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Lipschitz equivalence of graph-directed fractals

by

Ying Xiong (Guangzhou) and Lifeng Xi (Ningbo)

Abstract. This paper studies the geometric structure of graph-directed sets from the
point of view of Lipschitz equivalence. It is proved that if {Ei}i and {Fj}j are dust-like
graph-directed sets satisfying the transitivity condition, then Ei1 and Ei2 are Lipschitz
equivalent, and Ei and Fj are quasi-Lipschitz equivalent when they have the same Haus-
dorff dimension.

1. Introduction. Two metric spaces (A,dA) and (B, dB) are called
Lipschitz equivalent, denoted by A ' B, if there exists a bijection f : A→ B
satisfying

c−1dA(x, y) ≤ dB(f(x), f(y)) ≤ cdA(x, y) for all x, y ∈ A,
where c ≥ 1 is a constant.

One of interesting topics in fractal geometry is to classify fractals under
Lipschitz equivalence since bi-Lipschitz mappings preserve many “fractal
properties” of sets. Many works have been devoted to the related topics.
Cooper and Pignataro [1], Falconer and Marsh [4, 5], David and Semmes [2],
Xi [10, 11] studied the shape of Cantor sets, nearly Lipschitz equivalence,
BPI equivalence and quasi-Lipschitz equivalence. Recently, Xi et al. [8, 13,
14] studied Lipschitz equivalence of self-similar sets.

It is well-known that E ' F implies dimHE = dimH F, where dimH

denotes the Hausdorff dimension. For quasi-self-similar circles, Falconer and
Marsh [4] pointed out that two quasi-self-similar circles have the same Haus-
dorff dimension if and only if they are Lipschitz equivalent.

Then a natural question is to characterize the Lipschitz equivalence for
self-similar sets with the same Hausdorff dimension. For a family of simili-
tudes {Si : Rm → Rm}ni=1, suppose E =

⋃
i Si(E) is a self-similar set [6]. We

say E is dust-like [5] if
⋃
i Si(E) is a disjoint union. A number r is the ratio
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of similitude of S, if |S(x)−S(y)| = r|x− y| for all x, y ∈ Rm. Fix a ratio set
R = {ri}ni=1, and letMR be the collection of dust-like self-similar sets defined
by MR = {E =

⋃n
i=1 Si(E) : E is dust-like and Si has ratio ri for all i}.

SupposeR = {ri}ni=1 and T = {tj}mj=1 are ratio sets with
∑

i r
s
i =

∑
j t
s
j = 1.

Given T = {tj}mj=1, an algorithm is constructed in [12] to calculate every
ratio setR satisfyingMR 'MT . It is proved in [5] that ifMR 'MT , then
Q(rs1, . . . , r

s
n) = Q(ts1, . . . , t

s
m) and there are positive integers p, q such that

sgp(rp1, . . . , r
p
n) ⊂ sgp(t1, . . . , tm), sgp(tq1, . . . , t

q
m) ⊂ sgp(r1, . . . , rm), where

sgp(a1, . . . , ak) is the multiplicative semigroup generated by {a1, . . . , ak}.
The following example follows from this necessary condition (see also [3,
Proposition 8.9]): Let C be the middle-third Cantor set, and F = βF ∪ [βF +
(1− β)/2]∪ [βF + (1− β)] the self-similar set with β = 3− log 3/log 2. Then C
and F have the same dimension log 2/log 3, but are not Lipschitz equivalent.

If self-similar sets are not dust-like, for example self-similar arcs, then the
issue of their Lipschitz equivalence is complicated. It is proved in [9] that if
two self-similar arcs are quasi-arcs with the same Hausdorff dimension, then
they are Lipschitz equivalent. [9] also constructs two self-similar arcs γ1 and
γ2 such that dimH γ1 = dimH γ2 and γ1 6' γ2. Other overlapping cases, for
example the {1, 3, 5}-{1, 4, 5} problem and its generalizations, are studied
in [8, 13, 14].

In this paper, we study the geometric structure of graph-directed sets,
which generalizes the notion of self-similar sets, from the point of view of
Lipschitz equivalence. For convenience, we recall the definition of graph-
directed sets (see [7]).

