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Strict u-ideals in Banach spaces

by

Vegard Lima (Ålesund) and Åsvald Lima (Kristiansand)

Abstract. We study strict u-ideals in Banach spaces. A Banach space X is a strict
u-ideal in its bidual when the canonical decomposition X∗∗∗ = X∗⊕X⊥ is unconditional.
We characterize Banach spaces which are strict u-ideals in their bidual and show that if
X is a strict u-ideal in a Banach space Y then X contains c0. We also show that `∞ is
not a u-ideal.

1. Introduction. Strict u-ideals were introduced by Godefroy, Kalton
and Saphar in [9]. Let X be a subspace of a Banach space Y . We will say
that X is a summand of Y if it is the range of a contractive projection and
that X is an ideal in Y if X⊥ is the kernel of a contractive projection on Y ∗.

A norm one operator φ : X∗ → Y ∗ such that φ(x∗)(x) = x∗(x) is said to
be a Hahn–Banach extension operator. The set of all such φ is denoted by
HB(X,Y ). For every φ ∈ HB(X,Y ) we have

Y ∗ = X⊥ ⊕ φ(X∗).

Let iX be the natural embedding iX : X → Y . Then Pφ = φ ◦ i∗X is a norm
one projection on Y ∗ with kerPφ = X⊥. X is an ideal in Y if and only if
HB(X,Y ) 6= ∅ (see [8, Theorem 2.4]). If we have ‖x⊥+φ(x∗)‖ = ‖x⊥−φ(x∗)‖
for all x⊥ ∈ X⊥ and x∗ ∈ X∗ we say that X is a u-ideal in Y and that φ
is unconditional. Note that φ is unconditional if and only if ‖I − 2Pφ‖ = 1.
We get the well-known notion of an M-ideal ([3], [12]) if ‖x⊥ + φ(x∗)‖ =
‖x⊥‖+ ‖φ(x∗)‖ for all x⊥ ∈ X⊥ and x∗ ∈ X∗.

We get another useful viewpoint by defining a norm one operator Tφ :
Y → X∗∗ by

(1.1) 〈i∗Xy∗, Tφ(y)〉 = 〈y, Pφ(y∗)〉
for all y ∈ Y and y∗ ∈ Y ∗. Then Tφ(x) = x for all x ∈ X. Note that
Tφ = φ∗|Y .
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X is a strict ideal in Y if there is a φ ∈ HB(X,Y ) such that φ(X∗) is
norming. In this case φ is called strict. That φ is strict is equivalent to the
existence for every y ∈ Y and ε > 0 of an x∗ ∈ BX∗ such that

‖y‖ − ε < 〈φ(x∗), y〉 = 〈x∗, Tφ(y)〉.

Since |〈x∗, Tφ(y)〉| ≤ ‖Tφ‖ ‖x∗‖ ‖y‖ we see that φ is strict if and only if
Tφ : Y → X∗∗ is isometric.

In this paper we study strict u-ideals, i.e. ideals for which the Hahn–
Banach extension operator is both strict and unconditional. Godefroy, Kalton
and Saphar note in the introduction to their paper [9] that the theory of
u-ideals is much less satisfactory and complete than in the complex case of
h-ideals (which we will not discuss). We aim to fill a few of the gaps in the
theory of u-ideals.

In Section 2 we use the local and geometric description of u-ideals the
authors obtained in [15] to develop similar tools needed to study strict u-
ideals. We obtain a characterization of when a space of codimension one
is a strict u-ideal (see Theorem 2.4), and when a Banach space is a strict
u-ideal in its bidual (see Theorems 2.8 and 2.9). Some of these results were
first shown by Godefroy, Kalton and Saphar under the assumption that X
was separable or did not contain `1. We also show that if X is a non-trivial
subspace of a Banach space Y , then X contains a copy of c0 whenever X is
a strict u-ideal in Y . In Theorem 2.12 we show that if a dual space X∗ is
a u-ideal in its bidual, then it is in fact a u-summand. In particular, it can
never be a strict u-ideal. The proof relies on the fact that `∞ is not a u-ideal
in its bidual (see Theorem 2.11).

In Section 3 we look at denting points and strongly exposed points in the
unit ball of the dual of X when X is a strict u-ideal in its bidual.

We use standard Banach space notation. For a Banach space X, BX is
the closed unit ball and SX is the unit sphere. The canonical embedding
X → X∗∗ is denoted by kX . If A is a subset of X, span(A) is the linear span
of A and conv(A) is the convex hull of A.

We consider real Banach spaces only.

2. Strict u-ideals. First we show that to check whether a u-ideal is
strict or not it is enough to check one direction at a time.

