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Convergence of iterates of linear operators
and the Kelisky–Rivlin type theorems

by

Jacek Jachymski (Łódź)

Abstract. Let X be a Banach space and T ∈ L(X), the space of all bounded linear
operators on X. We give a list of necessary and sufficient conditions for the uniform
stability of T , that is, for the convergence of the sequence (Tn)n∈N of iterates of T in
the uniform topology of L(X). In particular, T is uniformly stable iff for some p ∈ N,
the restriction of the pth iterate of T to the range of I − T is a Banach contraction. Our
proof is elementary: It uses simple facts from linear algebra, and the Banach Contraction
Principle. As a consequence, we obtain a theorem on the uniform convergence of iterates
of some positive linear operators on C(Ω), which generalizes and subsumes many earlier
results including, the Kelisky–Rivlin theorem for univariate Bernstein operators, and its
extensions for multivariate Bernstein polynomials over simplices. As another application,
we also get a new theorem in this setting giving a formula for the limit of iterates of the
tensor product Bernstein operators.

1. Introduction. Let L(X) be the space of all bounded linear operators
on a Banach space X. Given T ∈ L(X) and n ∈ N, the set of all positive
integers, we denote by Tn the nth iterate of T . Set

DT∞ := {x ∈ X : ‖ · ‖- lim
n→∞

Tnx exists},

T∞x := lim
n→∞

Tnx for x ∈ DT∞ .

Clearly, DT∞ is always a linear T -invariant subspace of X, and T∞ is a
linear operator. If DT∞ = X, which means (Tn)n∈N is convergent to T∞
in the strong topology of L(X), then, by the Banach–Steinhaus theorem,
the operator T∞ is bounded. In this case T is also called strongly stable
(see, e.g., [Em07, p. 3]). There are a number of results in the literature
(see, e.g., [AA96], [AR03], [CF86], [CF93], [GP05], [KR67], [OT02], [Ru04],
[We97]) showing that some particular linear operators are strongly stable,
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and giving a formula for the operator T∞. For example, the following theorem
was proved in [KR67].

Theorem 1 (Kelisky–Rivlin). For m ∈ N and f ∈ C[0, 1], let Bmf be
the Bernstein polynomial of degree m associated with f , i.e.,

(1) (Bmf)(t) :=
m∑
k=0

f

(
k

m

)(
m

k

)
tk(1− t)m−k for t ∈ [0, 1].

Then the sequence (Bn
m)n∈N strongly converges to the operator B∞ (indepen-

dent of m) given by the following formula:

(2) (B∞f)(t) = f(0) + (f(1)− f(0))t for f ∈ C[0, 1] and t ∈ [0, 1].

The original proof of Theorem 1 is rather involved; in particular, it uses
the Stirling numbers of the second kind. Subsequently, Chang and Feng
[CF86] extended Theorem 1 to the case of bivariate Bernstein polynomials
over a triangle (cf. also [AA96]). Another proof of their result was given by
Wenz [We97], but his argument is also complicated and it requires some hard
calculations. As pointed out in [We97], these ideas could be adapted to the
general setting of more than two variables, but the proofs would become yet
more technical.

Our purpose here is twofold. First, in Section 2, we give necessary and
sufficient conditions for the convergence of (Tn)n∈N in the uniform topology
of L(X) (then T is also called uniformly stable; cf. [Em07, p. 21]) for any
linear operator T on an arbitrary Banach space X. Our proof is elementary:
It uses some simple facts from linear algebra, and the Banach Contraction
Principle. In fact, it was inspired by Rus’ [Ru04] argument used in his ele-
gant proof of the Kelisky–Rivlin theorem, and subsequently extended to the
case of an arbitrary Banach space in our paper [Ja07]. In particular, Theo-
rem 5 generalizes [Ja07, Theorem 4.1] in which a sufficient condition for the
uniform convergence of (Tn)n∈N was given. However, after completing a pre-
liminary version of this paper, we found that we had partially rediscovered
the following spectral criterion of Koliha [Ko73, Theorem 4 and Corollary 5].
(For the notions of spectral theory used below, see, e.g., [DS57]; we denote
by clA the closure of a set A ⊆ X with respect to the norm topology.)