Definition 1. Let G = (V, E) be a directed graph with vertex set V
and directed-edge set E . Suppose that for each edge e ∈ E , there is a cor-
responding similitude Te : Rn → Rn of ratio te ∈ (0, 1). We also assume the
transitivity condition: for any vertex pair (i, j) ∈ V × V, there is a sequence
of k(i, j) edges (e1, . . . , ek(i,j)) which form a directed path from vertex i to
vertex j. The graph-directed sets on G with contracting similitudes {Te}e∈E
are non-empty compact subsets {Ei}i∈V of Rn satisfying

(1.1) Ei =
⋃
j∈V

⋃
e∈Ei,j

Te(Ej) for i ∈ V,

where Ei,j is the set of edges starting at i and ending at j. In particular, if
(1.1) is a disjoint union for each i ∈ V, we say that {Ei}i∈V are dust-like
graph-directed sets on (V, E).

Remark 1. The graph with respect to a self-similar set only contains
one vertex.

Now we state our first result about the Lipschitz equivalence between
dust-like graph-directed sets.
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Theorem 1. Let {Ei}i∈V be dust-like graph-directed sets on G = (V, E)
satisfying the transitivity condition (see Definition 1). Then for all i, j ∈ V,

Ei ' Ej .
The following classical result in [1] can also be considered as a corollary

of the above theorem.

Corollary 1. Suppose E ⊂ Rm is a dust-like self-similar set. Let
F =

⋃k
i=1 gi(E) be a disjoint union with a family of similitudes {gi : Rm →

Rm}ki=1. Then E and F are Lipschitz equivalent.

By the example mentioned above, it is difficult to find a bi-Lipschitz
bijection between self-similar sets. However, we can construct some bijection
which satisfies the “quasi-Lipschitz” condition (see Definition 2) between two
dust-like graph-directed sets of equal dimension. The definition below was
introduced by Xi [11].

Definition 2. Two compact sets E and F of Euclidean spaces are said
to be quasi-Lipschitz equivalent if there is a bijection f : E → F such that
for every ε > 0, there exists δ > 0 satisfying

(1.2)
∣∣∣∣ log |f(x)− f(y)|

log |x− y|
− 1
∣∣∣∣ < ε

whenever x, y ∈ E with 0 < |x− y| < δ.

The quasi-Lipschitz equivalence is stronger than “nearly Lipschitz equiv-
alence” ([5]) and weaker than “Lipschitz equivalence”. There are some re-
lated results: Suppose E,F are dust-like C1 self-conformal sets in Euclidean
spaces. Then dimHE = dimH F if and only if E and F are nearly Lipschitz
equivalent ([5, 10]). In fact, dimHE = dimH F if and only if E and F are
quasi -Lipschitz equivalent ([11]).

Now suppose two graph-directed sets have the same Hausdorff dimension;
a question is to characterize the quasi-Lipschitz equivalence between them,
although they may not be Lipschitz equivalent. We can state our second
result.

Theorem 2. Let {Ei}mi=1 and {Fj}nj=1 be dust-like graph-directed sets
satisfying the transitivity condition. If dimHEi = dimH Fj , then Ei and Fj
are quasi-Lipschitz equivalent.

This paper is organized as follows. Section 2 brings the proofs of Theo-
rem 1 and Corollary 1. In Section 3, the proof of Theorem 2 is provided.

2. The proof of Theorem 1. In this section, we always assume that
the sets {Ei}i∈V are dust-like graph-directed sets on G = (V, E) satisfying
the transitivity condition (see Definition 1). We begin with two lemmas
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which follow immediately from the definitions of dust-like graph-directed
sets and the transitivity condition.

Lemma 1. Suppose that E ∈ {Ei}i∈V . Then there are contracting simil-
itudes S0, S1 and a compact set F such that

E = S0(E) ∪ S1(E) ∪ F,
where the union is disjoint.

Lemma 2. Suppose that E ∈ {Ei}i∈V . Then there are non-empty fami-
lies {Γj}j∈V consisting of contracting similitudes such that

E =
⋃
j∈V

⋃
S∈Γj

S(Ej),

where the union is disjoint.

We skip the straightforward proofs of the above two lemmas. The lemma
below is the key point in the proof of Theorem 1 and may be of interest in
itself.

