Strict u-ideals in Banach spaces

by

VEGARD LIMA (Ålesund) and ÅSVALD LIMA (Kristiansand)

Abstract. We study strict u-ideals in Banach spaces. A Banach space X is a strict u-ideal in its bidual when the canonical decomposition $X^{***} = X^* \oplus X^{\perp}$ is unconditional. We characterize Banach spaces which are strict u-ideals in their bidual and show that if X is a strict u-ideal in a Banach space Y then X contains c_0 . We also show that ℓ_{∞} is not a u-ideal.

1. Introduction. Strict u-ideals were introduced by Godefroy, Kalton and Saphar in [9]. Let X be a subspace of a Banach space Y. We will say that X is a *summand* of Y if it is the range of a contractive projection and that X is an *ideal* in Y if X^{\perp} is the kernel of a contractive projection on Y^* .

A norm one operator $\phi: X^* \to Y^*$ such that $\phi(x^*)(x) = x^*(x)$ is said to be a *Hahn–Banach extension operator*. The set of all such ϕ is denoted by $\operatorname{IB}(X, Y)$. For every $\phi \in \operatorname{IB}(X, Y)$ we have

$$Y^* = X^\perp \oplus \phi(X^*).$$

Let i_X be the natural embedding $i_X : X \to Y$. Then $P_{\phi} = \phi \circ i_X^*$ is a norm one projection on Y^* with ker $P_{\phi} = X^{\perp}$. X is an ideal in Y if and only if $\operatorname{IB}(X,Y) \neq \emptyset$ (see [8, Theorem 2.4]). If we have $||x^{\perp} + \phi(x^*)|| = ||x^{\perp} - \phi(x^*)||$ for all $x^{\perp} \in X^{\perp}$ and $x^* \in X^*$ we say that X is a *u*-ideal in Y and that ϕ is unconditional. Note that ϕ is unconditional if and only if $||I - 2P_{\phi}|| = 1$. We get the well-known notion of an *M*-ideal ([3], [12]) if $||x^{\perp} + \phi(x^*)|| =$ $||x^{\perp}|| + ||\phi(x^*)||$ for all $x^{\perp} \in X^{\perp}$ and $x^* \in X^*$.

We get another useful viewpoint by defining a norm one operator $T_\phi: Y \to X^{**}$ by

(1.1)
$$\langle i_X^* y^*, T_{\phi}(y) \rangle = \langle y, P_{\phi}(y^*) \rangle$$

for all $y \in Y$ and $y^* \in Y^*$. Then $T_{\phi}(x) = x$ for all $x \in X$. Note that $T_{\phi} = \phi^*|_Y$.

²⁰¹⁰ Mathematics Subject Classification: Primary 46B04, 46B20. Key words and phrases: strict u-ideal, u-summand.

X is a strict ideal in Y if there is a $\phi \in \operatorname{IB}(X,Y)$ such that $\phi(X^*)$ is norming. In this case ϕ is called *strict*. That ϕ is strict is equivalent to the existence for every $y \in Y$ and $\varepsilon > 0$ of an $x^* \in B_{X^*}$ such that

$$||y|| - \varepsilon < \langle \phi(x^*), y \rangle = \langle x^*, T_{\phi}(y) \rangle.$$

Since $|\langle x^*, T_{\phi}(y) \rangle| \leq ||T_{\phi}|| ||x^*|| ||y||$ we see that ϕ is strict if and only if $T_{\phi}: Y \to X^{**}$ is isometric.

In this paper we study strict u-ideals, i.e. ideals for which the Hahn– Banach extension operator is both strict and unconditional. Godefroy, Kalton and Saphar note in the introduction to their paper [9] that the theory of u-ideals is much less satisfactory and complete than in the complex case of h-ideals (which we will not discuss). We aim to fill a few of the gaps in the theory of u-ideals.

In Section 2 we use the local and geometric description of u-ideals the authors obtained in [15] to develop similar tools needed to study strict u-ideals. We obtain a characterization of when a space of codimension one is a strict u-ideal (see Theorem 2.4), and when a Banach space is a strict u-ideal in its bidual (see Theorems 2.8 and 2.9). Some of these results were first shown by Godefroy, Kalton and Saphar under the assumption that X was separable or did not contain ℓ_1 . We also show that if X is a non-trivial subspace of a Banach space Y, then X contains a copy of c_0 whenever X is a strict u-ideal in Y. In Theorem 2.12 we show that if a dual space X^* is a u-ideal in its bidual, then it is in fact a u-summand. In particular, it can never be a strict u-ideal. The proof relies on the fact that ℓ_{∞} is not a u-ideal in its bidual (see Theorem 2.11).

