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On the limiting empirical measure of eigenvalues of
the sum of rank one matrices with log-concave distribution

by

A. Pajor (Marne-la-Vallée) and L. Pastur (Kharkiv)

Abstract. We consider n × n real symmetric and hermitian random matrices Hn

that are sums of a non-random matrix H
(0)
n and of mn rank-one matrices determined

by i.i.d. isotropic random vectors with log-concave probability law and real amplitudes.
This is an analog of the setting of Marchenko and Pastur [Mat. Sb. 72 (1967)]. We prove
that if mn/n → c ∈ [0,∞) as n → ∞, and the distribution of eigenvalues of H

(0)
n and

the distribution of amplitudes converge weakly, then the distribution of eigenvalues of Hn

converges weakly in probability to the non-random limit, found by Marchenko and Pastur.

1. Introduction. Let {Yα}mα=1 be i.i.d. random vectors of Rn (or Cn),
and {τα}mα=1 be a collection of real numbers. Consider the random matrix

(1.1) Mn =
m∑
α=1

ταLYα ,

where LY is the rank-one matrix corresponding to Y ∈ Rn (or Cn) and
defined as

(1.2) LYX = (X,Y )Y, ∀X ∈ Rn (resp. X ∈ Cn),

with ( , ) denoting the standard euclidian (or hermitian) scalar product in
Rn (or Cn).

Let also H
(0)
n be a real symmetric (or hermitian) n × n deterministic

matrix. We then consider the real symmetric (or hermitian) n × n random
matrix

(1.3) Hn = H(0)
n +Mn.

Denote by

(1.4) −∞ < λ1 ≤ · · · ≤ λn <∞
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the eigenvalues of Hn and introduce their normalized counting (or empirical)
measure Nn, setting for any interval ∆ ⊂ Rn,

(1.5) Nn(∆) = Card{l ∈ [1, n] : λl ∈ ∆}/n.

Likewise, define the normalized counting measures N (0)
n of the eigenvalues

{λ(0)
l }

n
l=1 of H(0)

n ,

(1.6) N (0)
n (∆) = Card{l ∈ [1, n] : λ(0)

l ∈ ∆}/n,
and the normalized counting measures σm of {τα}mα=1 :

(1.7) σm = Card{α ∈ [1,m] : τα ∈ ∆}/m.

Assume that the sequences {N (0)
n } and {σm} converge weakly to probability

measures N (0) and σ:

lim
n→∞

N (0)
n = N (0),(1.8)

lim
m→∞

σm = σ.(1.9)

It was shown in [20] that if the i.i.d. {Yα}mα=1 satisfy certain conditions, valid
in particular for vectors with independent components and vectors uniformly
distributed over the unit sphere of Rn (or Cn), and {mn} is a sequence such
that

(1.10) cn := mn/n→ c ∈ [0,∞), n→∞,
then there exists a non-random probability measure N (N(R) = 1) such that
for any interval ∆ ⊂ R we have the convergence in probability

(1.11) lim
n→∞

Nn(∆) = N(∆).

The limiting non-random measure N can be found as follows. Introduce the
Stieltjes transform

(1.12) f (0)(z) =
�

R

N (0)(dλ)
λ− z

, =z 6= 0,

of the measure N (0) of (1.8) and the Stieltjes transform

(1.13) f(z) =
�

R

N(dλ)
λ− z

, =z 6= 0,

of the measure N of (1.11). Then f is uniquely determined by the functional
equation

(1.14) f(z) = f (0)

(
z − c

�

R

τ σ(dτ)
1 + τf(z)

)
,

considered in the class of functions analytic in C \ R and such that =f(z)=z
≥ 0 for =z 6= 0. Since the Stieltjes transform determines N uniquely by the
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formula

(1.15) lim
ε→0+

1
π

�

R
ϕ(λ)=f(λ+ iε) dλ =

�

R
ϕ(λ)N(dλ),

valid for any continuous function ϕ of compact support, (1.14) determines
N uniquely.

The same result is valid if the components {Yαj}nj=1 of Yα, α = 1, . . . ,m,
are i.i.d. random variables of zero mean and unit variance (see [4, 16, 20,
24, 26] and references therein). A particular case of this random matrix for
H

(0)
n = 0, τα = 1, α = 1, . . . ,m, and i.i.d. Gaussian {Yαj}nj=1 has been known

since the 30s in statistics as the (null) Wishart matrix (see e.g. [22]). The
same random matrix also appears in the local theory of Banach spaces or so-
called asymptotic convex geometry (see e.g. [10, 27]). An important problem
that enters these frameworks is the study of some geometric parameters
associated to i.i.d. random points Yα, α = 1, . . . ,m, uniformly distributed
over a convex body in Rn and the asymptotic geometry of the random convex
polytope generated by these points (see e.g. [3, 7, 14, 15, 19]).