Lemma 3. Suppose that E ∈ {Ei}i∈V . Then for any similitudes {Ti}ki=0

such that {Ti(E)}ki=0 are pairwise disjoint ,

E ' T0(E) ∪ T1(E) ∪ · · · ∪ Tk(E).

Proof. By induction, it suffices to verify the conclusion for k = 1, i.e.,

E ' T0(E) ∪ T1(E).

By Lemma 1, we have

E = S0(E) ∪ S1(E) ∪ F,
where the union is disjoint. For a finite word i1 . . . ik ∈ {0, 1}k, put Si1...ik =
Si1 ◦ · · · ◦Sik , where Sw equals the identity mapping if w is the empty word.
We also use 1k as an abbreviation of 1 . . . 1 (k ones). With this notation,

E = (S0E ∪ F ) ∪ (S10E ∪ S1F ∪ S11E)
= (S0E ∪ F ) ∪ (S10E ∪ S1F ) ∪ (S110E ∪ S11F ∪ S111E)

=
∞⋃
k=0

(S1k0E ∪ S1kF ) ∪ {ω},

where ω is the fixed point of the similitude S1. Consequently, we can write

E = S0E ∪
∞⋃
k=0

S1k+10E ∪
( ∞⋃
k=0

S1kF ∪ {ω}
)

=: S0E ∪ E′ ∪ F ′,

where E′ ∪ F ′ = S1E ∪ F, and

T0E ∪T1E = T0E ∪
∞⋃
k=0

T1S1k0E ∪
( ∞⋃
k=0

T1S1kF ∪{T1ω}
)

=: T0E ∪E′′ ∪F ′′,
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where E′′ ∪ F ′′ = T1E. We define a bijection f : E → T0E ∪ T1E by

f(x) =


T0S

−1
0 (x) if x ∈ S0E,

T1S
−1
1 (x) if x ∈ E′ =

⋃∞
k=0 S1k+10E,

T1(x) if x ∈ F ′ =
⋃∞
k=0 S1kF ∪ {ω}.

It remains to show that f is bi-Lipschitz.
Since

d(S0E,E
′ ∪ F ′) > 0 and d(T0E,E

′′ ∪ F ′′) > 0,

where d is the Hausdorff distance, we only need to consider the restriction
of f to E′ ∪ F ′ (the corresponding image is E′′ ∪ F ′′). Suppose s0, s1, t1 are
the ratios of S0, S1, T1, respectively. Put

∆ := min{d(S0E,S1E), d(S0E,F ), d(S1E,F )} > 0.

For x ∈ E′ and y ∈ F ′, suppose that x ∈ S1m+10E = S1m+1(S0E) with
m ≥ 0 and y ∈ S1kF with k ≥ 0 or k = ∞. Here S1∞F = {ω}. Then
f(x) ∈ T1S1m0E and f(y) ∈ T1S1kF . Let |E| be the diameter of E. Then

s
min(m+1,k)
1 ∆ ≤ |x− y| ≤ smin(m+1,k)

1 |E|,

t1s
min(m,k)
1 ∆ ≤ |f(x)− f(y)| ≤ t1smin(m,k)

1 |E|.

Therefore, for any x ∈ E′ and y ∈ F ′,

t1∆

|E|
≤ s

min(m,k)
1

s
min(m+1,k)
1

t1∆

|E|
≤ |f(x)− f(y)|

|x− y|

≤ s
min(m,k)
1

s
min(m+1,k)
1

t1|E|
∆
≤ t1|E|

s1∆
.

Proof of Theorem 1. Let {Ψj}j∈V be a family of similitudes such that
the sets {Ψj(Ej)}j∈V are pairwise disjoint. Let E ∈ {Ei}i∈V and {Γj}j∈V be
as in Lemma 2. Then

E =
⋃
j∈V

⋃
S∈Γj

S(Ej),

where the union is disjoint. According to Lemma 3, for any j ∈ V,⋃
S∈Γj

S(Ej) ' Ψj(Ej).

Then for any E ∈ {Ei}i∈V ,

E =
⋃
j∈V

⋃
S∈Γj

S(Ej) '
⋃
j∈V

Ψj(Ej),

which implies Ei ' Ej for all i, j ∈ V.
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Corollary 1 follows from Lemma 3, since any self-similar set has a special
graph-directed construction with its graph containing only one point. We
also give another proof by using Theorem 1 as follows.

