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Dimensions of non-differentiability points of
Cantor functions

by

Yuanyuan Yao, Yunxiu Zhang and Wenxia Li (Shanghai)

Abstract. For a probability vector (p0, p1) there exists a corresponding self-similar
Borel probability measure µ supported on the Cantor set C (with the strong separation
property) in R generated by a contractive similitude hi(x) = aix + bi, i = 0, 1. Let S
denote the set of points of C at which the probability distribution function F (x) of µ
has no derivative, finite or infinite. The Hausdorff and packing dimensions of S have been
found by several authors for the case that pi > ai, i = 0, 1. However, when p0 < a0 (or
equivalently p1 < a1) the structure of S changes significantly and the previous approaches
fail to be effective any more. The present paper is devoted to determining the Hausdorff
and packing dimensions of S for the case p0 < a0.

1. Introduction. Let C ⊂ R be the unique nonempty compact set
invariant under h0, h1:

C = h0(C) ∪ h1(C),

where hj(x) = ajx+ bj , j = 0, 1, with 0 < aj < 1. The set C is also termed
the Cantor set, or the self-similar set determined by h0 and h1. Without
loss of generality we shall assume that b0 = 0, a1 + b1 = 1 (so h0(0) = 0 and
h1(1) = 1). We furthermore assume that the images hj([0, 1]), j = 0, 1, are
pairwise disjoint (i.e. the hj ’s satisfy the strong separation condition). Let

β = 1− a0 − a1 > 0

be the length of the gap between h0([0, 1]) and h1([0, 1]). It is well known
(cf. [4, 6]) that dimHC = dimPC = dimBC = ξ and 0 < Hξ(C) <∞ where
ξ is given by

(1) aξ0 + aξ1 = 1.

The set C has a natural symbolic representation defined as follows. Let
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Σ∗ =
∞⋃
n=1

{0, 1}n and ΣN = {0, 1}N,

i.e. Σ∗ is the family of all finite strings j1 . . . jn with entries ji from {0, 1}
and ΣN denotes the family of all infinite strings j1j2 . . . with entries ji from
{0, 1}. For ω = j1j2 . . . ∈ ΣN and a positive integer n, let ω|n = j1 . . . jn
denote the truncation of ω to the nth place. Finally, we define π : ΣN → C
by

{π(ω)} =
∞⋂
n=1

hj1 ◦ · · · ◦ hjn([0, 1])

for ω = j1j2 . . . ∈ ΣN. It is easy to check that for ω = j1j2 . . . ∈ ΣN,

π(ω) = lim
n→∞

hω|n(0) = bj1 +
∞∑
n=2

aj1 . . . ajn−1bjn ,

where b0 = 0 and b1 = 1− a1. It is well known that C can be symbolically
represented as C = π(ΣN). Thus, each point of C can be encoded by a
unique element from ΣN. Throughout this paper, by t̃ = t1t2 . . . we denote
the code of t ∈ C, i.e., t̃ = t1t2 . . . ∈ ΣN with π(t̃) = t. Alternatively, we
have

C =
∞⋂
n=1

⋃
ω∈{0,1}n

hω([0, 1]),

where hω := hj1 ◦ · · · ◦ hjn for ω = j1 . . . jn ∈ {0, 1}n. The endpoints of
hω([0, 1]) for ω ∈ Σ∗ will be called the endpoints of C. Obviously any
endpoint e of C lies in C and except for a finite number of terms, its coding
ẽ consists of either only the digit 0 if e is the left endpoint of some hω([0, 1]),
or only the digit 1 if e is the right endpoint of some hσ([0, 1]). Moreover,
for each non-endpoint t of C its code t̃ consists of infinitely many 0s and
infinitely many 1s.

Let µ be the self-similar Borel measure on C corresponding to the prob-
ability vector (p0, p1) where each pi > 0 and p0 + p1 = 1, i.e., the measure
satisfying

µ(A) = p0µ(h−1
0 (A)) + p1µ(h−1

1 (A)) for any Borel set A,

and so

µ(hω[0, 1]) =
k∏
i=1

pji =: pω for any ω = j1 . . . jk ∈ {0, 1}k, k ∈ N.