In this paper we prove (1.11) and (1.14) for the case where the common
probability law of the i.i.d. vectors {Yα}mα=1 is isotropic and log-concave
(see the next section for the corresponding definitions). A preliminary un-
published result obtained in 2004 by the authors is on the vectors that are
uniformly distributed in the euclidian unit ball of Rn. This case was also
obtained by a different approach in [2].

The paper is organized as follows. In Section 2 we present necessary
spectral and probabilistic facts and recent results on isotropic random vectors
with log-concave distribution. Section 3 contains the proof of our main result
(Theorem 3.3) which combines the method of [20] and the later papers [16,
24, 26].

2. Necessary spectral and probabilistic facts. We will begin by re-
calling several facts on the resolvent of real symmetric (hermitian) matrices.
Here and below, | . . . | denotes the euclidian (or hermitian) norm of vectors
and matrices.

Lemma 2.1. Let A be a real symmetric (hermitian) matrix and

(2.1) GA(z) = (A− z)−1, =z 6= 0,

be its resolvent.
(i) We have

(2.2) |GA(z)| ≤ |=z|−1.

(ii) If A1 and A2 are hermitian matrices, then
(2.3) GA2(z) = GA1(z)−GA2(z)(A2 −A1)GA1(z).
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(iii) If for Y ∈ Rn or (Y ∈ Cn), LY is the corresponding rank-one matrix
(1.2) and τ ∈ R, then

(2.4) GA+τLY (z)

= GA(z)− τGA(z)LYGA(z)(1 + τ(GA(z)Y, Y ))−1, =z 6= 0.

We also need the following simple fact, a version of the min-max principle
of linear algebra (see e.g. [8, Section I.4]).

Lemma 2.2. Let A1 and A2 be hermitian matrices and N (1)
n and N (2)

n be
their normalized counting measures. Then for any interval ∆ ⊂ R,

(2.5) |N (1)
n (∆)−N (2)

n (∆)| ≤ rank(A1 −A2)/n.

Next we give a version of the martingale-difference bounds for the vari-
ance of a Borelian function of independent random variables (see e.g. [11]).
The technique of martingale differences was used in studies of random ma-
trices by Girko (see e.g. [16] for results and references).

Lemma 2.3. Let {Yα}mα=1 be a collection of i.i.d. random vectors of Rn

(or Cn) with a common probability law F , and Φ : Rnm → C (resp. Φ :
Cnm → C) be a bounded Borelian function, satisfying the inequalities

(2.6) sup
X1,...,Xm∈Rn (resp. Cn)

|Φ− Φ|Xα=0| ≤ C <∞, α = 1, . . . ,m.

Then

(2.7) Var{Φ(Y1, . . . , Ym)} ≤ 4C2m.

We denoted above by Φ|Xα=0 the function Φ composed with the projec-
tion (X1, . . . , Xm) 7→ (X1, . . . , Xα−1, 0, Xα+1, . . . , Xm), and

Var{Φ} = E{|Φ|2} − |E{Φ}|2.
We now discuss isotropic random vectors with a log-concave probability

law.

Definition 2.4. A random real vector Y ∈ Rn is called isotropic if

(2.8) E{(Y,X)} = 0, E{(Y,X)2} = n−1|X|2, ∀X ∈ Rn,

(where (·, ·) denotes the euclidian scalar product in Rn), or, in terms of
components {yj}nj=1 of Y ,

E{yj} = 0, E{yjyk} = n−1δjk, j, k ∈ [1, n].

A random complex vector Y ∈ Cn is called R-isotropic or simply isotropic
if (<Y,=Y ) ∈ R2n is isotropic. In terms of components {yj}nj=1 of Y , this is
equivalent to

E{yj} = E{yjyk} = 0, E{yjyk} = 2n−1δjk, j, k = 1, . . . , n.
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Observe that if Y ∈ Cn is isotropic then so are <Y and =Y as real
vectors.

We are going to find the limiting normalized counting measure of the
eigenvalues of (1.3), not attempting to obtain bounds on the corresponding
rate of convergence that depends on a number of factors. It is shown below
that in this situation it suffices to consider random vectors described by

Definition 2.5. A random isotropic vector Y = {yj}nj=1 of Rn is called
good if for any n×n complex matrix A such that its operator norm satisfies
|A| ≤ 1 we have
(2.9) Var{(AY, Y )} ≤ δn, δn = o(1), n→∞.

Remark 2.6. A complex version of the above definition is
(2.10) Var{(AY, Y )} ≤ δn, δn = o(1), n→∞,
where now (·, ·) is the hermitian scalar product in Cn.

It is easy to check that if {ξj}nj=1 are i.i.d. random variables of zero mean
and unit variance, then the vector Y = {n−1/2ξj}nj=1 is good and

(2.11) δn = 2Var{ξ21}/n.
Likewise, the vector uniformly distributed over the unit sphere in Rn and
the vector uniformly distributed over the ball of radius

√
(n+ 2)/n in Rn

are good and have δn = 2/n. A class of random vectors for which (2.9) is
valid was considered in [20].

