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Boundedness of the Hausdorff operators in

Hp spaces, 0 < p < 1

by

Elijah Liflyand (Ramat-Gan) and Akihiko Miyachi (Tokyo)

Abstract. Sufficient conditions for the boundedness of the Hausdorff operators in
the Hardy spaces Hp, 0 < p < 1, on the real line are proved. Two related negative results
are also given.

1. Introduction. We shall use the following notation throughout
this paper. The function space Lp is the Lp space on R with respect
to the Lebesgue measure. The space Hp is the Hardy space on R defi-
ned by Fefferman and Stein [FS, §11]. The Fourier transform is defined by

f̂(ξ) = (2π)−1/2
�

R
f(x)e−ixξ dx.

For x ∈ R, we write [x] to denote the largest integer not exceeding x. We use
the letter c with or without subscripts to denote various positive constants,
which may be different at different places.

As in [LM], given a function ϕ on (0,∞), the Hausdorff operator Hϕ is
defined by

(1.1) (Hϕf)(x) =
∞�

0

1
t
f

(
x

t

)
ϕ(t) dt,

where f denotes a function on R. The assumptions on ϕ and f will be
specified later on. Here we only observe that, if f ∈ L1 and ϕ ∈ L1(0,∞),
then Fubini’s theorem gives the formula

(1.2) (Hϕf)∧(ξ) =
∞�

0

f̂(tξ)ϕ(t) dt.
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There is a rather simple result for the Hausdorff operator in Lp, 1 ≤ p
≤ ∞. For these p, Minkowski’s inequality in the integral form gives∥∥∥∞�

0

|t−1f(t−1x)ϕ(t)| dt
∥∥∥
Lpx
≤
∞�

0

t−1‖f(t−1x)‖Lpx |ϕ(t)| dt

=
∞�

0

t−1+1/p‖f‖Lp |ϕ(t)| dt = Aϕ,p‖f‖Lp ,

where

(1.3) Aϕ,p =
∞�

0

t−1+1/p|ϕ(t)| dt.

From this inequality, we see that, if 1 ≤ p ≤ ∞ and Aϕ,p < ∞, then (1.1)
gives a well-defined bounded linear operator Hϕ in Lp.

If 1 ≤ p ≤ 2 and Aϕ,p < ∞, then using the Lp boundedness of Hϕ and
the Hausdorff–Young theorem, ‖f̂‖Lp/(p−1) ≤ cp‖f‖Lp , we easily see that
(1.2) holds for all f ∈ Lp.

We shall consider the Hausdorff operator in the Hardy space Hp, 0 <
p ≤ 1. For Hp with p = 1, there is also a simple result. If Aϕ,1 < ∞ and
f ∈ H1, then f ∈ L1 (since H1 ⊂ L1) and hence Hϕf is well-defined by (1.1)
and the formula (1.2) holds. The first named author and Móricz proved the
following.

Theorem A ([LM]). If Aϕ,1 < ∞, then the Hausdorff operator Hϕ is
bounded in H1.

In the present paper, we shall mainly consider the Hausdorff operators
in Hp with 0 < p < 1.

We shall give the precise definition of Hϕf for f ∈ Hp with 0 < p < 1
following [M2]. We make the following observation. If f ∈ Hp with 0 < p < 1,
then f̂ is a continuous function satisfying |f̂(ξ)| ≤ cp‖f‖Hp |ξ|1/p−1 (see e.g.
[S, Chapt. III, §5.4, p. 128]), and hence

∞�

0

|f̂(tξ)ϕ(t)| dt ≤
∞�

0

cp‖f‖Hp |tξ|1/p−1|ϕ(t)| dt(1.4)

= cpAϕ,p‖f‖Hp |ξ|1/p−1,

where Aϕ,p for 0 < p < 1 is given by (1.3) as well. Thus, if 0 < p < 1,
Aϕ,p <∞, and f ∈ Hp, then the right hand side of (1.2) gives a continuous
function of ξ ∈ R that is uniformly O(|ξ|1/p−1) and, hence, the tempered
distribution Hϕf is well-defined through (1.2). Thus, including also the case
p = 1 as mentioned above, we give the following definition.
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Definition 1.1. If 0 < p ≤ 1 and ϕ is a measurable function on (0,∞)
with Aϕ,p <∞, then we define the continuous linear mapping Hϕ : Hp → S ′
by (1.2).