Obviously, µ is atomless. Consider the distribution function of the prob-
ability measure µ, also called the Cantor function or a self-affine “devil’s
staircase” function:

F (x) = µ([0, x]), x ∈ [0, 1].
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Then F (x) is a non-decreasing continuous function with F (0) < F (1) that
is constant off the support of µ. It is easy to check that the derivative
of F (x) is zero for all x ∈ [0, 1] \ C. In particular, the set S of points of
non-differentiability of F (x), that is, those x where

(2) lim
δ→0

F (x+ δ)− F (x)
δ

does not exist either as a finite number or ∞, has Lebesgue measure 0. It
has been shown that F ′(x) = ∞ for µ-a.e. x ∈ C and so µ(S) = 0 (cf. [8]).
Some further results on the size of S have also been obtained.

(I) When (p0, p1) = (aξ0, a
ξ
1), we have dimH S = ξ2 = (dimHC)2 and

dimP S = dimB S = ξ = dimHC (cf. [1–3]). In this case, the corresponding µ
is ξ-Ahlfors regular, which means that there exist c1, c2 > 0 such that c1δξ ≤
µ([x − δ, x + δ]) ≤ c2δ

ξ for all x ∈ C and 0 < δ < 1. This curious property
is extended to a more general setting. K. J. Falconer [5] proved that for
0 < d < 1 if µ is a positive finite Borel d-Ahlfors regular measure supported
by a non-empty compact subset E of R (not necessarily the Cantor set),
then dimH S = (dimHE)2 and dimP S = dimB S = dimHE.

(II) When (p0, p1) satisfies p0 > a0 and p1 > a1 (so µ is not Ahlfors
regular except in a special case), dimP S = dimB S = ξ = dimHC still holds
and another approach has to be taken to determine dimH S (cf. [7, 9]).
In particular, when p0 = a0/(a0 + a1) and p1 = a1/(a0 + a1), dimH S was
found by J. Morris [10].

Clearly, case (I) is included in case (II) since pi = aξi > ai, i = 0, 1. The
condition pi > ai, i = 0, 1, implies that (cf. [9])

(3) lim sup
δ→0

F (x+ δ)− F (x)
δ

=∞ for all x ∈ C.

Thus, we have

S =
{
x ∈ C : lim inf

δ→0

F (x+ δ)− F (x)
δ

<∞
}

if p0 > a0, p1 > a1.

In particular,

(4)
{
x ∈ C : F ′(x) = lim

δ→0

F (x+ δ)− F (x)
δ

= 0
}

= ∅ if p0 > a0, p1 > a1.

However, when p0 < a0 and p1 > a1 (or p0 > a0 and p1 < a1), the property
(3) does not hold any more. This makes the structure of S more complicated,
e.g., compared to (4); we will see in Theorem 1.1 that there are massive
sets of points of C at which the derivative is zero in this case, and so the
approaches used in the papers mentioned above are not valid any more.
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The present paper is devoted to determining the fractal dimensions of S
for the case p0 < a0 and p1 > a1. Let s be such that

(5)
(
p0

a0

)(
p1

a1

)s
= 1, i.e., s =

log(a0/p0)
log(p1/a1)

> 0.

We remark that s can take any positive value when p0 varies in (0, a0). Let
C̃ = C \ {the endpoints of C}. Since the Cantor set C has only countably
many endpoints, removing the endpoints of C from S does not affect the size
of S. In the following, we still use the notation S to denote the non-endpoints
of C for which (2) does not exist either as a finite number or ∞. For t ∈ C̃,
let

Nn(t, 0) = #{1 ≤ l ≤ n : tl = 0} and Nn(t, 1) = #{1 ≤ l ≤ n : tl = 1}
where, as mentioned above, t̃ = t1t2 . . . ∈ ΣN is the code of t. We will first
show that{

t ∈ C̃ : lim inf
n→∞

Nn(t, 0)
n

<
1

s+ 1
< lim sup

n→∞

Nn(t, 0)
n

}
⊆ S

⊆
{
t ∈ C̃ : lim inf

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

}
.