On the other hand, the vector assuming the values ±ej , j = 1, . . . , n,
with probability (2n)−1, where {ej}nj=1 is the canonical basis in Rn, is not
good. Indeed, in this case we have (2.8), but not (2.9), since

Var{(AY, Y )} = n−1
n∑
j=1

|Ajj |2 −
∣∣∣n−1

n∑
j=1

Ajj

∣∣∣2,
and if n = 2m, A is diagonal, Ajj = 1, j = 1, . . . ,m, and Ajj = −1,
j = m+ 1, . . . , 2m, then Var{(AY, Y )} = 1.

The fact that for the vector uniformly distributed over the unit sphere in
Rn and the vector uniformly distributed over the ball of radius

√
(n+ 1)/n

we have the same δn in (2.9) is a simple manifestation of a rather general con-
centration phenomenon, according to which the vector uniformly distributed
over a symmetric convex body in Rn is concentrated for large n within a very
thin shell adjacent to its surface. It follows from Lemma 2.7 below that be-
cause of the concentration phenomenon, in particular, by important recent
results of [17, 18] and also [12], such random vectors are good, as also are
the vectors whose probability law is log-concave. It is shown in Theorem 3.3
(whose proof is different from that of [20]) that the results of [20] are valid
for matrices (1.3), where {Yα} are good vectors.
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Recall that a measure m on Rn (or Cn) is called log-concave if for any
measurable subsets A,B of Rn (or Cn) and any θ ∈ [0, 1],

m(θA+ (1− θ)B) ≥ m(A)θm(B)1−θ

whenever the set

θA+ (1− θ)B = {θX1 + (1− θ)X2 : X1 ∈ A, X2 ∈ B}
is measurable.

If Y is a random vector with a log-concave distribution, then any affine
image of Y has a log-concave distribution. In particular, the projection of
a log-concave measure is log-concave. If Y1 and Y2 are independent random
vector with log-concave distributions, then (Y1, Y2) and Y1 + Y2 have log-
concave distributions as well (see [5, 9, 25]). The Brunn–Minkowski inequal-
ity provides examples of log-concave measures, namely the uniform Lebesgue
measures on compact convex subsets of Rn as well as their marginals. More
generally, Borell’s theorem [6] characterizes the log-concave measures that
are not supported by any hyperplane as the absolutely continuous measures
(with respect to Lebesgue measure) with a log-concave density f , i.e.,

f(θX1 + (1− θ)X2) ≥ fθ(X1)f1−θ((1− θ)X2), ∀X1, X2 ∈ Rn, ∀θ ∈ [0, 1].

Note that the distribution of an isotropic vector is not supported by any
hyperplane.

In recent years considerable progress has been achieved in understanding
the properties of isotropic and log-concave distributed random vectors, which
prove to be fairly similar to those of vectors uniformly distributed over the
euclidian ball. In particular, it follows from the results of [18] (see Lemma 2.8
below) that if Y is an isotropic random vector with a log-concave probability
law, then

(2.12) Var{ |Y |2} ≤ ϕn,
where

(2.13) ϕn = C1n
−β1

for some C1 < ∞ and β1 > 0. It was also shown in [12, Theorem 1] that if
Y is uniformly distributed over a convex body, then

(2.14) ϕn = C2(log n)−β2

for some C2 <∞ and β2 > 0.
We now show that isotropic and log-concave distributed random vectors

are good under a rather mild condition.

Lemma 2.7. Let Y be a random isotropic vector with log-concave distri-
bution in Rn (or Cn) satisfying (2.12) in which

(2.15) lim
n→∞

ϕn = 0, n2ϕn is nondecreasing.



Sum of rank one matrices with log-concave distribution 17

Then (2.9) is valid with

(2.16) δn = Cϕn,

where C is an absolute constant.

Proof. Writing A = R+ iI, where R and I are hermitian, we have

Var{(AY, Y )} = Var{(RY, Y )}+ Var{(IY, Y )}.
Hence up to a factor 2, the proof reduces to the case where A is hermitian.
If V is an isometry in Rn (respectively Cn), then V Y is also an isotropic
(respectively R-isotropic) random vector in Rn (respectively Cn) with log-
concave distribution.

Hence, we can assume that A is diagonal, i.e., A = diag{aj}nj=1 with
|aj | ≤ 1 for all 1 ≤ j ≤ n, and set

q(a1, . . . , an) = Var{(AY, Y )} = E
{∣∣∣ n∑

j=1

aj |yj |2
∣∣∣2}− ∣∣∣n−1

n∑
j=1

aj

∣∣∣2,
where Y = {yj}nj=1. Since q is a positive quadratic form, its maximum on the
cube [−1, 1]n is attained at one of its vertices {−1, 1}n. In order to estimate
q at a vertex, let J be a subset of {1, . . . , n}. Then

Var
{∑
j∈J
|yj |2 −

∑
j /∈J

|yj |2
}
≤
(
Var1/2

{∑
j∈J
|yj |2

}
+ Var1/2

{∑
j /∈J

|yj |2
})2

,

≤
(
Var1/2

{∑
j∈J
|<yj |2

}
+ Var1/2

{∑
j∈J
|=yj |2

}
+Var1/2

{∑
j /∈J

|<yj |2
}

+ Var1/2
{∑
j /∈J

|=yj |2
})2

.