Kanjin [K] proved the following Theorem B. In this theorem, we extend
the function ϕ, originally defined on (0,∞), to the whole real line by setting
ϕ(t) = 0 for t ≤ 0.

Theorem B ([K]). Let 0 < p < 1 and M = [1/p − 1/2] + 1. Suppose
Aϕ,1 < ∞, Aϕ,2 < ∞, and suppose ϕ̂ is a function of class C2M on R
with supξ∈R |ξ|M |ϕ̂(M)(ξ)| < ∞ and supξ∈R |ξ|M |ϕ̂(2M)(ξ)| < ∞. Then the
Hausdorff operator Hϕ is bounded in Hp.

This theorem contains assumptions on ϕ̂. It is the purpose of the present
paper to give the conditions on ϕ, not on ϕ̂, that ensure the boundedness
of Hϕ in Hp.

Before we give the main results of this paper, we record the following
theorem.

Theorem C. Let 0 < p < 1 and M = [1/p−1/2]+1. If ϕ is a function
on (0,∞) of class CM and if suppϕ is a compact subset of (0,∞), then
Hϕ is a bounded linear operator in Hp.

In fact, this theorem is a direct corollary of Theorem B; it is easy to see
that ϕ̂ satisfies the assumptions of Theorem B if ϕ satisfies the assumptions
of Theorem C. In the next section, we shall give a proof of Theorem C that
does not appeal to Theorem B.

Now, our purpose is to improve Theorem C. We shall give results apply-
ing to ϕ that do not have a compact support or are not of class CM on the
whole half line (0,∞). The following are the main theorems of the present
paper.

Theorem 1.2. Let 0 < p < 1, M = [1/p− 1/2] + 1, and ε > 0. Suppose
ϕ is a function of class CM on (0,∞) such that

|ϕ(k)(t)| ≤ min{tε, t−ε}t−1/p−k for k = 0, 1, . . . ,M.

Then Hϕ is a bounded linear operator in Hp.

Theorem 1.3. Let 0 < p < 1, M = [1/p − 1/2] + 1, and ε, a > 0.
Suppose ϕ is a function on (0,∞) such that suppϕ is a compact subset of
(0,∞), ϕ is of class CM on (0, a) ∪ (a,∞), and

|ϕ(k)(t)| ≤ |t− a|ε−1−k for k = 0, 1, . . . ,M.

Then Hϕ is a bounded linear operator in Hp.

Proofs of these theorems will be given in the next section.
Our theorems and Kanjin’s theorem are mutually independent; Theo-

rems 1.2 and 1.3 do not imply Theorem B, and the latter does not imply
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the former. However, it is usually easier to check assumptions posed on
the function itself than those posed on its Fourier transform. Besides, 2M
smoothness assumed for the Fourier transform in Theorem B seems too
restrictive and probably just fits the method of proof.

In the last section, we shall give two negative results, Theorems 3.2
and 3.3. Theorem 3.2 will show that ε > 0 in Theorem 1.2 cannot be re-
moved. Theorem 3.3 will show that, if 0 < p < 1, then no simple nontriv-
ial condition concerning only the absolute value of ϕ is sufficient for the
Hp-boundedness of the Hausdorff operator Hϕ. This was discovered by the
second named author some time ago, but was never published.

Remark 1.4. In the case where ϕ(t) = α(1 − t)α−1 for 0 < t < 1 and
ϕ(t) = 0 otherwise, the operator Hϕ = Cα is called the Cesàro operator of
order α. Giang and Móricz [GM] proved that Cα is bounded in the Hardy
space H1. Kanjin [K] proved that Cα is bounded in Hp provided α is a
positive integer and 2/(2α + 1) < p < 1. He used Theorem B. In [M2],
the second named author proved that the Cesàro operator Cα is bounded
in Hp for every α > 0 and every 0 < p < 1. This result is covered by
Theorems 1.2 and 1.3. Our proof of Theorems 1.2 and 1.3 will be based
on the ideas elaborated in [M2]. A brief history of the study of the Cesàro
operator related to some classical problems of Fourier series can be found
in [K, §1].

Remark 1.5. We have restricted ourselves to functions ϕ defined on
(0,∞) only for the sake of simplicity. If ϕ is defined on the whole R, one can
treat its parts on the positive and negative half-axes separately extending
them by zero to the other half-axis, and then combine the results.

2. Proofs of Theorems 1.2 and 1.3. Before proceeding to the proofs,
we record the following two lemmas. Their proofs are routine and left to the
reader.