In Section 3 we look at denting points and strongly exposed points in the unit ball of the dual of X when X is a strict u-ideal in its bidual.

We use standard Banach space notation. For a Banach space X, B_X is the closed unit ball and S_X is the unit sphere. The canonical embedding $X \to X^{**}$ is denoted by k_X . If A is a subset of X, $\operatorname{span}(A)$ is the linear span of A and $\operatorname{conv}(A)$ is the convex hull of A.

We consider real Banach spaces only.

2. Strict u-ideals. First we show that to check whether a u-ideal is strict or not it is enough to check one direction at a time.

PROPOSITION 2.1. Assume X is a u-ideal in Y. Then X is a strict u-ideal in Y if and only if X is a strict u-ideal in $\text{span}(X, \{y\})$ for all $y \in Y$.

Proof. Let $\phi \in \operatorname{IB}(X, Y)$ be unconditional. As noted in the introduction, ϕ is strict if and only if T_{ϕ} is isometric (notation of (1.1)). But by Lemma 2.2 and 3.1 in [15], $T_{\phi}(y)$ is uniquely and locally determined.

Recall that an element c in a convex set K is a center of symmetry if $2c - x \in K$ for all $x \in K$.

PROPOSITION 2.2. If X is a strict u-ideal in Y then every element of $\operatorname{IB}(X,Y)$ is strict.

Proof. Assume $\phi \in \operatorname{IB}(X, Y)$ is unconditional and strict. Then ϕ is a center of symmetry in $\operatorname{IB}(X, Y)$ (see e.g. [1, Proposition 2.2]) so that $2\phi - \psi \in \operatorname{IB}(X, Y)$ for all $\psi \in \operatorname{IB}(X, Y)$. Let $\psi \in \operatorname{IB}(X, Y)$ and $y \in Y$. Then

 $||y|| \ge ||(2T_{\phi} - T_{\psi})(y)|| \ge 2||T_{\phi}(y)|| - ||T_{\psi}(y)|| = 2||y|| - ||T_{\psi}(y)||.$

Hence $||T_{\psi}(y)|| = ||y||$ and ψ is strict.

Let us introduce some more notation. Assume X is a closed subspace of a Banach space Y. For each $y \in Y \setminus X$ define

(2.1)
$$D_y = X^{**} \cap \bigcap_{x \in X} B_{X^{**}}(x, ||x - y||).$$

It is a convex and weak*-compact subset of X^{**} . Let $Z = \text{span}(X, \{y\})$. There is a one-to-one correspondence between D_y and IB(X, Z) given by $\phi \leftrightarrow T_{\phi}(y)$. (If $d_y \in D_y$ define $T : Z \to X^{**}$ by $T(ay + x) = ad_y + x$. See also Lemma 2.2 in [14].) Note that $D_{ay} = aD_y$ for $a \in \mathbb{R}$.

In view of the previous two propositions the following corollary is obvious.

COROLLARY 2.3. Assume X is a u-ideal in Y. Then it is a strict u-ideal if and only if $D_y \subset S_{X^{**}}$ for all $y \in S_Y$.

In Proposition 2.1 we saw that it is enough to check strictness of a u-ideal one direction at a time. Next we characterize strict u-ideals of codimension one.

THEOREM 2.4. Let X be a closed subspace of a Banach space Y. Let $y \in Y \setminus X$ and $Z = \text{span}(X, \{y\})$. Assume that X is a u-ideal in Z. The following statements are equivalent.

- (a) X is a strict u-ideal in Z.
- (b) For every $z \in S_Z$ we have $\inf_{x \in S_X} ||z 2x|| = 1$.
- (c) For every $z \in S_Z$ and $\varepsilon > 0$ there exists $x \in S_X$ such that

$$B_X(0, 1-\varepsilon) \cap B_X(2x, ||z-2x||) = \emptyset.$$

Proof. (a) \Rightarrow (b). Let $\phi \in \operatorname{IB}(X, Z)$ be unconditional and strict and let $z \in S_Z$. Then $||T_{\phi}(z)|| = 1$ and by Lemma 2.2 in [9] there exists a net (x_{α}) in X such that ω^* -lim $x_{\alpha} = T_{\phi}(z)$ and lim $\sup_{\alpha} ||z - 2x_{\alpha}|| \leq 1$. Then

$$2\|T_{\phi}(z)\| \le 2\liminf_{\alpha} \|x_{\alpha}\| \le \limsup_{\alpha} \|2x_{\alpha}\| \le \limsup_{\alpha} \|z - 2x_{\alpha}\| + \|z\| \le 2$$

so we may assume that $x_{\alpha} \in S_X$ for all α .