Proof of Corollary 1. By induction, it suffices to show E ' g1(E)∪g2(E)
for the dust-like self-similar set E =

⋃m
i=1 Si(E), which is a disjoint union.

Since g1(E) ' g2(E) ' S1(E) ' S2(E) ' E, we only need to prove E '
S1(E)∪S2(E). If m = 2, then E = S1(E)∪S2(E). Without loss of generality,
we assume that m ≥ 3.

Let %i be the ratio of Si for any i. Take {ri}m−1
i=2 such that

max{%1, . . . , %m} < r2 < · · · < rm−1 < 1.

Let E1 = E and Ek = r−1
k [S1(E)∪ · · · ∪Sk(E)] for 1 < k < m. Then we get

a dust-like graph-directed construction satisfying the transitivity condition:

E2 = r−1
2 [S1(E1) ∪ S2(E1)],

Ek = r−1
k [(rk−1Ek−1) ∪ (SkE1)] for k ∈ N ∩ (2,m− 1],

E1 = rm−1Em−1 ∪ Sm(E1).

Therefore, it follows from Theorem 1 that E2 ' E1. Here E1 = E and
E2 ' S1(E) ∪ S2(E), which implies E ' S1(E) ∪ S2(E).

3. The proof of Theorem 2. Let {Ei}i∈V be dust-like graph-directed
sets satisfying the transitivity condition. Denote by {te}e∈V the ratio set of
{Ei}i∈V . Write t∗ = min{te : e ∈ V} > 0. By iterating (1.1) we can obtain
the following lemma.

Lemma 4. Suppose that 0 < r < t∗. Then there are families {Γ ri,j}i,j∈V
of similitudes such that

Ei =
⋃
j∈V

⋃
S∈Γ r

i,j

S(Ej) for all i, j ∈ V,

where the union is disjoint , and r(S) ∈ (t∗r, r] for any S ∈
⋃
i,j∈V Γ

r
i,j.

Instead of proving Theorem 2 directly, we will prove the following propo-
sition.

Proposition 1. Let {Ei}i∈V be dust-like graph-directed sets satisfying
the transitivity condition. Suppose Σ2 = {0, 1}N is the symbolic space of two
letters equipped with the usual distance

(3.1) d(σ, σ′) = 2−min{k :σk 6=σ′k} for σ 6= σ′.

If E ∈ {Ei}i∈V , then there is a bijection f : E → Σ2 such that for every
ε > 0, there exists δ > 0 satisfying
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dimHE · log |x− y|

− 1
∣∣∣∣ < ε

whenever x, y ∈ E with 0 < |x− y| < δ.

As in [11], we can see that Theorem 2 is a corollary of Proposition 1. In
fact, for dust-like graph-directed sets {Ei}i and {Fj}j satisfying the tran-
sitivity condition, if E ∈ {Ei}i and F ∈ {Fj}j have the same Hausdorff
dimension s, then it follows from Proposition 1 that there are bijections
f : E → Σ2 and g : F → Σ2 such that

log d(f(x1), f(x2))
s log |x1 − x2|

→ 1,
log d(g(y1), g(y2))
s log |y1 − y2|

→ 1

uniformly whenever |x1 − x2|, |y1 − y2| → 0. Then g−1 ◦ f : E → F is a
bijection satisfying (1.2).

Proof of Proposition 1. We begin with some notation for symbolic sys-
tems. Given w = w1 . . . wk ∈ {0, 1}k and w′ = w′1 . . . w

′
k′ ∈ {0, 1}k

′
, write

w ∗ w′ := w1 . . . wkw
′
1 . . . w

′
k′ ∈ {0, 1}k+k

′
, and let [w] denote the cylinder

with respect to w, i.e.,

[w] := {σ ∈ Σ2 : σ1 . . . σk = w}.

Given w, we can split [w] into two cylinders [w ∗ 0] and [w ∗ 1].
Let rk = t∗ · 2−k (< t∗) for k ≥ 1. Then it follows from Lemma 4

that there are corresponding families {Γ rki,j }i,j∈V for all k ≥ 1 such that
Ei =

⋃
j∈V

⋃
S∈Γ rk

i,j
S(Ej) with r(S) ∈ (t∗rk, rk] for any S ∈ Γ rki,j . Write

Ξk
i =

⋃
j∈V

Γ rki,j .