Lemma 2.1. If p and ϕ satisfy the assumptions of Definition 1.1, then
for every f ∈ Hp and for every s > 0, we have Hϕ(f(s ·)) = (Hϕf)(s ·).

Lemma 2.2. If f ∈ Hp, 0 < p ≤ 1, and s > 0, then ‖s1/pf(s ·)‖Hp

= ‖f‖Hp.

To prove Theorems 1.2 and 1.3, we use the one-dimensional version of
the modified atomic decomposition for Hp given in [M1].

Definition 2.3 ([M1]). Let 0 < p ≤ 1 and let M be a positive integer.
For 0 < s < ∞, we define Ap,M (s) as the set of all those f ∈ L2 for which
f̂(ξ) = 0 for |ξ| ≤ s−1 and ‖f̂ (k)‖L2 ≤ sk−1/p+1/2 for k = 0, 1, . . . ,M . We
define Ap,M as the union of Ap,M (s) over all 0 < s <∞.
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Lemma 2.4 ([M1], [M2]). Let 0 < p ≤ 1 and M be a positive integer
satisfying M > 1/p−1/2. Then there exists a constant cp,M , depending only
on p and M , such that the following hold.

(1) ‖f(· − x0)‖Hp ≤ cp,M for all f ∈ Ap,M and all x0 ∈ R.
(2) Every f ∈ Hp can be decomposed as

(2.1) f =
∞∑
j=1

λjfj(· − xj),

where fj ∈ Ap,M , xj ∈ R, 0 ≤ λj <∞, and( ∞∑
j=1

λpj

)1/p
≤ cp,M‖f‖Hp ,

and the series in (2.1) converges in Hp. If f ∈ Hp ∩L2, then this decompo-
sition can be made so that the series in (2.1) converges in L2 as well.

This lemma is given in [M1, Lemmas 2 and 3] except for the assertion on
the L2 convergence. A complete proof of part (2) can be found in [M2, §3].

The following lemma is easy to see and the proof is left to the reader.

Lemma 2.5. Let 0 < p ≤ 1, M a positive integer , s > 0, and f ∈ L2.
Then f ∈ Ap,M (s) if and only if s1/pf(s ·) ∈ Ap,M (1).

Now, an essential point in the proofs of Theorems 1.2 and 1.3 is contained
in the following lemma.

Lemma 2.6. Let 0 < p < 1 and M = [1/p − 1/2] + 1. Let 0 < T < ∞
and 0 < δ ≤ 9/10. Suppose ϕ is a function of class CM on (0,∞) such that
suppϕ ⊂ [(1− δ)T, T ] and

|ϕ(k)(t)| ≤ T−1/p−kδ−1−k for k = 0, 1, . . . ,M.

Then there exists a constant cp depending only on p (independent of T
and δ) such that

(2.2) ‖Hϕf‖Hp ≤ cp‖f‖Hp .

Proof. Throughout this proof, we simply write c to denote positive con-
stants that depend only on p.

Since Hϕ is a continuous operator of Hp to S ′, it is sufficient to prove
the estimate (2.1) for f in a dense subset of Hp. We shall prove (2.1) for
f ∈ Hp ∩ L2. By Lemma 2.4(2) and by the L2 boundedness of Hϕ, the
estimate (2.1) for f ∈ Hp ∩ L2 will follow once we prove the estimate

(2.3) ‖Hϕ(f(· − x0))‖Hp ≤ c
for all f ∈ Ap,M and all x0 ∈ R.
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If s > 0, f ∈ Ap,M (s), and x0 ∈ R, and if we set g(·) = s1/pf(s ·) and
y0 = s−1x0, then g ∈ Ap,M (1) (by Lemma 2.5),

Hϕ(f(· − x0))(x) = Hϕ(s−1/pg(s−1 · −y0))(x) = s−1/pHϕ(g(· − y0))(s−1x),

and
‖Hϕ(f(· − x0))‖Hp = ‖Hϕ(g(· − y0))‖Hp ,

where we have used Lemmas 2.1 and 2.2. Hence the proof is reduced to
showing the estimate

(2.4) ‖Hϕ(g(· − y0))‖Hp ≤ c
for all g ∈ Ap,M (1) and all y0 ∈ R.