By applying the results on divergence points in [11, 12] we obtain the fol-
lowing theorems.

Theorem 1.1. Let p0 < a0 and p1 > a1. Let s and ξ be defined as in
(5) and (1). Let

S0 = {t ∈ C : F ′(t) = 0} and S∞ = {t ∈ C : F ′(t) =∞}.
Then C = S ∪ S0 ∪ S∞, and

dimH S0 ≥ max
p∈[(s+1)−1,1]

p log p+ (1− p) log(1− p)
p log a0 + (1− p) log a1

,

dimH S∞ ≥ max
p∈[0,(s+1)−1]

p log p+ (1− p) log(1− p)
p log a0 + (1− p) log a1

.

In particular , dimH S0 =ξ if (s+1)−1≤aξ0, and dimH S∞=ξ if (s+1)−1 ≥ aξ0.

Theorem 1.2. Let p0 < a0 and p1 > a1. Let s and ξ be defined as in
(5) and (1). If 1/(s+ 1) ≤ aξ0, then

dimH S =
s log s− (s+ 1) log(s+ 1)

log a0 + s log a1
, dimP S = ξ.

2. Proofs. In this section, we prove Theorems 1.1 and 1.2. We first
characterize S by analyzing for each t ∈ S the behavior of Nn(t, 0)/n, the
frequency of the digit 0 occurring in the first n terms of the code of t. The
desired results are then obtained by applying the results from [11, 12]. For
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t ∈ C̃, we denote by z(t, n) the position of the nth occurrence of 0 in t̃
(recall we use t̃ to denote the code of t) and by y(t, n) the position of the
nth occurrence of 1 in t̃. Since t ∈ C̃ (the non-endpoint of C), we have
n ≤ z(t, n), y(t, n) <∞ and limn→∞ y(t, n) = limn→∞ z(t, n) =∞.

Lemma 2.1. For each t ∈ C̃ we have

lim sup
n→∞

Nn(t, 0)
n

= lim sup
n→∞

n

z(t, n)
, lim inf

n→∞

Nn(t, 0)
n

= lim inf
n→∞

n

z(t, n)
,

lim sup
n→∞

Nn(t, 1)
n

= lim sup
n→∞

n

y(t, n)
, lim inf

n→∞

Nn(t, 1)
n

= lim inf
n→∞

n

y(t, n)
.

Proof. It is obvious that

lim sup
n→∞

Nn(t, 0)
n

≥ lim sup
n→∞

Nz(t,n)(t, 0)
z(t, n)

= lim sup
n→∞

n

z(t, n)
,(6)

lim inf
n→∞

Nn(t, 0)
n

≤ lim inf
n→∞

Nz(t,n)(t, 0)
z(t, n)

= lim inf
n→∞

n

z(t, n)
,(7)

On the other hand, note that z(t,Nn(t, 0)) ≤ n < z(t,Nn(t, 0) + 1) for all
n ∈ N. Thus, for all n ∈ N,

Nn(t, 0)
z(t,Nn(t, 0) + 1)

<
Nn(t, 0)

n
≤ Nn(t, 0)
z(t,Nn(t, 0))

.

Noting that limn→∞Nn(t, 0) =∞, this gives the opposite inequalities in (6)
and (7). The other two equalities can be deduced in the same way.

From Lemma 2.1 it follows that for each t ∈ C̃,

lim sup
n→∞

z(t, n)
n

> s+ 1 if and only if lim inf
n→∞

y(t, n)
n

<
s+ 1
s

,(8)

lim sup
n→∞

z(t, n)
n

< s+ 1 if and only if lim inf
n→∞

y(t, n)
n

>
s+ 1
s

.(9)

In fact, with the convention 0−1 =∞, ∞−1 = 0 and by Lemma 2.1 we have

lim sup
n→∞

z(t, n)
n

=
(

lim inf
n→∞

n

z(t, n)

)−1

=
(

lim inf
n→∞

Nn(t, 0)
n

)−1

=
(

1− lim sup
n→∞

Nn(t, 1)
n

)−1

=
(

1− lim sup
n→∞

n

y(t, n)