Since in the complex case <Y and =Y are isotropic, up to a factor 16 we
may reduce the complex case to the case Y ∈ Rn. Now observe that if
YJ = {yi}j∈J is the projection of Y onto RJ , then n1/2 Card{J}−1/2YJ is
also an isotropic random vector and by [9] it has a log-concave distribution.
Thus, (2.15) implies

Var{|YJ |2} ≤ n−2 Card{J}2ϕCard{J} ≤ ϕn.
Combining all numerical constants in the reduction, we conclude that in the
complex case

Var{(AY, Y )} ≤ 32ϕn
and Var{(AY, Y )} ≤ 8ϕn when Y ∈ Rn.

We now derive (2.13) from the results of [17, 18].

Lemma 2.8. Let Y ∈ Rn be a random isotropic vector with log-concave
distribution. Then (2.12)–(2.13) is valid.
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Proof. According to [17, Theorem 1.3], if X is an isotropic random vector
with log-concave distribution, zero mean and unit covariance matrix, then
there exist numerical constants C <∞ and κ > 0 such that

P

{∣∣∣∣ |X|n1/2
− 1
∣∣∣∣ ≥ n−κ} ≤ Ce−nκ .

Defining X/n1/2 = Y , η = |Y − 1|, and l(y) = y2(2 + y)2, we can write

Var{|Y |2} := E{(|Y |2 − 1)2} ≤ E{l(η)} =
∞�

0

l′(y)P{η ≥ y} dy

=
n−κ�

0

+
b�

n−κ

+
∞�

b

= I1 + I2 + I3

for some b ≥ 1. We have obviously

I1 ≤ n−κl′(n−κ) ≤ Bn−2κ,

where B is an absolute constant.
Next, it follows from (2.13) that

I2 ≤ Cl(b)e−n
κ
.

To estimate I3 we use a version of Borell’s theorem (see e.g. [21, Appendix
III, Theorem III.3]), according to which for any random vector Y with log-
concave distribution,

P{|Y | ≥ tE{|Y |}} ≤ e−dt, t ≥ D,
for some numerical constants D <∞ and d > 0. Since in our case E{|Y |} ≤
E1/2{|Y |2} ≤ 1, for y ≥ max{1, D} we obtain

P{η ≥ y} := P{| |Y | − 1| ≥ y} = P{|Y | ≥ 1 + y} ≤ D1e
−dy

for some numerical constant D1. This leads to the bound

I3 ≤ l1(b)e−db,
where l1 is a polynomial of degree 3 with non-negative numerical coefficients.
We obtain

Var{|Y |2} ≤ Bn−2κ + Cl(b)e−n
κ

+ l1(b)e−db,

and it now suffices to choose b such that the last two terms on the r.h.s. do
not exceed Bn−2κ. We conclude that the bound (2.13) is valid with C1 = 3B
and β1 = 2κ.

3. Proof of the main result. We first prove certain auxiliary facts.

Proposition 3.1. Let Nn be the normalized counting measure (1.5) of
the eigenvalues of (1.3), in which {Yα}mnα=1 are i.i.d. random vectors (not



Sum of rank one matrices with log-concave distribution 19

necessarily isotropic and/or with log-concave distribution), {τα}mnα=1 are real
numbers, and let

(3.1) gn(z) =
�

R

Nn(dλ)
λ− z

, =z 6= 0,

be the Stieltjes transform of Nn. Then

(3.2) Var{Nn(∆)} ≤ 4cn/n

for any interval ∆ ⊂ R, with the cn of (1.10), and

(3.3) Var{gn(z)} ≤ 4cn/(n|=z|2)
for any z ∈ C \ R.

Proof. To prove (3.2) we use Lemma 2.3 with Φ = nNn(∆), the number
of eigenvalues of Hn in ∆. Since

Hn −Hn|Yα=0 = ταLYα

is a rank 1 matrix, by (2.5) we have

(3.4) |nNn − nNn|Yα=0| ≤ 1,

i.e. the constant C in (2.6) is 1 in this case. This and (2.7) lead to (3.2).
In the case of gn we choose Φ = ngn := Tr (Hn − z)−1. To prove an

analog of (2.5) for ngn we use an argument similar to that in the proof of
Lemma 2 of [20] (see also Lemma 2.6 of [26]). According to (1.5), (3.1), and
the spectral theorem for real symmetric (hermitian) matrices,

ngn(z) = Tr (Hn − z)−1 =: TrG(z).

Then (2.4) implies

(3.5) |ngn(z)− ngn(z)|Yα=0| ≤
|τα| |(G2

αYα, Yα)|
|1 + τα(GαYα, Yα)|

,

where

(3.6) Gα = G|Yα=0.