We thus assume g ∈ Ap,M (1) and y0 ∈ R and will prove (2.4). Writing

h = Hϕ(g(· − y0)),

we have

ĥ(ξ) =
T�

(1−δ)T

e−iy0tξ ĝ(tξ)ϕ(t) dt.

To prove (2.4), it suffices to derive c−1h(·+Ty0) ∈ Ap,M (T ) or, equivalently,

(2.5) c−1T 1/ph(T ·+Ty0) ∈ Ap,M (1).

Indeed, the latter will imply (2.4) by virtue of Lemma 2.4(1). Writing

F (ξ) = [T 1/ph(T ·+Ty0)]∧(ξ),

we have

F (ξ) = T 1/p−1[h(·+ Ty0)]∧(T−1ξ) = T 1/p−1eiy0ξ ĥ(T−1ξ)

= T 1/p−1eiy0ξ
T�

(1−δ)T

e−iy0tT
−1ξ ĝ(tT−1ξ)ϕ(t) dt

=
1�

1−δ
eiy0ξ(1−t) ĝ(tξ)T 1/pϕ(Tt) dt.

From the last expression and assumption g ∈ Ap,M (1), it is obvious that
F (ξ) = 0 for |ξ| ≤ 1.

We will prove ‖F (k)‖L2 ≤ c for k = 0, 1, . . . ,M . By Leibniz’ rule, the
derivative F (k)(ξ) can be written as a linear combination of the expressions

G(ξ) =
1�

1−δ
eiy0ξ(1−t)(iy0)m(1− t)mtn ĝ(n)(tξ)T 1/pϕ(Tt) dt,

where m and n are nonnegative integers satisfying m+n = k. We will prove
‖G‖L2 ≤ c for all m,n. We shall consider the two cases |y0| ≤ 1 and |y0| > 1
separately.
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We first proceed to the case |y0| ≤ 1. By Minkowski’s inequality and by
the assumption |ϕ(t)| ≤ T−1/pδ−1, we have

‖G‖L2 ≤
1�

1−δ
|y0|m(1− t)mtn‖ĝ(n)(t·)‖L2 |T 1/pϕ(Tt)| dt

≤
1�

1−δ
|y0|m(1− t)mtnt−1/2δ−1 dt ≤ c.

Next, we consider the case |y0| > 1. Since

eiy0ξ(1−t)(iy0)m = (−ξ−1∂t)meiy0ξ(1−t),

we use integration by parts to represent G(ξ) as

G(ξ) =
1�

1−δ
eiy0ξ(1−t)(ξ−1∂t)m

[
(1− t)mtnĝ(n)(tξ)T 1/pϕ(Tt)

]
dt.

Thus G(ξ) can be written as a linear combination of the expressions
1�

1−δ
eiy0ξ(1−t)ξ−m(1− t)m−m1tn−m2ξm3 ĝ(n+m3)(tξ)T 1/p+m4ϕ(m4)(Tt) dt,

where m1,m2,m3, and m4 are nonnegative integers satisfying m1 + m2 +
m3 + m4 = m and m2 ≤ n. We denote each such integral by H(ξ). Notice
that, since supp ĝ ⊂ {ξ : |ξ| ≥ 1}, we have |ξ−m+m3 | ≤ 1 on the sup-
port of H. Hence, by Minkowski’s inequality and the assumption |ϕ(k)(t)| ≤
T−1/p−kδ−1−k, we have

‖H‖L2 ≤
1�

1−δ
(1− t)m−m1tn−m2‖ĝ(n+m3)(t ·)‖L2 T 1/p+m4 |ϕ(m4)(Tt)| dt

≤
1�

1−δ
δm−m1tn−m2t−1/2δ−1−m4 dt ≤ cδm−m1−m4 ≤ c.

Thus we have proved (2.5), and the proof of Lemma 2.6 is complete.

Notice that Theorem C immediately follows from Lemma 2.6. In fact,
with the aid of appropriate partition of unity, the case of Theorem C reduces
to that of Lemma 2.6.

We are now in a position to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. We take a function η ∈ C∞0 (R) such that supp η ⊂
[2−1, 2] and

∑∞
j=−∞ η(t/2j) = 1 for all t > 0. We decompose ϕ(t) as

ϕ(t) =
∞∑

j=−∞
ϕ(t)η(t/2j) =

∞∑
j=−∞

ϕj(t).
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Then, using the inequality (1.4), it is easy to see that Hϕf for f ∈ Hp can
be decomposed as

Hϕf =
∞∑

j=−∞
Hϕjf

with the series converging in S ′.
We have suppϕj ⊂ [2j−1, 2j+1], and our assumption on ϕ yields the

estimate ∣∣∣∣( d

dt

)k
ϕj(t)

∣∣∣∣ ≤ c2−|j|ε+j(−1/p−k)

for k = 0, 1, . . . ,M . Hence applying Lemma 2.6 to each ϕj with T = 2j+1

and δ = 3/4, we obtain

‖Hϕjf‖Hp ≤ c2−|j|ε.