For all $x \in S_X$ we have $||z - 2x|| \ge 2||x|| - ||z|| = 1$ but for $\varepsilon > 0$ there is an x_{α} such that $||z - 2x_{\alpha}|| < 1 + \varepsilon$.

(b) \Rightarrow (c). Let $z \in S_Z$ and $\varepsilon > 0$. Choosing $x \in S_X$ with $||z - 2x|| < 1 + \varepsilon$ we get $B_X(0, 1 - \varepsilon) \cap B_X(2x, ||z - 2x||) = \emptyset$.

(c) \Rightarrow (a). We use Corollary 2.3. For all $z \in Z$ we have $D_z \subseteq B_{X^{**}}(0, ||z||)$ by definition. Let $z \in S_Z$. By (c) and the principle of local reflexivity we must have $B_{X^{**}}(0, 1-\varepsilon) \cap B_{X^{**}}(2x, ||z-2x||) = \emptyset$ and hence $D_z \cap B_{X^{**}}(0, 1-\varepsilon) = \emptyset$ for all $\varepsilon > 0$.

PROPOSITION 2.5. If X is a (non-trivial) strict u-ideal in Y and P : $Y \to X$ is a projection then $||P|| \ge 2$.

Proof. Assume that $P: Y \to X$ is a projection with norm $||P|| = \lambda$. Let $y \in S_Y \cap \ker P$, let $\varepsilon > 0$ and choose $x \in S_X$ such that

$$B_X(0, 1 - \varepsilon) \cap B_X(2x, \|y - 2x\|) = \emptyset$$

using Theorem 2.4. We then get $||2x|| = ||P(y-2x)|| \le \lambda ||y-2x||$ so that $(2-2/\lambda)x \in B_X(2x, ||y-2x||)$. Then $(2-2/\lambda)x \notin B_X(0, 1-\varepsilon)$ and since ε is arbitrary we get $2-2/\lambda \ge 1$ or $\lambda \ge 2$.

Since dual spaces are 1-complemented in their biduals they can never be strict u-ideals in their biduals. In fact, they cannot be a strict u-ideal in any superspace.

COROLLARY 2.6. Assume that X is a (non-trivial) u-ideal in Y. If X is λ -complemented in its bidual with $\lambda < 2$ then X is not a strict u-ideal in Y.

Proof. Let $P : X^{**} \to X$ be a projection with norm $||P|| = \lambda$. Let $y \in Y \setminus X$ and $Z = \operatorname{span}(X, \{y\})$. Let $x^{**} \in D_y$. Note that D_y is non-empty since $\operatorname{IB}(X, Y)$ is. Then for $x \in X$,

$$||P(x^{**}) - x|| \le \lambda ||x^{**} - x|| \le \lambda ||x - y||.$$

Hence X is λ -complemented in Z by the projection $Q: Z \to X$ defined by $Q(y) = P(x^{**})$ and Q(x) = x. From Propositions 2.5 and 2.1 we conclude that X cannot be a strict u-ideal in Y.

Harmand and Lima [11, Theorem 3.5] showed that if X is an M-ideal in its bidual then X contains almost isometric copies of c_0 (i.e. X has a subspace isomorphic to c_0). Next we generalize this to strict u-ideals. Note that the discussion regarding *isometric* copies of c_0 in [12, p. 79] also applies to strict u-ideals.

THEOREM 2.7. If X is a (non-trivial) strict u-ideal in Y, then X contains a copy of c_0 .

Proof. If X does not contain a copy of c_0 then X is a u-summand in Y by Theorem 3.5 in [9]. Using Proposition 2.5 gives us a contradiction.

The following is proved for separable Banach spaces and Banach spaces not containing ℓ_1 in Proposition 5.2 in [9]. For every X the natural embedding $k_{X^*}: X^* \to X^{***}$ is an element of $\operatorname{IB}(X, X^{**})$. We let $\pi: X^{***} \to X^{***}$ denote the associated ideal projection with ker $\pi = X^{\perp}$.

THEOREM 2.8. X is a strict u-ideal in X^{**} if and only if $||I - 2\pi|| = 1$.