By the spectral theorem for real symmetric (hermitian) matrices there exists
a non-negative measure mα such that for any integer l,

(GlαYα, Yα) =
�

R

mα(dλ)
(λ− z)l

.

Thus
|τα| |(G2

αYα, Yα)| ≤ |τα|
�

R

mα(dλ)
|λ− z|2

,

and

|1 + τα(GαYα, Yα)| ≥ |τα| |=(GαYα, Yα)| = |τα| |=z|
�

R

mα(dλ)
|λ− z|2

.
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This and (3.5) imply the bound

(3.7) |ngn(z)− ngn(z)|Yα=0 | ≤ |=z|
−1.

Thus we can choose |=z|−1 as C in (2.7) and obtain (3.3) from (2.7).

Proposition 3.2. Let N (0) and σ be probability measures on R, and f (0)

be the Stieltjes transform (1.12) of N (0). Consider a probability measure N
on R and assume that its Stieltjes transform f (1.13) satisfies (1.14). Then
f is uniquely determined by (1.14).

This is proved in Section 5 of [20] and Lemma 5.1 of [26]. Now we are
ready to prove our main result.

Theorem 3.3. Let {mn} be a sequence of positive integers satisfying
(1.10), {Yα}mnα=1 be i.i.d. good random vectors of Rn (or Cn) in the sense of
Definition 2.5, and {τα}mnα=1 be a collection of real numbers satisfying (1.9).
Consider the random matrices Hn of (1.1)–(1.3) and assume (1.8). Then
there exists a non-random measure N (N(R) = 1) such that for any interval
∆ ⊂ R we have in probability

(3.8) lim
n→∞,mn/n→c∈[0,∞)

Nn(∆) = N(∆)

for the normalized counting measure Nn of (1.5) of the eigenvalues of Hn.
The limiting non-random measure N is uniquely determined by equation

(1.14) for its Stieltjes transform (1.13).

Proof. In view of (3.2) and Proposition 3.2 it suffices to prove that the
expectations

(3.9) Nn = E{Nn}

of the normalized counting measure (1.5) of the eigenvalues of Hn converge
weakly to a probability measure whose Stieltjes transform solves (1.14).

Given a positive integer p, define

(3.10) τ (p)
α =

{
τα, |τα| ≤ p,
0, |τα| > p,

and set

(3.11) H(p)
n = H(0)

n +
mn∑
α=1

τ (p)
α LYα .

Let N (p)
n be the normalized counting measure of H(p)

n , and

N (p)
n = E{N (p)

n }.
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Since N (p)
n is a probability measure for any p and n, there exists a subse-

quence {N (p)
nj }nj≥1 and a non-negative measure such that

(3.12) lim
nj→∞

N (p)
nj (∆) = N (p)(∆), ∀∆ ⊂ R, |∆| <∞.

Let us show that the proof of the theorem reduces to the proof that for any
positive integer p there exists Cp ∈ [2p,∞) such that the Stieltjes transform
f (p) of N (p) satisfies the equation

(3.13) f (p)(z) = f (0)

(
z − c

p�

−p

τ σ(dτ)
1 + τf (p)(z)

)
, |=z| ≥ Cp ≥ 2p,

Indeed, it is an easy consequence of Theorem 3 of [1, Section 69] (see also
[13]) that if s is the Stieltjes transform of a non-negative measure m, then

(3.14) lim
y→∞

y|s(iy)| = m(R).

Being the Stieltjes transform of a non-negative measure whose total mass
does not exceed 1, f (p) admits the bound |f (p)(z)| ≤ |=z|−1. Thus, the
second term in the argument on the r.h.s. of (3.13) is bounded by 2cp, and
by (3.14) and (1.8) we have

lim
y→∞

y|f (p)(iy)| = lim
y→∞

y|f (0)(iy)| = N (0)(R) = 1.

Thus, N (p) is a probability measure.
Furthermore, it follows from (1.3), (3.11), (2.5), and (3.10) that

rank(Hn −H(p)
n ) ≤ Card{α ∈ [1,m] : |τα| ≥ p}.

This and the min-max principle (2.5) imply

(3.15) |Nn(∆)−N (p)
n (∆)| ≤ cnσmn(R \ [−p, p]), ∀∆ ∈ R,

where cn is defined by (1.10).
Let N be a vague (i.e. for all finite intervals) limit point of {N (p)}, i.e.,

(3.16) lim
j→∞

N (pj)(∆) = N(∆), ∀∆ ⊂ R, |∆| <∞,

for a certain sequence {pj}j≥1. Then, writing

|Nn(∆)−N(∆)| ≤ |Nn(∆)−N (p)
n (∆)|+ |N (p)

n (∆)−N (p)(∆)|

+ |N (p)(∆)−N(∆)|,

using (3.15), (1.9), and the subsequent limits nj →∞ and pj →∞, we find
that N is a vague limit point of {Nn}. Now, passing to the limit nj →∞ in
(3.15) with ∆ = ∆q := [−q, q] and using (1.9), we obtain the bound

(3.17) |N(∆q)−N (p)(∆q)| ≤ cσ(R \ [−p, p]).
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Letting here q →∞ and then pj →∞, and recalling that N (p)(R) = 1, we
find that

N(R) = 1.