Now summation over j gives the desired result.

Proof of Theorem 1.3. We define ϕ(1) by

ϕ(1)(t) =
{
ϕ(t) if t < a,
0 if t > a,

and define ϕ(2) = ϕ− ϕ(1). Thus Hϕ = Hϕ(1) +Hϕ(2) .
We first consider Hϕ(1) . Using the same function η as in the proof of

Theorem 1.2, we decompose ϕ(1) as

ϕ(1)(t) =
N∑

j=−∞
ϕ(t)η

(
a− t

2j

)
=

N∑
j=−∞

ϕ
(1)
j (t),

where N is the smallest integer such that 2N ≥ a. Then Hϕ(1)f for f ∈ Hp

can be decomposed as

Hϕ(1)f =
N∑

j=−∞
H
ϕ

(1)
j

f

with the series converging in S ′. We have suppϕ(1)
j ⊂ [a − 2j+1, a − 2j−1]

and ∣∣∣∣( d

dt

)k
ϕj(t)

∣∣∣∣ ≤ c2j(ε−1−k)

for k = 0, 1, . . . ,M . If j is sufficiently small or, to be precise, if 2j+1 ≤ 9a/10,
then applying Lemma 2.6 to ϕ(1)

j with T = a and δ = 2j+1/a, we obtain

‖H
ϕ

(1)
j

f‖Hp ≤ c2jε‖f‖Hp .
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Now, summing up the estimates obtained yields∥∥∥ ∑
2j+1≤9a/10

H
ϕ

(1)
j

f
∥∥∥
Hp
≤ c‖f‖Hp .

There are only finitely many j’s that satisfy 2j+1 > 9a/10 and j ≤ N . For
those j’s we can make use of Theorem C. Thus we conclude that Hϕ(1) =∑N

j=−∞Hϕ(1)
j

is bounded in Hp.

The estimate for Hϕ(2) can be obtained in a similar way. We decompose
ϕ(2) as

ϕ(2)(t) =
N ′∑

j=−∞
ϕ(t)η

(
t− a

2j

)
=

N ′∑
j=−∞

ϕ
(2)
j (t),

where N ′ is the smallest integer such that the interval [a+ 2N
′
,∞) does not

intersect suppϕ. Then Hϕ(2)f for f ∈ Hp can be decomposed as

Hϕ(2)f =
N ′∑

j=−∞
H
ϕ

(2)
j

f

with the series converging in S ′. We have suppϕ(2)
j ⊂ [a + 2j−1, a + 2j+1]

and ∣∣∣∣( d

dt

)k
ϕ

(2)
j (t)

∣∣∣∣ ≤ c2j(ε−1−k)

for k = 0, 1, . . . ,M . If j is sufficiently small, say j ≤ −N ′′, then applying
Lemma 2.6 to ϕ(2)

j with T = a+ 2j+1 and δ = 3 · 2j−1/(a+ 2j+1), we obtain

‖H
ϕ

(2)
j

f‖Hp ≤ c2jε‖f‖Hp .

Now, summation over j gives∥∥∥ −N ′′∑
j=−∞

H
ϕ

(2)
j

f
∥∥∥
Hp
≤ c‖f‖Hp .

There are only finitely many j’s that satisfy −N ′′ < j ≤ N ′. As above,
using Theorem C for those j’s, we conclude that Hϕ(2) =

∑N ′

j=−∞Hϕ(2)
j

is

bounded in Hp. This completes the proof of Theorem 1.3.

3. Two negative results. In this section, we shall give two negative
results concerning the Hp-boundedness, 0 < p < 1, of Hausdorff operators.

The first result is that the Hausdorff operator Hϕ for ϕ(t) = t−1/p is
not bounded in Hp. To prove this, we have to extend the definition of Hϕ
since ϕ(t) = t−1/p does not satisfy the assumption Aϕ,p < ∞ of Defini-
tion 1.1.
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Lemma 3.1. If 0 < p ≤ 1, then there exists a constant cp such that

(3.1)
∣∣∣∞�

0

|f̂(tξ)|t−1/p dt
∣∣∣ ≤ cp‖f‖Hp |ξ|1/p−1.