)−1

=
(

1− 1
lim infn→∞ y(t, n)/n

)−1

,

which leads to (8) and (9).
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Lemma 2.2. For each t ∈ C̃ we have

lim inf
n→∞

y(t, n)
n

>
s+ 1
s

⇒ lim
x→t

F (x)− F (t)
x− t

= 0,(I)

lim inf
n→∞

y(t, n)
n

<
s+ 1
s

⇒ lim sup
x→t

F (x)− F (t)
x− t

=∞,(II)

lim sup
n→∞

y(t, n)
n

>
s+ 1
s

⇒ lim inf
x→t

F (x)− F (t)
x− t

= 0.(III)

Proof. (I) If lim infn→∞ y(t, n)/n > (s+ 1)/s, then there exist ε > 0 and
k ∈ N such that

(10) y(t, n) > n

(
1 +

1
s

)
+ nε for n ≥ k.

Let u be the distance between t and [0, 1]\
⋃
ω∈{0,1}l hω([0, 1]) with l = y(t, k).

Then u > 0. Let x be a point in (t−u, t). Then t, x ∈ ht̃|(y(t,n)−1)([0, 1]), but
x 6∈ ht̃|y(t,n)([0, 1]) with some n > k. Therefore (recall that β = 1− a0− a1),

F (x)− F (t)
x− t

≤
∏y(t,n)−1
i=1 pti

β
∏y(t,n)−1
i=1 ati

=
a1

βp1

(
p1

a1

)n(p0

a0

)y(t,n)−n
≤ a1

βp1

(
p0

a0

)nε
,

by (10). Hence limx↑t (F (x)− F (t))/(x− t) = 0.
On the other hand, by (9) there exist ε > 0 and k ∈ N such that

(11) z(t, n) < n(s+ 1)− nε for n ≥ k.
Let u be the distance between t and [0, 1]\

⋃
ω∈{0,1}l hω([0, 1]) with l = z(t, k).

Then u > 0. Let x be a point in (t, t+u). Then t, x ∈ ht̃|(z(t,n)−1)([0, 1]), but
x 6∈ ht̃|z(t,n)([0, 1]) for some n > k. Therefore,

F (x)− F (t)
x− t

≤
∏z(t,n)−1
i=1 pti

β
∏z(t,n)−1
i=1 ati

=
a0

βp0

(
p0

a0

)n(p1

a1

)z(t,n)−n
≤ a0

βp0

(
p1

a1

)−nε
,

by (11). Hence limx↓t (F (x)− F (t))/(x− t) = 0.
(II) If lim infn→∞ y(t, n)/n < (s+ 1)/s, then there exist ε > 0 and a

sequence {nk}k≥1 of integers with nk ↑ ∞ such that

(12) y(t, nk) < nk

(
1 +

1
s

)
− nkε.

Now take xk as the left endpoint of the interval ht̃|(y(t,nk)−1)([0, 1]). Then,
by (12),

F (xk)− F (t)
xk − t

≥
p0
∏y(t,nk)−1
i=1 pti∏y(t,nk)−1

i=1 ati
=
pnk−1
1 p

y(t,nk)−nk+1
0

ank−1
1 a

y(t,nk)−nk
0

≥ a1p0p
−1
1

(
p0

a0

)−nkε

,
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which gives lim supδ↑0 (F (t+ δ)− F (t))/δ = ∞. On the other hand, by (8)
there exist ε > 0 and a sequence {nk}k≥1 of integers with nk ↑ ∞ such that

z(t, nk) > nk(s+ 1) + nkε.

By letting xk be the right endpoint of the interval ht̃|(z(t,nk)−1)([0, 1]) we
have

F (xk)− F (t)
xk − t

≥
p1
∏z(t,nk)−1
i=1 pti∏z(t,nk)−1

i=1 ati
=
pnk−1
0 p

z(t,nk)−nk+1
1

ank−1
0 a

z(t,nk)−nk
1

≥ a0p1p
−1
0

(
p1

a1

)nkε

,

yielding lim supδ↓0 (F (t+ δ)− F (t))/δ =∞.
(III) This can be proved in the same way as in (II). The details are left

to the reader.