Proof. Assume that X is a strict u-ideal in its bidual. Let $x^{**} \in X^{**} \setminus X$. We have $X \cap \bigcap_{x \in X} B_{X^{**}}(x, ||x - x^{**}||) = \emptyset$ since any element in the intersection would define a norm one projection from $\operatorname{span}(X, \{x^{**}\})$ onto X, contradicting Proposition 2.5 (and Proposition 2.1).

By Lemma 2.4 in [10] we get $\bigcap_{x \in X} B_{X^{**}}(x, ||x - x^{**}||) = \{x^{**}\}$ and so the only element in $\operatorname{IB}(X, X^{**})$ is k_{X^*} .

The other direction is trivial as X^* is norming for X^{**} .

REMARK 2.1. The above proof shows that if X is a strict u-ideal in its bidual then $\operatorname{IB}(X, X^{**})$ has only one element, i.e. the only extension operator is the trivial one k_{X^*} . In particular, the set $D_{x^{**}} = \{x^{**}\}$ is a singleton for every $x^{**} \in X^{**}$ (see (2.1), page 277).

The following theorem was inspired by Theorem 5.5 in [9]. The main improvement is that we remove the assumption that the space does not contain ℓ_1 .

THEOREM 2.9. Let X be a Banach space. The following statements are equivalent.

- (a) X is a strict u-ideal in its bidual.
- (b) Every subspace Y of X is a strict u-ideal in its bidual.
- (c) For every subspace Y of X and $y^{**} \in S_{Y^{**}}$,

$$\inf_{y \in S_Y} \|y^{**} - 2y\| = 1.$$

- (d) Every separable subspace Y of X is a strict u-ideal in its bidual.
- (e) For every separable subspace Y of X and $y^{**} \in S_{Y^{**}}$,

$$\inf_{y \in S_Y} \|y^{**} - 2y\| = 1.$$

Proof. (b) \Rightarrow (d) and (c) \Rightarrow (e) are trivial. (b) \Rightarrow (c) and (d) \Rightarrow (e) follow from Theorem 2.4.

(a) \Rightarrow (b). We use Theorem 2.8. Let Y be a closed subspace of X with natural embedding $i_Y : Y \to X$. By assumption $||I - 2\pi_X|| = 1$ where $\pi_X = k_{X^*}k_X^*$. We need to show that $||I - 2\pi_Y|| = 1$ where $\pi_Y = k_{Y^*}k_Y^*$. It is easy to check $i_Y^{**}k_Y = k_X i_Y$ and $i_Y^{***}k_{X^*} = k_{Y^*}i_Y^*$ so that $i_Y^{***}\pi_X = \pi_Y i_Y^{***}$. We get

$$1 \ge \|i_Y^{***}(I - 2\pi_X)\| = \|(I - 2\pi_Y)i_Y^{***}\|.$$

Since $i_Y^{**}: Y^{**} \to X^{**}$ is isometric, i_Y^{***} is onto Y^{***} and hence $||I - 2\pi_Y|| = 1$. (e) \Leftrightarrow (d) is proved in Theorem 5.5 in [9]. Finally, (d) \Leftrightarrow (a) follows from Proposition 2.3 in [9] which characterizes strict u-ideals using sequences. Hence strict u-ideals are separably determined.

A quick look at Theorem 2.7 gives the following corollary.

COROLLARY 2.10. Assume that X is non-reflexive. If X is a strict u-ideal in its bidual then every non-reflexive subspace of X contains a copy of c_0 .

REMARK 2.2. From Theorem 5.1 in [9] we know that a Banach space is not a strict u-ideal in its bidual if it contains ℓ_1 . The above corollary gives an alternative proof of this fact.

From Proposition 2.5 we know that ℓ_{∞} is not a strict u-ideal in its bidual. The next theorem shows that it is not even a u-ideal. We will also look at some consequences below.

THEOREM 2.11. ℓ_{∞} is not a u-ideal in its bidual.

Before giving the proof of this theorem we need to introduce some more notation.