Theorem 2 (Koliha). For an operator T ∈ L(X), the following state-
ments are equivalent :

(i) (Tn)n∈N is uniformly convergent in L(X);
(ii) the spectrum σ(T ) is contained in D∪{1} (where D denotes the open

unit disc), and the point 1 is a simple pole of the resolvent Rλ(T )
whenever 1 ∈ σ(T );

(iii) the spectrum of the restriction T1 of T to the subspace cl(I − T )(X)
is contained in D.
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Clearly, (iii) means that r(T1), the spectral radius of T1, is less than 1, and
this condition is equivalent to (vi) of Theorem 5 below. However, we give a
complete proof of Theorem 5 since our methods are different; in particular,
we do not refer to any properties of points of the spectrum, and we add
some new equivalent conditions. After all, it seems Koliha’s result is not
well known. For example, it is not cited in the recent monograph [Em07]
though the following theorem of Räbiger [Rä93, Lemma 2.5] is given there
(cf. [Em07, p. 21]). (We denote by σπ(T ) the peripheral spectrum of T ; T is
called uniformly mean ergodic if the sequence (

∑n−1
k=0 T

k/n)n∈N of Cesàro
means uniformly converges in L(X).)

Theorem 3 (Räbiger). Let T ∈ L(X). Then (Tn)n∈N is uniformly con-
vergent if and only if T is uniformly mean ergodic and σπ(T ) ⊆ {1}.

Hence by the uniform ergodic theorem of Lin [Li74], we get the following
equivalence: (Tn)n∈N uniformly converges iff ‖Tn‖/n → 0, the subspace
(I−T )(X) is closed and σπ(T ) ⊆ {1}. Independently, Mbekhta and Zemánek
[MZ93, Cor. 3] proved the following result.

Theorem 4 (Mbekhta–Zemánek). Let T ∈ L(X). The following state-
ments are equivalent:

(i) (Tn)n∈N is uniformly convergent in L(X);
(ii) ‖Tn‖/n→ 0, (I − T )m(X) is closed for some m ∈ N and σ(T ) ∩ Γ
⊆ {1}, where Γ denotes the unit circle;

(iii) ‖Tn − Tn+1‖ → 0 and (I − T )m(X) is closed for some m ∈ N.

However, it seems that if an operator T is given explicitly, then it may
be inconvenient to use the above results in order to deduce the uniform sta-
bility of T . Thus, our second purpose is to demonstrate that in that case
Theorem 5 can be useful. In particular, as a consequence, we obtain Theo-
rem 6 (cf. Section 3) on the uniform convergence of iterates of some positive
linear operators on C(Ω), the space of all continuous functions on a com-
pact topological space Ω. Here we also give a formula for the operator T∞.
Theorem 6 generalizes and subsumes many results of other authors. In par-
ticular, it easily yields Theorem 1, the above mentioned theorem of Wenz
[We97, Theorem 7] for bivariate Bernstein polynomials over a triangle, a re-
sult of Oruç and Tuncer [OT02, Theorem 3.1] for the so-called q-Bernstein
operators introduced by Phillips [Ph97], and a theorem of Gonska and Piţul
[GP05, Theorem 3.2] for generalized Bernstein operators defined recently by
King [Ki03]. Moreover, a novelty here is Theorem 11 on the uniform conver-
gence of iterates of the Bernstein polynomials over the square, together with
a formula on the limit of iterates, which may easily be extended to the case
of polynomials over the N -cube.
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Finally, let us note that a spectral criterion for the uniform convergence
of (Tn)n∈N was also obtained by Li [Li86] (the paper in Chinese). (His result
is also mentioned in [LZ94].) However, at least the version of Li’s theorem
presented in the review [Ge86] seems to be incorrect. In particular, the author
claims that if (Tn)n∈N uniformly converges, then either r(T ) < 1 (in this case
T∞ = 0) or sup{|λ| : λ 6= 1, λ ∈ σ(T )} = 1. By compactness of σ(T ), the
latter condition implies the existence of λ0 ∈ σ(T ) and (λn)n∈N such that
λn 6= 1, λn ∈ σ(T ), λn → λ0 and |λ0| = 1. Then, by Theorem 2, λ0 = 1,
which yields a contradiction since the point 1, being a simple pole of Rλ(T ),
is an isolated point of σ(T ).

We denote by kerT the null space of T , and by FixT the subspace of all
fixed points of T . Throughout the paper, the notation X = Y ⊕ Z means X
is a topological direct sum of linear subspaces Y and Z; in particular, Y and
Z are then closed.