From Lemma 2.2 it follows that{
t ∈ C̃ : lim inf

n→∞

y(t, n)
n

<
s+ 1
s

< lim sup
n→∞

y(t, n)
n

}
⊆ S

⊆
{
t ∈ C̃ : lim inf

n→∞

y(t, n)
n

≤ s+ 1
s

}
,

and so

(13)
{
t ∈ C̃ : lim inf

n→∞

Nn(t, 0)
n

<
1

s+ 1
< lim sup

n→∞

Nn(t, 0)
n

}
⊆ S

⊆
{
t ∈ C̃ : lim inf

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

}
,

by Lemma 2.1. For a sequence {xn} in a metric space X, we let A({xn})
denote the set of accumulation points of the sequence {xn}, i.e.,

A({xn}) = {x ∈ X : there exists a subsequence {xnk
} such that xnk

→ x}.

The following lemma is well known.

Lemma 2.3. If a sequence {xn} is bounded and limn→∞(xn+1−xn) = 0,
then

A({xn}) = [lim inf
n→∞

xn, lim sup
n→∞

xn].

Now we analyze the set of accumulation points of {Nn(t, 0)/n}n≥1 for
each t ∈ C̃. For a fixed t ∈ C̃, note that either Nn+1(t, 0) = Nn(t, 0) or
Nn+1(t, 0) = Nn(t, 0) + 1. Hence, for any n ∈ N, we have

− 1
n+ 1

≤ Nn+1(t, 0)
n+ 1

− Nn(t, 0)
n

≤ 1
n+ 1

.
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From Lemma 2.3 it follows that

(14) A

({
Nn(t, 0)

n

})
=
[
lim inf
n→∞

Nn(t, 0)
n

, lim sup
n→∞

Nn(t, 0)
n

]
.

The following lemma is a direct application of the results in [11, Theorem 2]
and [12, Corollary 2.4] by Olsen.

Lemma 2.4 (cf. [11, Theorem 2], [12, Corollary 2.4 ]). For si ∈ [0, 1],
i = 1, 2, 3, with s1 ≤ s2 let

As1,s2 =
{
t ∈ C̃ : lim inf

n→∞

Nn(t, 0)
n

≤ s1 ≤ s2 ≤ lim sup
n→∞

Nn(t, 0)
n

}
,

Bs3 =
{
t ∈ C̃ : lim sup

n→∞

Nn(t, 0)
n

≤ s3
}
.

Then

dimHAs1,s2 = inf
p∈[s1,s2]

p log p+ (1− p) log(1− p)
p log a0 + (1− p) log a1

,

dimPAs1,s2 = ξ,

dimHBs3 = sup
p∈[0,s3]

p log p+ (1− p) log(1− p)
p log a0 + (1− p) log a1

.

Proof. Let E1 = {(p, 1 − p) : p ∈ [s1, s2]}, F1 = {(p, 1 − p) : p ∈ [0, 1]}
and F2 = {(p, 1− p) : p ∈ [0, s3]}. Then, by (14) and Lemma 2.3, we have

As1,s2 =
{
t ∈ C̃ : E1 ⊂ A

({
Nn(t, 0)

n
,
Nn(t, 1)

n

})
⊆ F1

}
=: D(E1, F1),

and

Bs3 =
{
t ∈ C̃ : A

({
Nn(t, 0)

n
,
Nn(t, 1)

n

})
⊆ F2

}
=: D(∅, F2).

However, L. Olsen [11, Theorem 2(1), (2)] proved (in a more general setting)
that

dimHD(E1, F1) = inf
(p,1−p)∈E1

p log p+ (1− p) log(1− p)
p log a0 + (1− p) log a1

,

dimHD(∅, F2) = sup
(p,1−p)∈F2

p log p+ (1− p) log(1− p)
p log a0 + (1− p) log a1

;

he also proved in [12, Corollary 2.4] (also in a more general setting) that

dimPD(E1, F1) = sup
(p,1−p)∈F1

p log p+ (1− p) log(1− p)
p log a0 + (1− p) log a1

.