It is well-known that ℓ_{∞} is isometrically isomorphic to $C(\beta\mathbb{N})$ where $\beta\mathbb{N}$ is the Stone–Čech compactification of the natural numbers (see e.g. Corollary 15.2 in [6]). The Riesz representation theorem identifies the dual with the measures on $\beta\mathbb{N}$. The state space of $C(\beta\mathbb{N})$ is the set

$$S = \{ x^* \in \ell_{\infty}^* : \|x^*\| = x^*(1) = 1 \},\$$

which is a weak*-closed subset of the dual unit ball. S can be identified with the probability measures on $\beta \mathbb{N}$; the set of extreme points of S, ext S, is homeomorphic to $\beta \mathbb{N}$; and S is a Bauer simplex (see e.g. [2, Corollary II.4.2]). $C(\beta \mathbb{N})$ is isometrically isomorphic to A(S), the continuous affine functions on S (see e.g. [2, Theorem II.1.8]). Thus for $f \in A(S)$ and $s \in S$ there is a unique probability measure μ on ext S such that $f(s) = \int_{\text{ext } S} f \, d\mu$. We will write $s = r(\mu)$ where r is the resultant (or barycenter) function. It is well-known that S is a simplex (see e.g. [18, p. 53]) so μ is unique, i.e. r is 1-1 ([18, Proposition 11.1]).

We say that a measure μ on $\beta\mathbb{N}$ is discrete if there is a countable set $\{z_j\}_{j=1}^{\infty} \subset \beta\mathbb{N}$ and numbers $\{a_j\}_{j=1}^{\infty}$ such that $\mu = \sum_{j=1}^{\infty} a_j \delta_{z_j}$. On the other hand, μ is continuous if $\mu(\{z\}) = 0$ for all $z \in \beta\mathbb{N}$. Any measure μ can be written uniquely as $\mu = \mu_d + \mu_c$ where μ_d is discrete and μ_c is continuous by letting $E = \{z : \mu(\{z\}) \neq 0\}$ and defining $\mu_d(A) = \mu(A \cap E)$ and $\mu_c(A) = \mu_d(A \cap \mathbb{N})$. Since \mathbb{N} is countable we can write $\mu_d = \mu_{nd} + \mu_{bd}$ where $\mu_{nd}(A) = \mu_d(A \cap \mathbb{N})$ and $\mu_{bd}(A) = \mu_d(A \setminus \mathbb{N})$.

We will define the following faces of S:

 $S_1 = \{s \in S : s = r(\mu_{nd}), \text{ a discrete measure on } \mathbb{N}\},\$ $S_2 = \{s \in S : s = r(\mu_{bd}), \text{ a discrete measure on } \beta\mathbb{N}\},\$ $S_3 = \{s \in S : s = r(\mu_c), \text{ a continuous measure on } \beta\mathbb{N}\}.$

We have $S = \operatorname{conv}(\bigcup_{i=1}^{3} S_i)$ and $S_i \cap S_j = \emptyset$ for $i \neq j$. We will also need the complementary face of S_i , namely $S'_i = \operatorname{conv}(\bigcup_{i\neq j} S_i)$. (Here we have used that closed faces in a simplex are split; see [2, pp. 132–133, Proposition II.6.7 and Corollary II.6.8] and [4, p. 140, Theorem 8.3].) Also note that $S_3 \neq \emptyset$ since we can pull back Lebesgue measure from $C[0, 1]^*$.

Proof of Theorem 2.11. We identify ℓ_{∞} with A(S) and $A(S)^{**}$ with the bounded affine functions on S, $A_b(S)$. (This is "easy to check" [4, p. 43].) Each $s \in S$ can be written uniquely as $s = \alpha_i s_i + (1 - \alpha_i) s'_i$ where $\alpha_i \in [0, 1]$, $s_i \in S_i$ and $s'_i \in S'_i$. Thus the functions $f_i(s) = 2\alpha_i - 1$ are well-defined and $f_i \in A_b(S)$. We will use that $f_i = 1$ on S_i and $f_i = -1$ on S'_i .

Assume for contradiction that ℓ_{∞} is a u-ideal in its bidual. Define $H = \text{span}(f_i)_{i=1}^3$, a subspace of ℓ_{∞}^{**} , and let $\varepsilon > 0$.

By the local characterization of u-ideals (Proposition 3.6 in [9]), there is an operator $L: H \to \ell_{\infty}$ such that $||L|| \leq 1 + \varepsilon$, $||h - 2L(h)|| \leq (1 + \varepsilon)||h||$ for all $h \in H$ and L(x) = x for all $x \in H \cap \ell_{\infty}$. Since L(1) = 1 we get $\sum_{i=1}^{3} L(f_i) = -1$.

Using $||f_i - 2L(f_i)|| \le (1 + \varepsilon)||f_i|| \le 1 + \varepsilon$ we see that on S, $-(1 + \varepsilon) \le -f_i + 2L(f_i) \le 1 + \varepsilon$ or $f_i - 1 - \varepsilon \le 2L(f_i) \le f_i + 1 + \varepsilon$. So on S_i we have $-\varepsilon/2 \le L(f_i) \le 1 + \varepsilon/2$.