2. Uniform stability: Equivalent conditions. We start with the fol-
lowing auxiliary result.

Lemma 1. Let X be a linear space, X0 be a linear subspace of X, and T
be a linear operator on X. The following statements are equivalent :

(i) (I − T )(X) ⊆ X0;
(ii) T (x+X0) ⊆ x+X0 for any x ∈ X, i.e., every coset of the quotient

space X/X0 is T -invariant.

In particular , (I − T )(X) is T -invariant.

Proof. (i)⇒(ii): Let x ∈ X and x0 ∈ X0. Then

T (x+ x0) = x+ (x0 − (x− Tx)− (x0 − Tx0)),

which shows T (x+ x0) ∈ x+X0 since, by (i), x− Tx, x0 − Tx0 ∈ X0. Since
x0 ∈ X0 is arbitrary, we infer T (x+X0) ⊆ x+X0.

(ii)⇒(i): Let x ∈ X. Then Tx = T (x + 0) ∈ T (x + X0), so by (ii),
Tx ∈ x+X0, i.e., x− Tx ∈ X0.

The last statement follows from (i)⇒(ii) with X0 := (I − T )(X) and
x := 0.

We shall also need the following well known result (see, e.g., [Ko74, The-
orem 2.1]).

Lemma 2. Let T ∈ L(X). The following statements are equivalent :

(i) ‖Tn‖ → 0;
(ii) r(T ) < 1;
(iii) ‖T p‖ < 1 for some p ∈ N;
(iv) the series

∑∞
n=0 T

n is uniformly convergent.
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Moreover , if one (hence each) of the above conditions holds, then I − T is
an isomorphism of X onto X, and (I − T )−1 =

∑∞
n=0 T

n.

The main result of this section is the following.

Theorem 5. Let X be a Banach space and T be a bounded linear oper-
ator on X. The following statements are equivalent :

(i) (Tn)n∈N is convergent in the uniform topology of L(X);
(ii) there exists a linear subspace X0 of X such that

(3) (I − T )(X) ⊆ X0 and r(T |X0) < 1;

(iii) (I − T )(X) is a unique subspace satisfying (5);
(iv) (I − T )(X) is closed , X = (I − T )(X)⊕ FixT and ‖Tn − P‖ → 0,

where P is the projection of X onto FixT along (I − T )(X);
(v) ‖T p|(I−T )(X)‖ < 1 for some p ∈ N;
(vi) ‖Tnx− Tn+1x‖ → 0 uniformly with respect to x ∈ X such that

‖x− Tx‖ ≤ 1.

Proof. (i)⇒(ii): Set X0 := kerT∞. Since T∞ ◦ T = T∞, we infer
(I−T )(X)⊆X0. Clearly,X0 is closed and T -invariant, and by (i), (Tn|X0)n∈N
converges uniformly to 0. Hence by Lemma 2, r(T |X0) < 1.

(ii)⇒(iii): Let X0 be as in (ii). It suffices to show X0 = (I − T )(X).
Since, by Lemma 1, X0 is T -invariant, so is clX0 and r(T |clX0) = r(T |X0).
Hence we infer r(T |clX0) < 1, so by Lemma 2, (I−T )|clX0 is an isomorphism
of clX0 onto clX0. Thus we get

X0 ⊆ clX0 = (I − T )(clX0) ⊆ (I − T )(X) ⊆ X0,

which yields X0 = (I − T )(X).
(iii)⇒(iv): Clearly, if X0 satisfies (5), so does clX0. Hence by (iii), we

infer (I − T )(X) is closed. Set X0 := (I − T )(X). Claim: X = X0 + FixT .
By hypothesis, r(T |X0) < 1, so by Lemma 2, there is p ∈ N such that
‖T p|X0‖ < 1. Let x ∈ X. We shall show T p|x+X0 is a Banach contraction.
Clearly, x + X0 is closed, hence complete. Since by Lemma 1, x + X0 is
T -invariant, it is also T p-invariant. Now if y1, y2 ∈ x + X0, then for some
x1, x2 ∈ X0, we have

‖T py1 − T py2‖ = ‖T p(x+ x1)− T p(x+ x2)‖ = ‖T p(x1 − x2)‖
≤ ‖T p|X0‖‖x1 − x2‖ = ‖T p|X0‖ ‖y1 − y2‖.