Hence the desired results follow.
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Now we are ready to prove our theorems.

Proof of Theorem 1.1. Step 1. First we prove that C \ S = S0 ∪ S∞.
Suppose t ∈ C \ S. If t is an endpoint of C, then it is easy to check that

lim inf
x→t

F (x)− F (t)
x− t

= 0, and so t ∈ S0.

Note that for x ∈ C̃ we have

x = (1− a1)
∞∑
k=1

a
y(x,k)−k
0 ak−1

1 and F (x) =
∞∑
k=1

p
y(x,k)−(k−1)
0 pk−1

1 .

Let t ∈ C̃ \ S. Take sequences (xn)n≥1 and (x∗n)n≥1 such that

y(xn, k) = y(t, k) for k < n, y(xn, k) = y(t, k) + 1 for k ≥ n,

y(x∗n, k) = y(t, k) for k < n, y(x∗n, k) = y(t, k) + 2 for k ≥ n.

Then limn→∞ xn = limn→∞ x
∗
n = t and

c = lim
n→∞

F (xn)− F (t)
xn − t

= lim
n→∞

a1p0(1− p0)
∑∞

k=n p
y(t,k)−k
0 pk1

p1(1− a1)(1− a0)
∑∞

k=n a
y(t,k)−k
0 ak1

= lim
n→∞

F (x∗n)− F (t)
x∗n − t

= lim
n→∞

a1p0(1− p2
0)
∑∞

k=n p
y(t,k)−k
0 pk1

p1(1− a1)(1− a2
0)
∑∞

k=n a
y(t,k)−k
0 ak1

=
1 + p0

1 + a0
c,

implying c ∈ {0,∞}, i.e., t ∈ S0 ∪ S∞.

Step 2. For any p ∈ ((s+ 1)−1, 1], by Lemma 2.2(I) we have

{x ∈ C̃ : F ′(x) = 0} ⊇
{
t ∈ C̃ : lim inf

n→∞

Nn(t, 0)
n

>
1

s+ 1

}
⊇
{
t ∈ C̃ : lim

n→∞

Nn(t, 0)
n

= p

}
=
{
t ∈ C̃ : A

({(
Nn(t, 0)

n
,
Nn(t, 1)

n

)})
= (p, 1− p)

}
,

implying

dimH S0 ≥ max
p∈[(s+1)−1,1]

p log p+ (1− p) log(1− p)
p log a0 + (1− p) log a1

.

Step 3. We first show that

(15) S∞ ⊇
{
t ∈ C̃ : 1 < lim

n→∞

y(t, n)
n

<
s+ 1
s

}
=: T.
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It is easy to see (refer to the argument for (8)){
t ∈ C̃ : 1 < lim

n→∞

y(t, n)
n

<
s+ 1
s

}
=
{
t ∈ C̃ : s+ 1 < lim

n→∞

z(t, n)
n

<∞
}
.

Thus, for t ∈ T ,

(16) lim
n→∞

(
z(t, n+ 1)
z(t, n)

− log a1

log p1
+
(

log
p0

a0
− log

p1

a1

)
n

z(t, n) log p1

)
= lim

n→∞

( z(t,n+1)
n − s− 1

)
log p1 +

( z(t,n)
n − s− 1

)
log 1

a1

z(t,n)
n log p1

=

(
limn→∞

z(t,n)
n − s− 1

)
log p1

a1

log p1 limn→∞
z(t,n)
n

< 0.

We claim that (16) implies that

(17) lim
x↓t

F (x)− F (t)
x− t

=∞.