We will estimate #Ξk
i , the cardinality of Ξk

i . Let M = max{Hs(Ei) :
i ∈ V} and M = min{Hs(Ei) : i ∈ V}, where s = dimHEi for any i ∈ V.
Notice that 0 < M ≤M <∞. It follows from Lemma 4 that

Hs(Ei) =
∑

j∈V, S∈Γ rk
i,j

Hs(S(Ej)),

where r(S) ∈ (t∗rk, rk], which implies

(t∗rk)sM ≤ (t∗rk)sHs(Ej) ≤ Hs(S(Ej)) ≤ rskHs(Ej) ≤ rskM.

Therefore,
M

rskM
≤ #Ξk

i ≤
M

ts∗r
s
kM

.
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For each Ξk
i , there is an integer n(i, k) such that 2n(i,k) ≤ #Ξk

i <
2n(i,k)+1, which implies

(3.2)
ts∗M

2M
rsk ≤ 2−[n(i,k)+1] ≤ 2−n(i,k) ≤ 2M

M
rsk.

By splitting #Ξk
i − 2n(i,k) cylinders with respect to the word of length

n(i, k), we can find a family Σk
i consisting of finite words such that

(i) any word in Σk
i is of length n(i, k) or n(i, k) + 1;

(ii) Σ2 =
⋃
w∈Σk

i
[w] is a disjoint union;

(iii) #Σk
i = #Ξk

i .

Thus, we can find a one-to-one mapping πki : Ξk
i → Σk

i for all k ≥ 1 and
i ∈ V.

Now, for each E ∈ {Ei}i∈V , we can construct a bijection f : E → Σ2.
Let x ∈ E; according to the construction of graph-directed sets, there are
corresponding ik ∈ V and Sk ∈ Γ rkik,ik+1

(⊂ Ξk
ik

) for all k ≥ 1 such that

E = Ei1 and x ∈ S1 ◦ · · · ◦ Sk(Eik+1
) for k ≥ 1.

The bijection f : E → Σ2 is defined by f(x) = σ where for all k ≥ 1,

σ ∈ [π1
i1(S1) ∗ · · · ∗ πkik(Sk)].

To show that f is as desired, we need some more notation. Put D =
maxi∈V{|Ei|}; let Di = min{d(Te(Ej), Te′(Ej′)) : e 6= e′ with e ∈ Ei,j ,
e′ ∈ Ei,j′} and D = mini∈V{Di} > 0.

Without loss of generality, suppose x, y ∈ E are distinct points such that

x ∈ S1 ◦ · · · ◦ SN−1 ◦ SN (EiN+1), y ∈ S1 ◦ · · · ◦ SN−1 ◦ S′N (Ei′N+1
),

where SN , S′N ∈ ΞN
iN

with SN 6= S′N . Then

(3.3) d(SN (EiN+1), S′N (Ei′N+1
)) ≥ t∗rND.

It follows from Lemma 4 and (3.3) that

(3.4) tN∗ r1 · · · rN ·D ≤ |x− y| ≤ r1 · · · rN−1 ·D.
On the other hand,

f(x) ∈ [π1
i1(S1) ∗ · · · ∗ πN−1

iN−1
(SN−1) ∗ πNiN (SN )],

f(y) ∈ [π1
i1(S1) ∗ · · · ∗ πN−1

iN−1
(SN−1) ∗ πNiN (S′N )],

where πNiN (SN ) 6= πNiN (S′N ). Together with (3.1), (3.2) and condition (i)
about Σk

i , we get

(3.5)
(
ts∗M

2M

)N
(r1 · · · rN )s ≤ d(f(x), f(y)) ≤

(
2M
M

)N−1

(r1 · · · rN−1)s,
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where s = dimHE. In view of (3.4), (3.5) and the fact that rk = t∗ · 2−k, we
have N →∞ uniformly as |x− y| → 0, and thus

log d(f(x), f(y))
log |x− y|

→ s = dimHE uniformly as |x− y| → 0,

where log(r1 · · · rN )
−(N2/2) log 2

→ 1.
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