Thus by the Banach Contraction Principle, FixT p|x+X0 = {z(x)} for some
z(x) ∈ x + X0, and Tnpy → z(x) for all y ∈ x + X0. In particular, since
x, Tx, . . . , T p−1x ∈ x+X0, the sequences (Tnpx), (Tnp+1x), . . . , (Tnp+p−1x)
converge to z(x) as n → ∞, which yields z(x) = limn→∞ T

nx. This means
x ∈ DT∞ and z(x) = T∞x; moreover, T∞x ∈ x +X0, i.e., x − T∞x ∈ X0.
Thus the equality x = (x−T∞x)+T∞x shows x ∈ X0 +FixT , which proves
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our claim. Furthermore, the above argument yields FixT∩(x+X0) = {T∞x}
for x ∈ X; in particular, FixT ∩X0 = {0}. So we infer X = X0 ⊕ FixT .

Now we shall show ‖Tn − P‖ → 0. We have proved that P = T∞, so
given n ∈ N, P = Tn ◦ P . Hence, for x ∈ X,

‖Tnx− Px‖ = ‖Tn(x− Px)‖ ≤ ‖Tn|X0‖ ‖I − P‖ ‖x‖,
so ‖Tn−P‖ ≤ ‖Tn|X0‖ ‖I−P‖. By hypothesis and Lemma 2, ‖Tn|X0‖ → 0,
so we infer (Tn)n∈N uniformly converges to P .

(iv)⇒(v): Let P be the projection as in (iv). Then (Tn − P )|(I−T )(X) =
Tn|(I−T )(X), so by (iv), ‖Tn|(I−T )(X)‖ → 0. By Lemma 2, (v) holds.

(v)⇒(vi): By Lemma 2, (v) implies that ‖Tn|(I−T )(X)‖ → 0, which
yields (vi).

Finally, it is obvious that (iv) implies (i), so conditions (i)–(iv) are all
equivalent. Thus, to complete the proof, it suffices to show (vi)⇒(ii). By
Lemma 2, we easily infer that (vi) implies r(T |(I−T )(X)) < 1, so (ii) holds
with X0 := (I − T )(X).

As an immediate consequence of Theorem 5, we get the following.

Corollary 1. Let X be a Banach space and T ∈ L(X). If there exists
a linear subspace X0 of X such that (I − T )(X) ⊆ X0 and ‖T p|X0‖ < 1 for
some p ∈ N, then X0 = (I−T )(X), X = X0⊕FixT and (Tn)n∈N uniformly
converges to the projection of X onto FixT along X0. Hence, for any x ∈ X,

(4) { lim
n→∞

Tnx} = FixT ∩ (x+X0).

Proof. By Lemma 2, r(T |X0) < 1. Hence by Theorem 5((iii)⇒(iv)), we
infer X0 = (I − T )(X), which together with (iii)⇒(v) shows that X =
X0 ⊕ FixT and (Tn)n∈N uniformly converges to the projection of X onto
FixT along X0. Hence, given x ∈ X, x = x0 +T∞x for some x0 ∈ X0, which
implies T∞x ∈ FixT ∩ (x +X0). Since FixT ∩ (x +X0) is a singleton, we
get (4).

3. Limits of iterates of some positive linear operators. In this
section we present an application of Corollary 1 to the study of asymptotic
behaviour of iterates of linear operators on the Banach space C(Ω), where
Ω is a compact topological space. The following theorem deals with a class
of some positive linear operators. (Recall that T ∈ L(C(Ω)) is positive if
Tf ≥ 0 whenever f ≥ 0.) In particular, we shall show that this class contains
multivariate Bernstein operators (with Ω being the standard N -simplex or
theN -cube) as well as some generalized Bernstein operators studied by many
authors. We denote by δkl Kronecker’s delta symbol.

Theorem 6. Let Ω be a compact Hausdorff topological space, m ∈ N
and a0, a1, . . . , am ∈ Ω be pairwise distinct. Let ϕ0, ϕ1, . . . , ϕm ∈ C(Ω) be
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nonnegative and such that
∑m

k=0 ϕk = 1. Set

(5) Tf :=
m∑
k=0

f(ak)ϕk for f ∈ C(Ω).

Assume that the set I := {i ∈ {0, 1, . . . ,m} : ‖ϕi‖ = 1} is nonempty , and
I = {i1, . . . , ip}, where i1 < · · · < ip. If

ϕik(aik) = 1 for k = 1, . . . , p and
p⋂

k=1

ϕ−1
ik

(0) = ∅,

then dim FixT = p, and there exists a basis {ψ1, . . . , ψp} for FixT such that
ψk(ail) = δkl for k, l ∈ {1, . . . , p}. Moreover , the sequence (Tn)n∈N uniformly
converges to the operator T∞ given by the following formula:

(6) T∞f =
p∑

k=1

f(aik)ψk for f ∈ C(Ω).