Proof. We again write M = [1/p−1/2]+1. By Lemma 2.4(2), it suffices
to prove the estimate

∞�

0

|f̂(tξ)|t−1/p dt ≤ cp|ξ|1/p−1

for all f of the form f = s−1/pg(s−1(· − x0)) with g ∈ Ap,M (1) and x0 ∈ R.
For such f , we have

f̂(ξ) = e−ix0ξs−1/p+1 ĝ(sξ),

and hence
∞�

0

| f̂(tξ)|t−1/p dt =
∞�

(s|ξ|)−1

s−1/p+1 |ĝ(stξ)| t−1/p dt

≤ s−1/p+1‖ĝ(sξ·)‖L2

( ∞�

(s|ξ|)−1

t−2/p dt
)1/2

≤ cps−1/p+1(s|ξ|)−1/2(s|ξ|)1/p−1/2 = cp|ξ|1/p−1.

Lemma 3.1 is proved.

Using this lemma, we see that for ϕ(t) = t−1/p the Hausdorff operator
Hϕ is well-defined through (1.2) as a continuous linear operator from Hp

to S ′.
We then prove the following.

Theorem 3.2. Let 0 < p ≤ 1 and ϕ(t) = t−1/p. Then the Hausdorff
operator Hϕ is not bounded in Hp.

Proof. Take a function f that has the following properties: f is bounded
on R with compact support,�

R
xkf(x) dx = 0 for k = 0, 1, . . . , [1/p− 1],

and

A =
∞�

0

x1/p−1f(x) dx 6= 0.

Then f is a constant multiple of an Hp-atom and hence f ∈ Hp(R) (see
e.g. [S, p. 106]). For 0 < ε < M < ∞, define ϕε,M (t) by ϕε,M (t) = t−1/p

for ε < t < M and ϕε,M (t) = 0 otherwise. Then, with the aid of (3.1), we
see that Hϕε,M (f) converges to Hϕ(f) in S ′ as ε→ 0 and M →∞. On the
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other hand, for x > 0,

(Hϕε,M f)(x) =
M�

ε

t−1−1/pf

(
x

t

)
dt = x−1/p

x/ε�

x/M

u1/p−1f(u) du

converges to

x−1/p
∞�

0

u1/p−1f(u) du = Ax−1/p

and the convergence is uniform on every compact subset of (0,∞). Hence
the distribution Hϕf coincides with the function Ax−1/p on (0,∞). Since
the last function is not of class Lp on (0,∞), we see that Hϕf does not
belong to Hp.

Our second negative result reads as follows.

Theorem 3.3. There exists a function ϕ on (0,∞) that has the following
properties: ϕ is bounded , suppϕ is a compact subset of (0,∞), and , for every
p ∈ (0, 1), the Hausdorff operator Hϕ is not bounded in Hp.

In the rest of this paper, we shall use the following notation: if P (x, y, . . .)
is a proposition containing variables x, y, . . ., then we define 1{P (x, y, . . .)}
to be 1 if P (x, y, . . .) is true, and 0 otherwise.

To prove Theorem 3.3, we use the following function. Let 0 < a < b <∞
and let N be a positive integer satisfying N ≥ 2. We write h = b− a and

tj = a+ jh/N (j = 1, . . . , N − 1)

and define the function ψa,b,N (t) for t ∈ (0,∞) by

ψa,b,N (t) =
N−1∑
j=1

(−t1{tj − h/2N < t < tj}+ t1{tj < t < tj + h/2N}).

For this function, we have the following.

Lemma 3.4. Let 0 < a < b <∞ and let N be a positive integer satisfying
N ≥ 2. Let ϕ be a bounded function on (0,∞) such that suppϕ is a compact
subset of (0,∞) and ϕ(t) = ψa,b,N (t) if t ∈ (a, b). Then, for each p satisfying
1/2 < p < 1, we have

(3.2) sup{‖Hϕf‖Hp/‖f‖Hp | f ∈ Hp, f 6= 0} ≥ c0(a, b, p)N (1−p)/p,

where c0(a, b, p) is a positive constant depending only on a, b, and p.

