − k1)−2(j2 − k2)−2
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and so
∞∑

j1=k1+2

∞∑
j2=k2+2

∞∑
l=0

|µj,l|p
�

[k,k+1)∩(R\4I1)×(R\4I2)

|Cm,T (x)|p dx

≤ Cp
∞∑

j1=k1+2

∞∑
j2=k2+2

∞∑
l=0

|µj,l|p2−K(3p−2)(j1 − k1)−2p(j2 − k2)−2p

≤ Cp‖f‖pW (hp,`∞)

for m = 1, 2. Similarly,

|C3,T (x)| ≤ Cp2−K(2−2/p)
�

I1

C

(x1 − t1)2
dt1

�

I2

C

(x2 − t2)2
dt2

≤ Cp2−K(4−2/p)(j1 − k1)−2(j2 − k2)−2

and
∞∑

j1=k1+2

∞∑
j2=k2+2

∞∑
l=0

|µj,l|p
�

[k,k+1)∩(R\4I1)×(R\4I2)

|C3,T (x)|p dx

≤ Cp
∞∑

j1=k1+2

∞∑
j2=k2+2

∞∑
l=0

|µj,l|p2−K(4p−2)(j1 − k1)−2p(j2 − k2)−2p

≤ Cp‖f‖pW (hp,`∞).

For a type 2 atom we can see from (13) that

|σTa(x)| ≤ Cp22K/p
�

I1

C

(x1 − t1)2
dt1

�

I2

C

(x2 − t2)2
dt2

≤ Cp2−K(2−2/p)(j1 − k1)−2(j2 − k2)−2

and
∞∑

j1=k1+2

∞∑
j2=k2+2

∞∑
l=0

|µj,l|p
�

[k,k+1)∩(R\4I1)×(R\4I2)

|σTa(x)|p dx

≤ Cp
∞∑

j1=k1+2

∞∑
j2=k2+2

∞∑
l=0

|µj,l|p2−K(2p−2)(j1 − k1)−2p(j2 − k2)−2p

≤ Cp‖f‖pW (hp,`∞).

Taking into account (11) we have thus finished the proof of (9) for
2/3 < p ≤ 1.

It is known that h∞(R2) = L∞(R2) (see e.g. Stein [12, p. 91]) and
W (L∞, `∞)(R2) = L∞(R2). The boundedness of σ∗ from W (h∞, `∞)(R2)
to W (L∞, `∞)(R2) follows from (6). Applying this and (9) for p = 1 we use
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complex interpolation to deduce that

σ∗ : (W (h1, `∞)(R2),W (h∞, `∞)(R2))[η]
→ (W (L1, `∞)(R2),W (L∞, `∞)(R2))[η]

is bounded, where 0 < η < 1 is arbitrary. Using the method of Triebel
[13, p. 121] we can prove that

(W (h1, `∞)(R2),W (h∞, `∞)(R2))[η] = W ((h1, h∞)[η], `∞)(R2)

and that the same holds with L1 instead of h1. Choosing η = 1 − 1/p
(1 < p <∞) we obtain the boundedness of

σ∗ : W (hp, `∞)(R2)→W (Lp, `∞)(R2),

which is exactly (9).
By the real method of interpolation we have

(W (hp, `∞)(R2),W (h∞, `∞)(R2))η,∞ = W ((hp, h∞)η,∞, `∞)(R2)

and the analogue for Lp (see Sagher [11], Kisliakov and Xu [6], Berg and
Löfström [1, Chapter 5]). We conclude that

σ∗ : W ((hp, h∞)η,∞, `∞)(R2)→W ((Lp, L∞)η,∞, `∞)(R2)

is bounded, where 0 < η < 1 is arbitrary. If p < 1 then the choice η = 1− p
implies the boundedness of

σ∗ : W (h1,∞, `∞)(R2)→W (L1,∞, `∞)(R2)

and inequality (1) proves (10). This completes the proof of Theorem 3.

Remark 1. The exact value of Cp in (10) is Cp = Cp‖sinc2‖d(1−p)1 be-
cause of (6) and the basic theorems of interpolation theory, where 1/2 <
p < 1 is fixed.