Proposition 2.1. Assume X is a u-ideal in Y . Then X is a strict u-ideal
in Y if and only if X is a strict u-ideal in span(X, {y}) for all y ∈ Y .

Proof. Let φ ∈ HB(X,Y ) be unconditional. As noted in the introduction,
φ is strict if and only if Tφ is isometric (notation of (1.1)). But by Lemma 2.2
and 3.1 in [15], Tφ(y) is uniquely and locally determined.
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Recall that an element c in a convex set K is a center of symmetry if
2c− x ∈ K for all x ∈ K.

Proposition 2.2. If X is a strict u-ideal in Y then every element of
HB(X,Y ) is strict.

Proof. Assume φ ∈ HB(X,Y ) is unconditional and strict. Then φ is a
center of symmetry in HB(X,Y ) (see e.g. [1, Proposition 2.2]) so that 2φ−ψ ∈
HB(X,Y ) for all ψ ∈ HB(X,Y ). Let ψ ∈ HB(X,Y ) and y ∈ Y . Then

‖y‖ ≥ ‖(2Tφ − Tψ)(y)‖ ≥ 2‖Tφ(y)‖ − ‖Tψ(y)‖ = 2‖y‖ − ‖Tψ(y)‖.
Hence ‖Tψ(y)‖ = ‖y‖ and ψ is strict.

Let us introduce some more notation. Assume X is a closed subspace of
a Banach space Y . For each y ∈ Y \X define

(2.1) Dy = X∗∗ ∩
⋂
x∈X

BX∗∗(x, ‖x− y‖).

It is a convex and weak∗-compact subset of X∗∗. Let Z = span(X, {y}).
There is a one-to-one correspondence between Dy and HB(X,Z) given by
φ ↔ Tφ(y). (If dy ∈ Dy define T : Z → X∗∗ by T (ay + x) = ady + x. See
also Lemma 2.2 in [14].) Note that Day = aDy for a ∈ R.

In view of the previous two propositions the following corollary is obvious.

Corollary 2.3. Assume X is a u-ideal in Y . Then it is a strict u-ideal
if and only if Dy ⊂ SX∗∗ for all y ∈ SY .

In Proposition 2.1 we saw that it is enough to check strictness of a u-ideal
one direction at a time. Next we characterize strict u-ideals of codimension
one.

Theorem 2.4. Let X be a closed subspace of a Banach space Y . Let
y ∈ Y \ X and Z = span(X, {y}). Assume that X is a u-ideal in Z. The
following statements are equivalent.

(a) X is a strict u-ideal in Z.
(b) For every z ∈ SZ we have infx∈SX

‖z − 2x‖ = 1.
(c) For every z ∈ SZ and ε > 0 there exists x ∈ SX such that

BX(0, 1− ε) ∩BX(2x, ‖z − 2x‖) = ∅.
Proof. (a)⇒(b). Let φ ∈ HB(X,Z) be unconditional and strict and let

z ∈ SZ . Then ‖Tφ(z)‖ = 1 and by Lemma 2.2 in [9] there exists a net (xα)
in X such that ω∗- limxα = Tφ(z) and lim supα ‖z − 2xα‖ ≤ 1. Then
2‖Tφ(z)‖ ≤ 2 lim inf

α
‖xα‖ ≤ lim sup

α
‖2xα‖ ≤ lim sup

α
‖z − 2xα‖+ ‖z‖ ≤ 2

so we may assume that xα ∈ SX for all α.
For all x ∈ SX we have ‖z − 2x‖ ≥ 2‖x‖ − ‖z‖ = 1 but for ε > 0 there

is an xα such that ‖z − 2xα‖ < 1 + ε.



278 V. Lima and Å. Lima

(b)⇒(c). Let z ∈ SZ and ε > 0. Choosing x ∈ SX with ‖z− 2x‖ < 1 + ε
we get BX(0, 1− ε) ∩BX(2x, ‖z − 2x‖) = ∅.

(c)⇒(a). We use Corollary 2.3. For all z ∈ Z we have Dz ⊆ BX∗∗(0, ‖z‖)
by definition. Let z ∈ SZ . By (c) and the principle of local reflexivity we must
have BX∗∗(0, 1−ε)∩BX∗∗(2x, ‖z−2x‖) = ∅ and henceDz∩BX∗∗(0, 1−ε) = ∅
for all ε > 0.

Proposition 2.5. If X is a (non-trivial) strict u-ideal in Y and P :
Y → X is a projection then ‖P‖ ≥ 2.