By density of \mathbb{N} in its compactification $\beta \mathbb{N}$ we must have $L(f_1) \geq -\varepsilon/2$ on $\beta \mathbb{N}$ since $L(f_1) \geq -\varepsilon/2$ on \mathbb{N} . Also, we have $L(f_2) \geq -\varepsilon/2$ on $\beta \mathbb{N} \setminus \mathbb{N}$. Since \mathbb{N} is countable the continuous measure μ corresponding to $s \in S_3$ has support on $\beta \mathbb{N} \setminus \mathbb{N}$ so

$$Lf_i(s) = \int_{\text{ext } S} Lf_i \, d\mu = \int_{\beta \mathbb{N} \setminus \mathbb{N}} Lf_i \, d\mu \ge -\varepsilon/2$$

for i = 1, 2. Thus on S_3 we have

$$-\varepsilon/2 \le L(f_3) = -1 - L(f_1) - L(f_2) \le -1 + \varepsilon,$$

or $0 \leq -1 + 3\varepsilon/2$. Since $\varepsilon > 0$ is arbitrary this is a contradiction.

REMARK 2.3. Since ℓ_{∞} is injective, ℓ_{∞} is never a strict u-ideal in $Z = \text{span}\{\ell_{\infty}, f\}$ for $f \in \ell_{\infty}^{**}$. In some cases it is a u-ideal, however.

In the notation above, set f = 1 on S_1 and f = -1 on $S'_1 = \text{conv}(S_2 \cup S_3)$. Let $\varepsilon > 0$, $x_i \in \ell_{\infty}$ and $r_i = ||f - x_i||$ for i = 1, 2, 3. Without loss of generality we may assume that $x_i = \sum_{k=1}^{m} a_{i,k} \chi_{A_k}$ where A_k is a partition of \mathbb{N} (use an ε -net on the set $(x_i(n))_{n=1}^{\infty}$ if necessary). We may assume that A_1, \ldots, A_p are finite sets and that A_{p+1}, \ldots, A_m are infinite.

Define an element $x \in \ell_{\infty}$ by setting $x_n = 2$ for $n \in \bigcup_{k=1}^p A_k$ and $x_n = 0$ for $n \in \bigcup_{k=p+1}^m A_k$. Then $x \in \ell_{\infty} \cap \bigcap_{i=1}^3 B_Z(f+x_i, r_i+\varepsilon)$ and by Theorem 1.3 in [15], ℓ_{∞} is a u-ideal in Z.

As noted in Proposition 2.5, a non-reflexive dual space can never be a strict u-ideal. Using that ℓ_{∞} is not a u-ideal in its bidual we can say even more.

THEOREM 2.12. Let X be a Banach space such that X^* is a u-ideal in its bidual. Then X^* is a u-summand.

Proof. If X^* contains a copy of c_0 then it contains a copy of ℓ_{∞} by Bessaga and Pełczyński [5]. By Partington [16] and Talagrand [19, Theorem 6] (and injectivity) it has $(1 + \varepsilon)$ -complemented copies of ℓ_{∞} for every $\varepsilon > 0$. The local characterization of u-ideals (Proposition 4.1 in [9]) would then imply that ℓ_{∞} is a u-ideal in its bidual, which is impossible by Theorem 2.11. Hence X^* is a u-ideal not containing c_0 , so it is a u-summand by Theorem 3.5 in [9].

REMARK 2.4. Assume X is a strict u-ideal in its bidual. Then $||I - 2\pi|| = 1$ and considering the adjoint projection $P = \pi^*$ on $X^{(4)}$ we have ker $P = (\operatorname{im} \pi)^{\perp} = (X^*)^{\perp}$. Since $||I - 2P|| = ||I - 2\pi|| = 1$ we conclude that X^* is a u-ideal in its bidual and by the above theorem even a u-summand.

We do not know whether X a u-ideal in its bidual and X^* a u-summand in its bidual implies that X is a strict u-ideal.