We conclude that N is a weak limit point of {N (p)}.
Let us show that N is the weak limit of {Nn} and that the Stieltjes

transform f of N satisfies (1.14) provided that f (p) satisfies (3.13). Note first
that since both sides of (3.13) are analytic in C \ R, the equation is valid
everywhere in C \ R. Moreover, due to the uniqueness property of analytic
functions it suffices to consider the equation for z = iy, 0 < η0 ≤ y ≤ η1

<∞. We then have

=f (p)(iy) =
�

R

y N (p)(dλ)
λ2 + y2

≥
y�

−y

y N (p)(dλ)
λ2 + y2

≥ (2η1)−1N (p)([−η0, η0]).

This and the weak convergence of {N (pj)} to N imply that =f (pj)(iy) is
bounded away from zero uniformly in pj → ∞ and y ∈ [η0, η1]. Now the
bound

|τ(1 + τf (pj)(iy))−1| ≤ (=f (pj)(iy))−1

allows us to let pj → ∞ in (3.13) to obtain (1.14) for z = iy, 0 < η0 ≤
y ≤ η1 <∞, hence everywhere in C \ R. Proposition 3.2 implies that (1.14)
is uniquely soluble. Since the Stieltjes transform of a measure determines it
uniquely (see (1.15)), the theorem is proved provided that (3.13) is valid for
any positive integer p. This is proved in Proposition 3.4 below.

Proposition 3.4. Let H(p)
n be defined in (3.11) and f (p) be the Stieltjes

transform of the measure N (p) of (3.12). Then f (p) satisfies (3.13).

Proof. We first outline the idea of the proof, omitting for brevity the
superscript p, the subscript n in mn, and the argument z in corresponding
quantities.

We write the resolvent identity (2.3) for A1 = H
(0)
n and A2 = Hn:

(3.18) G = G −
m∑
α=1

ταGLYαG,

where

(3.19) G = (Hn − z)−1, G = (H(0)
n − z)−1, =z 6= 0.

Hence, if

(3.20) G = E{G},
then

(3.21) G = G−
m∑
α=1

ταE{GLYα}G.



Sum of rank one matrices with log-concave distribution 23

It follows from (2.4) that

(3.22) GLYα = GαLYα(1 + τα(GαYα, Yα))−1,

where Gα is given by (3.6), thus

(3.23) G = G −
m∑
α=1

E
{

τα
1 + τα(GαYα, Yα)

GαLYα

}
G.

Since Gα does not depend on Yα, from (2.8) we have

(3.24) E{GαLα} = n−1Gα, E{(GαYα, Yα)} = n−1 TrGα,

where Gα = E{Gα}. Moreover, it follows from Lemma 2.7 and (2.2) that
the fluctuations of (GαYα, Yα) and GαLα due to Yα vanish as n→∞. This
allows us to replace these random quantities in (3.23) by their expectations
(3.24). In addition, it follows from (2.4) that n−1(G −Gα) → 0 as n → ∞,
and we can replace Gα by G of (3.20), in particular, n−1 TrGα by

(3.25) fn := n−1 TrG =
�

R

Nn(dλ)
λ− z

.

Thus (3.23) becomes

G = G−
m∑
α=1

τα
1 + ταfn

GG + o(1), n→∞.

Viewing this as an equation for G and solving it, we obtain

G(z) = G̃(z) + o(1), n→∞,

where in view of (1.7),

(3.26) G̃(z) = G(z̃n(z)), z̃n(z) = z − cn
�

R

τ σm(dτ)
1 + τfn(z)

;

here and below we write limn→∞ for the limit (1.10) and o(1) for quantities
that vanish in this limit uniformly in z such that |=z| ≥ η > 0 and η does
not depend on n and m. The above implies that

(3.27) fn(z) = f (0)
n (z̃n(z)) + o(1), n→∞,

where

(3.28) f (0)
n (z) := n−1 TrG(z) =

�

R

N
(0)
n (dλ)
λ− z

.

This is a prelimit form of (3.13), and it is not hard now to pass to the limit
(1.10) and obtain (1.14).
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We will now justify the above scheme. Note first that we obtain the same
equation (3.13) if we replace the random part Mn of (1.1) by