Proof. Assume that P : Y → X is a projection with norm ‖P‖ = λ. Let
y ∈ SY ∩ kerP , let ε > 0 and choose x ∈ SX such that

BX(0, 1− ε) ∩BX(2x, ‖y − 2x‖) = ∅
using Theorem 2.4. We then get ‖2x‖ = ‖P (y − 2x)‖ ≤ λ‖y − 2x‖ so that
(2− 2/λ)x ∈ BX(2x, ‖y− 2x‖). Then (2− 2/λ)x /∈ BX(0, 1− ε) and since ε
is arbitrary we get 2− 2/λ ≥ 1 or λ ≥ 2.

Since dual spaces are 1-complemented in their biduals they can never be
strict u-ideals in their biduals. In fact, they cannot be a strict u-ideal in any
superspace.

Corollary 2.6. Assume that X is a (non-trivial) u-ideal in Y . If X is
λ-complemented in its bidual with λ < 2 then X is not a strict u-ideal in Y .

Proof. Let P : X∗∗ → X be a projection with norm ‖P‖ = λ. Let
y ∈ Y \X and Z = span(X, {y}). Let x∗∗ ∈ Dy. Note that Dy is non-empty
since HB(X,Y ) is. Then for x ∈ X,

‖P (x∗∗)− x‖ ≤ λ‖x∗∗ − x‖ ≤ λ‖x− y‖.
Hence X is λ-complemented in Z by the projection Q : Z → X defined by
Q(y) = P (x∗∗) and Q(x) = x. From Propositions 2.5 and 2.1 we conclude
that X cannot be a strict u-ideal in Y .

Harmand and Lima [11, Theorem 3.5] showed that if X is an M-ideal
in its bidual then X contains almost isometric copies of c0 (i.e. X has a
subspace isomorphic to c0). Next we generalize this to strict u-ideals. Note
that the discussion regarding isometric copies of c0 in [12, p. 79] also applies
to strict u-ideals.

Theorem 2.7. If X is a (non-trivial) strict u-ideal in Y , then X con-
tains a copy of c0.

Proof. If X does not contain a copy of c0 then X is a u-summand in Y
by Theorem 3.5 in [9]. Using Proposition 2.5 gives us a contradiction.

The following is proved for separable Banach spaces and Banach spaces
not containing `1 in Proposition 5.2 in [9]. For everyX the natural embedding
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kX∗ : X∗ → X∗∗∗ is an element of HB(X,X∗∗). We let π : X∗∗∗ → X∗∗∗

denote the associated ideal projection with kerπ = X⊥.

Theorem 2.8. X is a strict u-ideal in X∗∗ if and only if ‖I − 2π‖ = 1.

Proof. Assume that X is a strict u-ideal in its bidual. Let x∗∗∈X∗∗\X.
We have X ∩

⋂
x∈X BX∗∗(x, ‖x − x∗∗‖) = ∅ since any element in the inter-

section would define a norm one projection from span(X, {x∗∗}) onto X,
contradicting Proposition 2.5 (and Proposition 2.1).

By Lemma 2.4 in [10] we get
⋂
x∈X BX∗∗(x, ‖x − x∗∗‖) = {x∗∗} and so

the only element in HB(X,X∗∗) is kX∗ .
The other direction is trivial as X∗ is norming for X∗∗.

Remark 2.1. The above proof shows that if X is a strict u-ideal in its
bidual then HB(X,X∗∗) has only one element, i.e. the only extension operator
is the trivial one kX∗ . In particular, the set Dx∗∗ = {x∗∗} is a singleton for
every x∗∗ ∈ X∗∗ (see (2.1), page 277).

The following theorem was inspired by Theorem 5.5 in [9]. The main
improvement is that we remove the assumption that the space does not
contain `1.

Theorem 2.9. Let X be a Banach space. The following statements are
equivalent.

(a) X is a strict u-ideal in its bidual.
(b) Every subspace Y of X is a strict u-ideal in its bidual.
(c) For every subspace Y of X and y∗∗ ∈ SY ∗∗ ,

inf
y∈SY

‖y∗∗ − 2y‖ = 1.

(d) Every separable subspace Y of X is a strict u-ideal in its bidual.
(e) For every separable subspace Y of X and y∗∗ ∈ SY ∗∗ ,

inf
y∈SY

‖y∗∗ − 2y‖ = 1.

Proof. (b)⇒(d) and (c)⇒(e) are trivial. (b)⇒(c) and (d)⇒(e) follow from
Theorem 2.4.