Proof. Set X := C(Ω) and X0 := {f ∈ X : f(aik) = 0 for k = 1, . . . , p}.
Clearly, codimX0 = p, because Ω is a normal space. Observe that we have
(I − T )(X) ⊆ X0. Indeed, let f ∈ X and k ∈ {1, . . . , p}. Then

((I − T )f)(aik) =
p∑
j=0

(f(aik)− f(aj))ϕj(aik).

Since ϕik(aik) = 1 and
∑p

j=0 ϕj = 1, we get ϕj(aik) = 0 for j 6= ik. Thus
((I − T )f)(aik) = 0, which means (I − T )f ∈ X0.

We shall show ‖T |X0‖ < 1. If p = m + 1, then T |X0 = 0. So let p ≤ m
and f ∈ X0. Then

|(Tf)(t)| ≤
∑

j∈{0,...,N}\{i1,...,ip}

|f(aj)|ϕj(t) ≤ ‖f‖
(
1−

p∑
k=1

ϕik(t)
)

≤ ‖f‖
(
1−

p∑
k=1

ϕik(t0)
)

for some t0 ∈ Ω since the function t 7→ 1 −
∑p

k=1 ϕik(t) attains its max-
imum on Ω. Set α := 1 −

∑p
k=1 ϕik(t0). Clearly, α ≥ 0, and α < 1 since⋂

i∈I ϕ
−1
i (0) = ∅. Hence T |X0 is an α-contraction.

Thus by Corollary 1, (Tn)n∈N uniformly converges, limn→∞ T
nf ∈ f+X0

for f ∈ X, and X = X0 ⊕FixT . Since codimX0 = p, we get dim FixT = p.
Since Ω is normal, by the Urysohn Lemma there exist g1, . . . , gp ∈ X such
that gk(ail) = δkl for k, l ∈ {1, . . . , p}. Set

ψk := T∞gk for k = 1, . . . , p.
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Clearly, ψ1, . . . , ψp ∈ FixT , and since ψk ∈ gk + X0, ψk(ail) = gk(ail) =
δkl, so we infer ψ1, . . . , ψp are linearly independent. Thus {ψ1, . . . , ψp} is a
basis for FixT since dim FixT = p. Now if f ∈ X, then, by (4), {T∞f} =
FixT ∩ (f +X0). On the other hand, it is easily seen that

∑p
k=1 f(aik)ψk ∈

FixT ∩ (f +X0), which yields (6).

Remark 1. Observe that under the assumptions of Theorem 6, if J is
a nonempty subset of I such that

⋂
j∈J ϕ

−1
j (0) = ∅, then J = I. Indeed,

suppose that, on the contrary, there exists i ∈ I \ J . Then ϕi(a) = 1 for
some a ∈ Ω, so

∑
k 6=i ϕk(a) = 0; in particular, ϕj(a) = 0 for each j ∈ J ,

which yields a contradiction.

Remark 2. As observed by the referee, it is possible to give another
proof of Theorem 6. Namely, it is easy to see that the uniform covergence
of (Tn)n∈N is equivalent to the covergence of the powers of the following
matrix:

P := (ϕj(ai))mi,j=0,

which is a stochastic (in rows) matrix. Necessary and sufficient conditions
for the convergence of (Pn)n∈N are well known (see, e.g., [Ga59, Chapter 13])
and can be applied here. Actually, such an approach was also used in [KR67,
OT02, We97], but in those papers it led to arduous calculations. Our method
is more abstract and it seems to be simpler.

Corollary 2. Let a0, a1, . . . , am ∈ [0, 1] be such that 0 = a0 < a1 <
· · · < am = 1. Assume that ϕ0, ϕ1, . . .ϕm ∈ C[0, 1] are nonnegative and such
that

m∑
k=0

ϕk = 1, ϕ0(0) = ϕm(1) = 1 and ϕ−1
0 (0) ∩ ϕ−1

m (0) = ∅.

Let T be defined by (5). Then there is a unique function ψ ∈ FixT such
that ψ(0) = 0 and ψ(1) = 1; moreover , (Tn)n∈N uniformly converges to the
operator T∞ given by the following formula:

(7) (T∞f)(t) = f(0) + (f(1)− f(0))ψ(t) for f ∈ C[0, 1] and t ∈ [0, 1].

In particular , if Te1 = e1 where e1 := id[0,1], then

(T∞f)(t) = f(0) + (f(1)− f(0))t.