(3.29) M<
n =

mn∑
α=1

τα1| |Yα|2−1|≤δ1/3n
LYα ,

where δn is defined in (2.9). Indeed, from (2.5) with A1 = H
(0)
n + M<

n and
A2 = Hn we have

|Nn(∆)−N<
n (∆)| ≤ n−1rank

(mn∑
α=1

τα1| |Yα|2−1|>δ1/3n
LYα

)
≤ n−1 Card{α ∈ [1,mn] : | |Yα|2 − 1| > δ1/3n }, ∀∆ ⊂ R,

where N<
n is the normalized counting measure of the eigenvalues of H(0)

n +
M<
n . Thus, if N<

n = E{N<
n }, then

|Nn(∆)−N<
n (∆)| ≤ cnP{| |Y1|2 − 1| > δ1/3n } = o(1), n→∞,

since it follows from the Chebyshev inequality, (1.10) and (2.15) that

(3.30) cnP{| |Y1|2 − 1| > δ1/3n } ≤ cnδ−2/3
n Var{|Y1|2} ≤ cnδ1/3n = o(1)

as n→∞. This and (3.12) imply the assertion.
Thus, replacing in (3.23) τα by

(3.31) υα = τα1| |Yα|2−1|≤δ1/3n
,

we obtain an analog of (3.23),

G = G−
m∑
α=1

E
{

υα
1 + υα(GαYα, Yα)

GαLYα

}
G,

where we denote again by G the resolvent of H(0)
n +M<

n . Now we write

(3.32) G = G−cn
p�

−p

τ σ(dτ)
1 + τfn(z)

GG −
5∑
q=1

Rq,

where

R1 =
m∑
α=1

E
{(

υα
1 + υα(GαYα, Yα)

− υα
1 + υαfn

)
GαLYα

}
G,(3.33)

R2 =
m∑
α=1

E
{

υα
1 + υαfn

(GαLYα − n−1Gα)
}
G,(3.34)

R3 =
1
n

m∑
α=1

E
{

υα
1 + υαfn

(Gα −G)
}
G,(3.35)
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R4 =
1
n
E
{ m∑
α=1

(
υα

1 + υαfn
− τα

1 + ταfn

)
G

}
G,(3.36)

R5 = cn

(
1
m

m∑
α=1

τα
1 + ταfn

−
p�

−p

τσ(dτ)
1 + τfn(z)

)
E{G}G.(3.37)

It follows from (3.32) that if (cf. (3.26))

(3.38) Ĝ = G(ẑn(z)), ẑn(z) = z − cn
p�

−p

τ σ(dτ)
1 + τfn(z)

,

then

(3.39) G = Ĝ −
5∑
q=1

R̂q,

where R̂q, q = 1, . . . , 5, are obtained from Rq, q = 1, . . . , 5, by replacing G
by Ĝ in (3.33)–(3.37).

Note that

(3.40) =ẑn(z) = =z + cn=fn(z)
p�

−p

τ2 σ(dτ)
|1 + τfn(z)|2

,

and since =fn(z)=z > 0 and =z 6= 0 by (3.25), we have

(3.41) |=ẑn(z)| ≥ |=z|

and Ĝ(z) is well defined for =z 6= 0 in view of (2.2).
Applying to (3.32) the operation n−1 Tr and recalling (1.6), (3.19), (3.25),

and the spectral theorem, we obtain

(3.42) fn(z) = f (0)
n (ẑn(z))−

5∑
q=1

r̂q,

where now fn is the Stieltjes transform of N<
n , f (0)

n is given by (3.28), and

(3.43) r̂q(z) = n−1 Tr R̂q.

We will now prove that if

(3.44) |=z| ≥ 4p,

then

(3.45) r̂q(z) = o(1), q = 1, . . . , 5.

Here and below, o(1) is a quantity that tends to zero under conditions (1.10)
and (3.44); moreover, we write O(n−p) for quantities bounded by C(z)n−p,
where C(z) does not depend on n and is finite under the same conditions.
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Note first that (3.41) and (3.44) imply

(3.46) |ẑn(z)| ≥ |=z| ≥ 4p.

We then have, from (3.33),

r̂1(z) = − 1
n

m∑
α=1

E
{

υ2
α((GαYα, Yα)− fn)

(1 + υα(GαYα, Yα))(1 + ταfn)
(ĜGYα, Yα)

}
.

According to (2.2) and (3.25) we have |(GαYα, Yα)| ≤ |=z|−1|Yα|2 and |fn| ≤
|=z|−1. Thus, (3.44), (3.46), and the inequalities |υα| ≤ |τα| ≤ p yield, for
|Yα|2 < 1 + δ

1/3
n ≤ 2 and |=z| ≥ 4p,

|1 + υα(GαYα, Yα)| ≥ 1− 2p/|=z| ≥ 1/2,(3.47)
|1 + υαfn| ≥ 1− p/|=z| ≥ 1/2.

This, (2.2), and (3.46) lead to the bound

(3.48) |r̂1(z)| ≤
4p2

|=z|2
1
n

m∑
α=1

E{Eα{|(GαYα, Yα)− fn|}},

where Eα{...} denotes the expectation only with respect to Yα. Since Yα is
isotropic and Gα does not depend on Yα, we have (see (3.24))

(3.49) Eα{(GαYα, Yα)} = n−1TrGα =: g(α)
n .