In fact, let k be a positive integer such that

(18)
z(t, n+ 1)
z(t, n)

− log a1

log p1
+
(

log
p0

a0
− log

p1

a1

)
n

z(t, n) log p1
< q

for some negative real number q whenever n ≥ k. Let u be the distance
between t and [0, 1] \

⋃
ω∈{0,1}l hω([0, 1]) with l = z(t, k). Then u > 0. Let

x be a point in the segment (t, t + u). Then t, x ∈ ht̃| (z(t,n)−1)([0, 1]), but
x 6∈ ht̃|z(t,n)([0, 1]) for some n > k. Therefore,

F (x)− F (t)
x− t

≥
p1
∏z(t,n+1)−1
i=1 pti∏z(t,n)−1
i=1 ati

=
a0p1

∏z(t,n+1)
i=1 pti

p0
∏z(t,n)
i=1 ati

(19)

=
a0p

n+1
0 p

z(t,n+1)−n
1

p0an0a
z(t,n)−n
1

= a0p
z(t,n+1)−z(t,n)
1

(
p0

a0

)n(p1

a1

)z(t,n)−n

= a0

(
p
z(t,n+1)/z(t,n)−1
1

(
p0

a0

)n/z(t,n)(p1

a1

)1−n/z(t,n))z(t,n)

.

Let

Q = p
z(t,n+1)/z(t,n)−1
1

(
p0

a0

)n/z(t,n)(p1

a1

)1−n/z(t,n)
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Taking logs, by (18) we have

logQ =
(
z(t, n+ 1)
z(t, n)

− log a1

log p1
+
(

log
p0

a0
− log

p1

a1

)
n

z(t, n) log p1

)
log p1

(20)

> q log p1 > 0.

Since t is a non-endpoint, z(t, n) → ∞ as n → ∞ and (17) holds by (19)
and (20). On the other hand, for t ∈ T ,

lim
n→∞

(
y(t, n+ 1)
y(t, n)

− log a0

log p0
+
(

log
p1

a1
− log

p0

a0

)
n

y(t, n) log p0

)
= lim

n→∞

(y(t,n+1)
n − s+1

s

)
log p0 +

(y(t,n)
n − s+1

s

)
log 1

a0

y(t,n)
n log p0

=

(
limn→∞

y(t,n)
n − s+1

s

)
log p0

a0

log p0 limn→∞
y(t,n)
n

< 0.

By the same argument as above, this leads to

lim
x↑t

F (x)− F (t)
x− t

=∞.

Finally, for each p ∈ (0, (s+ 1)−1) it follows from (15) that

dimH S∞ ≥ dimH

{
t ∈ C̃ : lim

n→∞

Nn(t, 0)
n

= p

}
= dimH

{
t ∈ C̃ : A

({(
Nn(t, 0)

n
,
Nn(t, 1)

n

)})
= (p, 1− p)

}
=
p log p+ (1− p) log(1− p)
p log a0 + (1− p) log a1

,

implying the desired result.

From the proof of Theorem 1.1 it follows that both S0 and S∞ are dense
in C, and so dimB S0 = dimB S∞ = ξ.

Proof of Theorem 1.2. Let n be large enough that 1
n < min

{
1
s+1 ,

s
s+1

}
.

For k ≥ n let

Tk =
{
t∈ C̃ : lim inf

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

− 1
k
≤ 1
s+ 1

+
1
k
≤ lim sup

n→∞

Nn(t, 0)
n

}
,

Lk =
{
t ∈ C̃ : lim inf

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

≤ 1
s+ 1

+
1
k
≤ lim sup

n→∞

Nn(t, 0)
n

}
.
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Note that{
t ∈ C̃ : lim inf

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

}
=
{
t ∈ C̃ : lim sup

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

}
∪
{
t ∈ C̃ : lim inf

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

< lim sup
n→∞

Nn(t, 0)
n

}
=
{
t ∈ C̃ : lim sup

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

}
∪
⋃
k≥n

Lk.

Thus, by (13),⋃
k≥n

Tk ⊆ S ⊆
{
t ∈ C̃ : lim sup

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

}
∪
⋃
k≥n

Lk.

From Lemma 2.4 it follows that

sup
k≥n

dimH Tk = sup
k≥n

dimH Lk =
s log s− (s+ 1) log(s+ 1)

log a0 + s log a1
, dimP Tk = ξ,

and

dimH

{
t ∈ C̃ : lim sup

n→∞

Nn(t, 0)
n

≤ 1
s+ 1

}
=
s log s− (s+ 1) log(s+ 1)

log a0 + s log a1
,

since 1/(s+ 1) ≤ aξ0.
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