Proof. Let I be the set as in Theorem 6. By hypothesis and Remark 1,
I = {0,m}. Since ϕ0(a0) = ϕm(am) = 1, we infer in view of Theorem 6 that
dim FixT = 2, and there is a basis {ψ1, ψ2} for FixT such that ψ1(0) =
ψ2(1) = 1 and ψ1(1) = ψ2(0) = 0. Let e0(t) := 1 for t ∈ [0, 1]. Then e0 ∈
FixT since Te0 =

∑m
k=0 ϕk = 1. Moreover, {e0, ψ2} is linearly independent,

so FixT = span(e0, ψ2) since dim FixT = 2. Hence ψ1 ∈ span(e0, ψ2), from
which we infer ψ1 = e0 − ψ2. Set ψ := ψ2. Then ψ has all the properties we
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need, and by (6), we obtain T∞f = f(0)(e0 − ψ) + f(1)ψ, i.e., (7) holds.
Finally, if η ∈ FixT is such that η(0) = 0 and η(1) = 1, then η = T∞η =
η(0) + (η(1)− η(0))ψ = ψ, which shows the uniqueness of ψ.

In what follows we discuss some consequences of Theorem 6. We start
with a proof of the Kelisky–Rivlin theorem via Corollary 2.

Proof of Theorem 1. For k = 0, 1, . . . ,m and t ∈ [0, 1], set

ak :=
k

m
and ϕk(t) :=

(
m

k

)
tk(1− t)m−k.

In particular, ϕ0(t) = (1 − t)m and ϕm(t) = tm, so it is clear that the
assumptions of Corollary 2 are satisfied. Moreover, since Bme1 = e1, the last
statement of Corollary 2 yields (2). �

Corollary 2 also generalizes [AR03, Theorem 4] in which the authors use
the assumptions

∑m
k=0 akϕk(t) = t (this means Te1 = e1), and min{ϕ0(t) +

ϕm(t) : t ∈ [0, 1]} > 0, which is equivalent to ϕ−1
0 (0) ∩ ϕ−1

m (0) = ∅.
Now we turn our attention to the so-called q-Bernstein operators Bm,q

(q ∈ (0,∞)) introduced by Phillips [Ph97]. For f ∈ C[0, 1] and t ∈ [0, 1], we
set

(Bm,qf)(t) :=
m∑
k=0

f

(
[k]q
[m]q

)[
m

k

]
q

tk
m−k−1∏
s=0

(1− qst),

where [k]q := 1+q+· · ·+qk−1 for k > 0, [0]q := 0 and
[m
k

]
q
is the q-binomial

coefficient defined by[
m

k

]
q

:=
[m]q[m− 1]q . . . [m− (k − 1)]q

[1]q[2]q . . . [k]q
if 1 ≤ k ≤ m,

and
[m

0

]
q

:= 1. Moreover,
∏−1
s=0(· · · ) denotes 1. Clearly, [k]1 = k and

[m
k

]
1

=(
m
k

)
, so the classical Bernstein operator coincides with Bm,q when q = 1. It

turns out that the Kelisky–Rivlin theorem can be extended to q-Bernstein
operators according to [OT02, Theorem 3.1].

Theorem 7 (Oruç–Tuncer). Let q be a positive real number , m ∈ N,
f ∈ C[0, 1] and t ∈ [0, 1]. Then the sequence ((Bn

m,qf)(t))n∈N converges and

(8) lim
n→∞

(Bn
m,qf)(t) = f(0) + (f(1)− f(0))t.

Observe that for q ∈ (0, 1], the conclusion of Theorem 7 can easily be
derived from Corollary 2. Indeed, set

ak :=
[k]q
[m]q

and ϕk(t) :=
[
m

k

]
q

tk
m−k−1∏
s=0

(1− qst)
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for k = 0, . . . ,m and t ∈ [0, 1]. Then Bm,qf =
∑m

k=0 f(ak)ϕk. Since q ∈ (0, 1],
all ϕk are nonnegative. It was shown in [Ph97] that Bm,qei = ei for i = 0, 1.
Thus Bm,qe0 = e0 yields

∑m
k=0 ϕk = 1. Since

ϕ0(t) = (1− t)(1− qt) . . . (1− qm−1t) and ϕm(t) = tm,

we infer that all the assumptions of Corollary 2 are satisfied, so (8) holds.
Moreover, the sequence (Bn

m,q)n∈N is uniformly convergent.
Now we show that Corollary 2 yields yet another generalization of the

Kelisky–Rivlin theorem given by Gonska and Piţul [GP05, Theorem 3.2]. For
m ∈ N, we consider the following operator Vm on C[0, 1] defined by King
[Ki03]:

(Vmf)(t) :=
m∑
k=0

f

(
k

m

)(
m

k

)
(rm(t))k(1− rm(t))m−k,

where rm : [0, 1] → [0, 1] is a continuous function. Clearly, Vm = Bm when
rm = id[0,1].