3. Geometric properties. A *slice* of a bounded, closed, convex subset C of X is a subset $S(C, x^*, \alpha)$ of C defined by

$$S(C, x^*, \alpha) = \{ x \in C : x^*(x) > \sup_{y \in C} x^*(y) - \alpha \},\$$

where $x^* \in X^* \setminus \{0\}$ and $\alpha > 0$. If X is a dual space we can speak of a weak^{*}slice when the defining functional is weak^{*}-continuous. A bounded, closed, convex set C is dentable if it has slices of arbitrarily small diameter. Recall that the diameter of a non-empty set A is given by diam $(A) = \sup\{||x - y|| :$ $x, y \in A\}$. A point $x \in C$ is called a denting point in C if there is a sequence of slices S_n of C with $x \in S_n$, for all n, such that diam $(S_n) \to 0$. If C is a subset of a dual space X^* then $x^* \in C$ is a weak^{*}-denting point in C if there is a sequence of weak^{*}-slices S_n of C with $x^* \in S_n$ for all n such that diam $(S_n) \to 0$. A point $x \in C$ is called a strongly exposed point in C if there is an $x^* \in X^*$ such that $x^*(x) > x^*(y)$ for all $x \neq y \in C$ and diam $(S(C, x^*, \alpha)) \to 0$ as $\alpha \to 0$. Weak^{*} strongly exposed points are defined in the obvious way. By definition ω^* -str.exp. $B_{X^*} \subset \omega^*$ -dent. B_{X^*} . When X is a strict u-ideal in its bidual we can say much more. The next proposition highlights that this is a really strong geometric property.

PROPOSITION 3.1. Assume that X is a strict u-ideal in its bidual. Then

str.exp. $B_{X^*} \subset \omega^*$ -dent. B_{X^*} .

Proof. Let $x^* \in \text{str.exp.} B_{X^*}$ and let $x^{**} \in S_{X^{**}}$ be a strongly exposing functional for x^* . Let $\varepsilon > 0$ and choose $\delta_0 > 0$ such that $\{u^* \in B_{X^*} : x^{**}(u^*) > 1 - \sqrt{\delta_0}\} \subset B_{X^*}(x^*, \varepsilon)$ and $1 + \varepsilon \delta_0 > 2\sqrt{\delta_0}(1 + \varepsilon)$.

Let $\delta \in (0, \delta_0)$. Then $1 + \varepsilon \delta > 2\sqrt{\delta}(1 + \varepsilon)$, which is equivalent to $2(1 - \delta)/(1 + \varepsilon \delta) - 2 + \sqrt{\delta} > 0$. Choose $\eta > 0$ with $0 < \eta < 2(1 - \delta)/(1 + \varepsilon \delta) - 2 + \sqrt{\delta}$ and $\{u^* \in B_{X^*} : x^{**}(u^*) > 1 - \eta\} \subset B_{X^*}(x^*, \varepsilon \delta/(1 + \varepsilon \delta))$.

Since X is a strict u-ideal we have $1 = \inf_{x \in S_X} ||x^{**} - 2x||$. Choose $x \in S_X$ such that $||x^{**} - 2x|| < 1 + \eta$. Choose $u^* \in B_{X^*}$ such that $u^*(x) = 1$. Then

$$1 + \eta > ||x^{**} - 2x|| \ge u^*(2x - x^{**}) = 2 - x^{**}(u^*).$$

Thus $x^{**}(u^*) > 1 - \eta$. It follows that $||u^* - x^*|| < \varepsilon \delta/(1 + \varepsilon \delta)$.

Let $u = x/x^*(x)$. Then $x^*(x) \ge u^*(x) - ||x^* - u^*|| > 1/(1 + \varepsilon \delta)$ so $||u|| = 1/x^*(x) \le 1 + \varepsilon \delta$. If $z^* \in B_{X^*}$ and $z^*(u) > 1 - \delta$, then $z^*(x) = z^*(u)x^*(x) > (1 - \delta)x^*(x)$. Hence

$$1 + \eta > ||x^{**} - 2x|| \ge z^*(2x - x^{**}) \ge 2(1 - \delta)x^*(x) - x^{**}(z^*),$$

and $x^{**}(z^*) > 2(1-\delta)x^*(x) - 1 - \eta \ge 2(1-\delta)/(1+\varepsilon\delta) - 1 - \eta$. But then $x^{**}(z^*) > 1 - \sqrt{\delta}$, from which it follows that $||z^* - x^*|| < \varepsilon$. Thus x^* is contained in weak*-slices of arbitrarily small diameter, i.e. x^* is weak*-denting.

Next we use the weak*-denting points in the unit ball to characterize when a u-ideal is a strict u-ideal. For Banach spaces not containing ℓ_1 the equivalence of (a) and (d) was proved in Theorem 7.4 in [9].