Remark 1 will be used in the next corollary for sinc2|(−k,k)c instead of
sinc2. Since W (L1, `∞)(Rd) ⊃ L1(Rd), the next corollary is much more gen-
eral than the results in [14].

Corollary 1. For all f ∈W (L1, `∞)(Rd),

(17) lim
T→∞

σT f = f a.e.

as min(T1, . . . , Td)→∞ and 2−τ ≤ Tk/Tj ≤ 2τ (k, j = 1, . . . , d).

Proof. For f ∈ Cc(R2) we obtain the convergence from

|σT f(x)− f(x)| =
∣∣∣σT f(x)−

( �

R
sinc2 dλ

)2
f(x)

∣∣∣
≤

�

R2

∣∣∣∣f(x1 −
t1
T1
, x2 −

t2
T2

)
− f(x)

∣∣∣∣ sinc2(t1) sinc2(t2) dt
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and from the Lebesgue dominated convergence theorem. Since Cc(R2) is
dense in W (L1, c0)(R2), the corollary follows for all f ∈ W (L1, c0)(R2)
from (10) and the usual density argument due to Marcinkiewicz and Zyg-
mund [8]. Observe that Theorem 3 and Remark 1 can be applied for the
functions sinc2|(−k,k) (k ∈ N) instead of sinc2. Hence

(18) lim
T→∞, 2−τ≤Tk/Tj≤2τ

σT,sinc2× sinc2|(−k,k)2
f =

( �
R

sinc2|(−k,k) dλ
)2
f a.e.

for all f ∈W (L1, c0)(R2), where

σT,h1×h2f(x) :=
�

R2

f

(
x1 −

t1
T1
, x2 −

t2
T2

)
h1(t1)h2(t2) dt.

It is easy to see that if x ∈ [−j, j]2 then for Ti ≥ 1 (i = 1, 2),

σT,sinc2× sinc2|(−k,k)2
f(x) = σT,sinc2× sinc2|(−k,k)2

(f |[−j−k,j+k]2)(x).

However, f |[−j−k,j+k]2 ∈ W (L1, c0)(R2) if f ∈ W (L1, `∞)(R2), and so (18)
holds for all f ∈W (L1, `∞)(R2). Fix f ∈W (L1, `∞)(R2) and set

ξ := lim sup
T→∞, 2−τ≤Tk/Tj≤2τ

|σT f − f |.

We have (with the same meaning of lim sup)

ξ ≤ lim sup |σT f − σT,sinc2× sinc2|(−k,k)2
f |

+ lim sup
∣∣∣σT,sinc2× sinc2|(−k,k)2

f −
( �

R2

sinc2× sinc2|(−k,k)2 dλ
)
f
∣∣∣

+
∣∣∣( �

R2

sinc2× sinc2|(−k,k)2 dλ
)2
f − f

∣∣∣
≤ lim sup |σT,sinc2× sinc2|R2\(−k,k)2

f |+
( �

R2\(−k,k)2
sinc2× sinc2 dλ

)
|f |

for all k ∈ N. By Theorem 3 and Remark 1 we conclude that

‖ξ‖W (L1,∞,`∞) ≤ ‖ sup
T≥1, 2−τ≤Tk/Tj≤2τ

|σT,sinc2× sinc2|R2\(−k,k)2
f | ‖W (L1,∞,`∞)

+
( �

R2\(−k,k)2
sinc2× sinc2 dλ

)
‖f‖W (L1,∞,`∞)

≤ Cp‖sinc2× sinc2|R2\(−k,k)2‖
1−p
1 ‖f‖W (L1,`∞)

+ ‖sinc2× sinc2|R2\(−k,k)2‖1‖f‖W (L1,`∞)

for all k ∈ N, where 2/3 < p < 1. Since ‖ sinc2× sinc2|R2\(−k,k)2‖1 → 0 as
k →∞, ‖ξ‖W (L1,∞,`∞) = 0 and so ξ = 0 a.e., which finishes the proof.
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