Theorem 8 (Gonska–Piţul). Given m ∈ N, define the function r∗m by

r∗m(t) :=
{
t2 if m = 1,
1− 1/(2m− 2) + [(m/(m− 1))t2 + 1/(2m− 2)2]1/2 if m ≥ 2.

Denote by Vm,∗ the corresponding operator Vm. Then, for any f ∈ C[0, 1]
and t ∈ [0, 1], the sequence ((V n

m,∗f)(t))n∈N converges and

(9) lim
n→∞

(V n
m,∗f)(t) = f(0) + (f(1)− f(0))t2.

Observe that r∗m(0) = 0 and r∗m(1) = 1. Now, with the help of Corollary 2,
we may easily generalize Theorem 8 in the following way.

Theorem 9. Given m ∈ N, assume that a function rm is such that
rm(0) = 0 and rm(1) = 1. Then the sequence (V n

m)n∈N uniformly converges,
and there exists a unique function ψ ∈ FixVm such that ψ(0) = 0 and
ψ(1) = 1. Moreover , for any f ∈ C[0, 1] and t ∈ [0, 1],

(10) lim
n→∞

(V n
mf)(t) = f(0) + (f(1)− f(0))ψ(t).

In particular , ψ(t) = t2 if rm = r∗m.

Proof. Set ak := k/m and ϕk(t) :=
(
m
k

)
(rm(t))k(1 − rm(t))m−k for

k = 0, . . . ,m. Clearly, all ϕk are nonnegative and
∑m

k=0 ϕk = 1. Since
ϕ0(t) = (1 − rm(t))m and ϕm(t) = (rm(t))m, in view of the hypothesis ϕ0

and ϕm satisfy the assumptions of Corollary 2. Hence (V n
m)n∈N is uniformly

convergent and (10) holds. Moreover, if rm = r∗m, then e2 ∈ FixVm, where
e2(t) := t2 (see [Ki03]). Since e2(0) = 0 and e2(1) = 1, Corollary 2 yields
ψ = e2.
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Now we consider the bivariate Bernstein polynomials over a triangle,
which were introduced by Lorentz [Lo53]. Let 4 be the standard triangle
in R2, i.e.,

4 := {(s, t) : s, t ≥ 0 and s+ t ≤ 1}.
For m ∈ N, f ∈ C(4) and (s, t) ∈ 4, define

Bm,4f :=
m∑
i=0

m−i∑
j=0

f(i/m, j/m)ϕij ,

where ϕij(s, t) := m!/(i!j!(m−i−j)!)sitj(1−s−t)m−i−j . The following result
was proved by Chang and Feng [CF86] (cf. also [CF93], [AA96], [We97]).

Theorem 10. For any m ∈ N, the sequence (Bn
m,4)n∈N strongly con-

verges to the operator B∞4 (independent of m) given by the following formula
for f ∈ C(4) and (s, t) ∈ 4:

(11) (B∞4 f)(s, t) = f(0, 0) + (f(1, 0)− f(0, 0))s+ (f(0, 1)− f(0, 0))t.

As already mentioned, all known proofs of Theorem 10 require rather
hard calculations. Now we shall show that Theorem 10 can easily be derived
from Theorem 6. In particular, the sequence (Bn

m,4)n∈N uniformly converges
to B∞4 , which improves Theorem 10. Clearly, Bm,4 can be put down in the
form (5), but it will be more convenient to work with double indices, so we
shall identify elements of I defined in Theorem 6 with some pairs (i, j).