Moreover, we have the relation E{gn} = fn, following from the definitions
(1.5), (3.1), (3.20), and (3.25). This and the Schwarz inequality yield

E{|Eα{|(GαYα, Yα)− fn|}}

≤ E{Var1/2
α {(GαYα, Yα)}}+ E{|g(α)

n − gn|}+ E{Var1/2
α {gn}}.

Now (2.9) and (2.2) yield a bound (Cδn)1/2/|=z| = o(1) for the first term
on the r.h.s.; (3.6), (3.7), (3.49) yield the bound 1/(n|=z|) = O(n−1) for the
second term; and (3.3) yields the bound 2m1/2/(n|=z|) = O(n−1/2) for the
third term in view of (1.10). It then follows from (3.48) that r̂1(z) = o(1).

Write now

r̂2(z) =
1
n

m∑
α=1

E
{

υα
1 + υαfn

((ĜGαYα, Yα)− n−1 Tr ĜGα)
}
,

and use the relation Eα{(ĜGαYα, Yα)} = n−1 Tr ĜGα, (2.2), and (3.46) to
obtain, similarly to the case of r̂1,

|r̂2(z)| ≤
2p
n

m∑
α=1

E{Var1/2
α {(ĜGαYα, Yα)}} ≤ 2C1/2pcnδ

1/2
n /|=z| = o(1).
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In the case of

r̂3(z) =
1
n

m∑
α=1

E
{

υα
1 + υαfn

n−1 Tr Ĝ(Gα −G)
}

we again use (2.4) to write

r̂3(z) =
1
n2

m∑
α=1

E
{

υα
1 + υαfn

· υα(GαĜGαYα, Yα)
1 + υα(GαYα, Yα)

}
.

Thus, similarly to the case of r̂1, we have

|r̂3(z)| ≤
8p2cn
n|=z|3

= O(n−1).

Furthermore, we use (3.31) to write

r̂4(z) = − 1
n

m∑
α=1

E
{ τα1| |Yα|2−1|>ϕ1/3

n

(1 + υαfn)(1 + ταfn)
n−1 Tr ĜG

}
,

and using (3.47), (2.2), and the bound

(3.50) n−1|TrA| ≤ |A|,
valid for any n× n matrix, we obtain, in view of (3.30),

|r̂4(z)| ≤ 4cnpP{| |Y1|2 − 1| > δ1/3n } = o(1).

Finally, from (3.37) and (1.7) we have

r̂5(z) = cn

p�

−p

τ

1 + τfn
(σm(dτ)− σ(dτ))E{n−1 Tr ĜG}.

In view of (3.50), (2.2), and (3.46) the expectation above is bounded by
|=z|−2. Moreover, from (3.47) we have∣∣∣∣ ∂∂τ τ

1 + τfn

∣∣∣∣ = 1
|1 + τfn|2

≤ 4,

and then (1.9) implies that r̂5(z) = o(1).
In view of (3.12), the Stieltjes transforms of {N (p)

nj } converge to the Stielt-
jes transform f (p) of N (p) uniformly on compact sets K ⊂ C \ R. Choosing
K ⊂ {z ∈ C : |=z| ≥ 4p} and using (1.8) and (3.45) we can pass to the limit
in (3.42) along the subsequence {nj} for z ∈ K. This proves (3.13), hence
the theorem.

Remark 3.5. (1) An interesting case of the amplitudes {τα}mα=1 is where
they are the first m terms of an ergodic sequence {τα}∞α=1, independent of
{Yα}mα=1, in particular, of a sequence of i.i.d. random variables. In this case
it follows from the ergodic theorem (the law of large numbers) that (1.9) is
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valid with probability 1 in the probability space of {τα}∞α=1, and the measure
σ is the probability law of τ1.

(2) Our result can be used for another random matrix, defined via the
vectors {Yα}mα=1 as
(3.51) M̂n = {(Yα, Yβ)}mα,β=1.

It can be called the Gram matrix of the collection {Yα}mα=1. Writing Yα =
{yαj}nj=1 we can view Y = {yαj}m,nα,j=1 as an m×n random matrix. Then we
have the relations M̂n = Y Y ∗ and Mn = Y ∗Y . For n > m, Mn has n −m
zero eigenvalues, whose eigenvectors form a basis of the complement of the
span of {Yα}mα=1 in Rn (or Cn). All other eigenvalues of Mn coincide with
those of M̂n, and if N̂n is the normalized counting measure of the eigenvalues
of M̂n, then

N̂n = −n−m
m

δ0 +
n

m
Nn.

Hence, if N is the limit of Nn, then the limit N̂ of N̂n also exists and is equal
to N̂ = −(c−1 − 1)δ0 + c−1N . Since in this case N = (1− c)δ0 +N∗, where
N∗(dλ) = ρ∗(λ)dλ, where the support of ρ∗ is [a−, a+], a± = (1±

√
c)2, and

(3.52) ρ∗(λ) =
1

2πλ

√
(a+ − λ)(λ− a−), λ ∈ [a−, a+],

(see [20]), we conclude that N̂ is absolutely continuous and has the density
c−1ρ∗. A similar argument applies for m ≥ n.
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