Proof. We take an ε such that 0 < ε < h/8b and define the function fN,ε
on R by

fN,ε(x) = 1{N − ε < x < N} − 1{N < x < N + ε}.
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We take a p satisfying 1/2 < p < 1. Since fN,ε is a constant multiple of an
Hp-atom, we have

(3.3) ‖fN,ε‖Hp = c1(p, ε) ∈ (0,∞).

Notice that ‖fN,ε‖Hp does not depend on N . We shall prove (3.2) by testing
f = fN,ε.

We take a number δ such that 0 < δ < 1/4 and εa/4 > δh. We shall
consider (HϕfN,ε)(x) for x in the intervals

(3.4) Ntj < x < Ntj + δh (j = 1, . . . , N − 1).

For these x, we have

tj <
x

N
< tj +

δh

N
< tj +

h

4N
,

x

N − ε
− x

N
<

2εx
N2

<
2εb
N

<
h

4N
,

x

N
− x

N + ε/2
>

εx

4N2
>

εa

4N
>
δh

N
,

x

N
− x

N + ε
<

εx

N2
<
εb

N
<

h

8N
,

and hence

tj −
h

8N
<

x

N + ε
<

x

N + ε/2
< tj <

x

N
<

x

N − ε
< tj +

h

2N
.

Using then the formula (1.1), we have

(HϕfN,ε)(x) = −
x/N�

x/(N+ε)

ϕ(t)
t

dt+
x/(N−ε)�

x/N

ϕ(t)
t

dt

= −
x/N�

x/(N+ε)

ψa,b,N (t)
t

dt+
x/(N−ε)�

x/N

ψa,b,N (t)
t

dt

=
x/(N+ε/2)�

x/(N+ε)

dt−
x/N�

x/(N+ε/2)

ψa,b,N (t)
t

dt+
x/(N−ε)�

x/N

dt

= I − II + III, say.

Obviously I > 0. For II and III, we have

|II| ≤ x

N
− x

N + ε/2
<

εx

2N2
, III =

x

N − ε
− x

N
>

εx

N2
.

Thus, for x satisfying (3.4), we have

(HϕfN,ε)(x) >
εx

2N2
>

εa

2N
.



Boundedness of the Hausdorff operators 291

Hence

‖HϕfN,ε‖pHp ≥
N−1∑
j=1

Ntj+δh�

Ntj

|HϕfN,ε(x)|p dx(3.5)

≥
N−1∑
j=1

(
εa

2N

)p
δh ≥

(
εa

2

)p δh
2
N1−p.

Now (3.3) and (3.5) yield (3.2).

Proof of Theorem 3.3. Take a sequence {(an, bn)} of disjoint intervals
such that 1 ≤ an < bn ≤ 2. Take a sequence {pn} such that 1/2 < pn < 1
and limn→∞ pn = 1. Take positive integers Nn such that Nn ≥ 2 and

(3.6) c0(an, bn, pj)N
(1−pj)/pj
n > n for j = 1, . . . , n,

where c0(a, b, p) is the constant in (3.2). We shall prove that the function

ϕ(t) =
∞∑
n=1

ψan,bn,Nn(t)

has the desired properties.
Since the intervals (an, bn) are disjoint and contained in [1, 2], it is obvious

that ϕ is bounded and suppϕ ⊂ [1, 2]. For positive integers j and n satisfying
n ≥ j, Lemma 3.4 and (3.6) give

sup{‖Hϕf‖Hpj /‖f‖Hpj | f ∈ Hpj , f 6= 0} ≥ c0(an, bn, pj)N
(1−pj)/pj
n > n.

This implies that Hϕ is not bounded in Hpj for each positive integer j. On
the other hand, Hϕ is bounded in H1 by virtue of Theorem A. Hence Hϕ
cannot be bounded in Hp for any p < 1, since otherwise interpolation would
imply that Hϕ is bounded in Hpj for pj close enough to 1.
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[M2] —, Boundedness of the Cesàro operator in Hardy spaces, J. Fourier Anal. Appl.
10 (2004), 83–92.

[S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Os-
cillatory Integrals, Princeton Univ. Press, 1993.

Department of Mathematics
Bar-Ilan University
Ramat-Gan 52900, Israel
E-mail: liflyand@math.biu.ac.il

Department of Mathematics
Tokyo Woman’s Christian University

Zempukuji, Suginami-ku
Tokyo 167-8585, Japan

E-mail: miyachi@lab.twcu.ac.jp

Received January 16, 2009 (6517)