Proof of Theorem 10. Set ai,j := (i/m, j/m) for i = 0, . . . ,m and j =
0, . . . ,m− i. It is well known that

(12) Bm,4fi = fi for i = 1, 2, 3,

where f1(s, t) := 1, f2(s, t) := s and f3(s, t) := t (cf. [Lo53]). Hence Bm,4f1

= f1 yields
∑m

i=0

∑m−i
j=0 ϕij = 1. Since ϕ00(s, t) = (1−s−t)m, ϕm0(s, t) = sm

and ϕ0m(s, t) = tm, we infer (0, 0), (m, 0), (0,m) ∈ I and ϕ−1
00 (0) ∩ ϕ−1

m0(0) ∩
ϕ−1

0m(0) = ∅. Consequently, by Remark 1,

I = {(0, 0), (m, 0), (0,m)}.
Moreover, ϕ00(a00) = ϕm0(am0) = ϕ0m(a0m) = 1, so by Theorem 6,
FixBm,4 is 3-dimensional, and there is a basis {ψ1, ψ2, ψ3} for FixBm,4
(which coincides with span(f1, f2, f3) in view of (12)) such that ψ1(0, 0) =
ψ2(1, 0) = ψ3(0, 1) = 1, and each of these functions vanishes at the remain-
ing vertices of 4. Hence we easily find that ψ1(s, t) = 1− s− t, ψ2(s, t) = s
and ψ3(s, t) = t for (s, t) ∈ 4, so (11) follows immediately from (6).

Remark 3. The above argument can easily be adapted to the case of
the Bernstein operator Bm,S , where S is the standard N -simplex. In this
case dim FixBm,S = N + 1 and given f ∈ C(S), B∞S f is the linear function
interpolating f at each vertex of S.
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Finally, we consider the tensor product Bernstein operators (cf. [Lo53,
p. 51]). Recall that the bivariate tensor product Bernstein operator Bl⊗Bm
is defined on C([0, 1]2) by

((Bl ⊗Bm)f)(s, t) :=
l∑

i=0

m∑
j=0

f(i/l, j/m)
(
l

i

)(
m

j

)
si(1− s)l−itj(1− t)m−j .

It seems that the asymptotic behaviour of the iterates of Bl ⊗ Bm has not
been studied yet. Now we give a formula for the limit of the iterates.

Theorem 11. For any l,m ∈ N, the sequence ((Bl⊗Bm)n)n∈N uniformly
converges to the operator L (independent of l and m) given by the following
formula for f ∈ C([0, 1]2) and s, t ∈ [0, 1]:

(Lf)(s, t) = f(0, 0) + (f(1, 0)− f(0, 0))s+ (f(0, 1)− f(0, 0))t(13)
+ (f(0, 0) + f(1, 1)− f(1, 0)− f(0, 1))st.

Proof. For i = 0, 1, . . . , l and j = 0, 1, . . . ,m, set aij := (i/l, j/m), and

ϕij(s, t) :=
(
l

i

)(
m

j

)
si(1− s)l−itj(1− t)m−j .

Then
∑l

i=0

∑m
j=0 ϕij = 1 and (Bl⊗Bm)f =

∑l
i=0

∑m
j=0 f(aij)ϕij . Consider

the following four functions:

ϕ00(s, t) = (1− s)l(1− t)m, ϕl0(s, t) = sl(1− t)m,
ϕlm(s, t) = sltm, ϕ0m(s, t) = (1− s)ltm.

Then ϕ00(a00) = ϕl0(al0) = ϕlm(alm) = ϕ0m(a0m) = 1 and the four func-
tions have no common zero. By Remark 1, I = {(0, 0), (l, 0), (l,m), (0,m)},
so Theorem 6 yields dim FixBl ⊗Bm = 4. For s, t ∈ [0, 1], set

f1(s, t) := 1, f2(s, t) := s, f3(s, t) := t, f4(s, t) := st.

Then {f1, f2, f3, f4} is a basis for FixBl ⊗ Bm. For i = 1, 2, 3, 4, let ψi be
the function as in Theorem 6. Then ψi ∈ span(f1, f2, f3, f4) and hence, after
simple calculations, we get

ψ1(s, t) = 1− s− t+ st, ψ2(s, t) = s− st,
ψ3(s, t) = st, ψ4(s, t) = t− st.

Now (13) follows directly from (6).

The above argument can easily be carried over to the case of the tensor
product Bernstein operators on C([0, 1]N ) for any N ∈ N. Then, as the
reader may verify, we get the following formula for the limit L of iterates of
this operator:

(Lf)(t1, . . . , tN ) =
∑

(ε1,...,εN )∈V

f(ε1, . . . , εN )pε1(t1) . . .pεN (tN ),
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where f ∈ C([0, 1]N ), t1, . . . , tN ∈ [0, 1], V := {0, 1}{1,...,N}, and for s ∈ [0, 1],
p0(s) := 1− s and p1(s) := s.
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