PROPOSITION 3.2. Let X be a Banach space. Assume that X is a u-ideal in its bidual. Then the following are equivalent.

- (a) X is a strict u-ideal in its bidual.
- (b) $B_{X^*} = \overline{\operatorname{conv}}(\omega^*\operatorname{-str.exp.} B_{X^*}).$
- (c) $B_{X^*} = \overline{\text{conv}}(\omega^* \text{-dent. } B_{X^*}).$
- (d) X^* contains no proper norming subspaces.
- (e) $T_{\phi} = I_{X^{**}}$ where $\phi \in \operatorname{IB}(X, X^{**})$ is the unconditional extension operator.

Proof. (a) \Rightarrow (b) follows from Theorem 2.8 and Proposition 4.1 in [13]. (b) \Rightarrow (c) is trivial.

(c) \Rightarrow (a). The weak*-denting points have unique norm-preserving extension so $\operatorname{IB}(X, X^{**}) = \{k_{X^*}\}$. X is a strict u-ideal by Theorem 2.8.

(a) \Rightarrow (d). Follows from Theorem 2.8 and Proposition 2.7 in [9].

(d) \Rightarrow (e). By Proposition 2.5 in [10], X has the unique extension property and by definition the only contractive operator $T: X^{**} \to X^{**}$ with $T|_X = I_X$ is $T = I_{X^{**}}$.

(e) \Rightarrow (a). X is a strict u-ideal by Theorem 2.8.

REMARK 3.1. The dual of a Banach space X has the Radon–Nikodým property if and only if every separable subspace of X has separable dual (see e.g. [7, Corollary VII.2.8]). This is the case if X is a strict u-ideal in its bidual (see e.g. Proposition 4.1 in [13] or Proposition 2.8 in [9]).

On the other hand, if X^* has the Radon–Nikodým property then $B_{X^*} = \overline{\operatorname{conv}}^{w^*}(\omega^*\operatorname{-str.exp.} B_{X^*})$ [17, Theorem 5.12]. We do not know if this is enough to ensure that a u-ideal is strict.

It is also an open problem whether a u-ideal is strict if the space does not contain ℓ_1 (see Question 5 in [9]).

Acknowledgements. We would like to thank the referee for helpful comments that helped improve the manuscript.

References

- T. A. Abrahamsen, V. Lima, and Å. Lima, Unconditional ideals of finite rank operators, Czechoslovak Math. J. 58 (2008), 1257–1278.
- [2] E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Springer, Berlin, 1971.
- [3] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces. Parts I and II, Ann. of Math. 96 (1972), 98–173.
- [4] L. Asimow and A. J. Ellis, Convexity Theory and its Applications in Functional Analysis, London Math. Soc. Monogr. 16, Academic Press, London, 1980.
- C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164.
- [6] N. L. Carothers, A Short Course on Banach Space Theory, London Math. Soc. Student Texts 64, Cambridge Univ. Press, Cambridge, 2005.
- [7] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, RI, 1977.
- [8] H. Fakhoury, Sélections linéaires associées au théorème de Hahn-Banach, J. Funct. Anal. 11 (1972), 436–452.
- G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13–59.
- [10] G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672–695.
- P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253–264.
- [12] P. Harmand, D. Werner, and W. Werner, *M-Ideals in Banach Spaces and Banach Algebras*, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
- [13] Å. Lima, Property (wM^*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249–263.
- [14] Å. Lima and E. Oja, Ideals of finite rank operators, intersection properties of balls, and the approximation property, ibid. 133 (1999), 175–186.

- [15] V. Lima and Å. Lima, A three ball intersection property for u-ideals, J. Funct. Anal. 251 (2007), 220–232.
- [16] J. R. Partington, Subspaces of certain Banach sequence spaces, Bull. London Math. Soc. 13 (1981), 163–166.
- [17] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Math. 1364, Springer, Berlin, 1989.
- [18] —, Lectures on Choquet's Theorem, 2nd ed., Lecture Notes in Math. 1757, Springer, Berlin, 2001.
- [19] M. Talagrand, Sur les espaces de Banach contenant $l^1(\tau)$, Israel J. Math. 40 (1981), 324–330.

Aalesund University College Service Box 17 N-6025 Ålesund, Norway E-mail: Vegard.Lima@gmail.com Department of Mathematics University of Agder Serviceboks 422 4604 Kristiansand, Norway E-mail: Asvald.Lima@uia.no

Received January 23, 2009 Revised version August 17, 2009

(6522)