(a)⇒(b). We use Theorem 2.8. Let Y be a closed subspace of X with
natural embedding iY : Y → X. By assumption ‖I − 2πX‖ = 1 where
πX = kX∗k

∗
X . We need to show that ‖I − 2πY ‖ = 1 where πY = kY ∗k

∗
Y . It is

easy to check i∗∗Y kY = kXiY and i∗∗∗Y kX∗ = kY ∗i
∗
Y so that i∗∗∗Y πX = πY i

∗∗∗
Y .

We get
1 ≥ ‖i∗∗∗Y (I − 2πX)‖ = ‖(I − 2πY )i∗∗∗Y ‖.

Since i∗∗Y : Y ∗∗ → X∗∗ is isometric, i∗∗∗Y is onto Y ∗∗∗ and hence ‖I−2πY ‖ = 1.
(e)⇔(d) is proved in Theorem 5.5 in [9].
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Finally, (d)⇔(a) follows from Proposition 2.3 in [9] which characterizes
strict u-ideals using sequences. Hence strict u-ideals are separably deter-
mined.

A quick look at Theorem 2.7 gives the following corollary.

Corollary 2.10. Assume that X is non-reflexive. If X is a strict u-ideal
in its bidual then every non-reflexive subspace of X contains a copy of c0.

Remark 2.2. From Theorem 5.1 in [9] we know that a Banach space is
not a strict u-ideal in its bidual if it contains `1. The above corollary gives
an alternative proof of this fact.

From Proposition 2.5 we know that `∞ is not a strict u-ideal in its bidual.
The next theorem shows that it is not even a u-ideal. We will also look at
some consequences below.

Theorem 2.11. `∞ is not a u-ideal in its bidual.

Before giving the proof of this theorem we need to introduce some more
notation.

It is well-known that `∞ is isometrically isomorphic to C(βN) where βN
is the Stone–Čech compactification of the natural numbers (see e.g. Corol-
lary 15.2 in [6]). The Riesz representation theorem identifies the dual with
the measures on βN. The state space of C(βN) is the set

S = {x∗ ∈ `∗∞ : ‖x∗‖ = x∗(1) = 1},

which is a weak∗-closed subset of the dual unit ball. S can be identified with
the probability measures on βN; the set of extreme points of S, extS, is
homeomorphic to βN; and S is a Bauer simplex (see e.g. [2, Corollary II.4.2]).
C(βN) is isometrically isomorphic to A(S), the continuous affine functions
on S (see e.g. [2, Theorem II.1.8]). Thus for f ∈ A(S) and s ∈ S there is
a unique probability measure µ on extS such that f(s) =

	
extS f dµ. We

will write s = r(µ) where r is the resultant (or barycenter) function. It is
well-known that S is a simplex (see e.g. [18, p. 53]) so µ is unique, i.e. r is
1-1 ([18, Proposition 11.1]).

We say that a measure µ on βN is discrete if there is a countable set
{zj}∞j=1 ⊂ βN and numbers {aj}∞j=1 such that µ =

∑∞
j=1 ajδzj . On the other

hand, µ is continuous if µ({z}) = 0 for all z ∈ βN. Any measure µ can be
written uniquely as µ = µd + µc where µd is discrete and µc is continuous
by letting E = {z : µ({z}) 6= 0} and defining µd(A) = µ(A ∩ E) and
µc(A) = µ(A \ E). Since N is countable we can write µd = µnd + µbd where
µnd(A) = µd(A ∩ N) and µbd(A) = µd(A \ N).
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We will define the following faces of S:

S1 = {s ∈ S : s = r(µnd), a discrete measure on N},
S2 = {s ∈ S : s = r(µbd), a discrete measure on βN},
S3 = {s ∈ S : s = r(µc), a continuous measure on βN}.

We have S = conv(
⋃3
i=1 Si) and Si ∩ Sj = ∅ for i 6= j. We will also need the

complementary face of Si, namely S′i = conv(
⋃
i 6=j Si). (Here we have used

that closed faces in a simplex are split; see [2, pp. 132–133, Proposition II.6.7
and Corollary II.6.8] and [4, p. 140, Theorem 8.3].) Also note that S3 6= ∅
since we can pull back Lebesgue measure from C[0, 1]∗.

Proof of Theorem 2.11. We identify `∞ with A(S) and A(S)∗∗ with the
bounded affine functions on S, Ab(S). (This is “easy to check” [4, p. 43].)
Each s ∈ S can be written uniquely as s = αisi+(1−αi)s′i where αi ∈ [0, 1],
si ∈ Si and s′i ∈ S′i. Thus the functions fi(s) = 2αi − 1 are well-defined and
fi ∈ Ab(S). We will use that fi = 1 on Si and fi = −1 on S′i.

Assume for contradiction that `∞ is a u-ideal in its bidual. Define H =
span (fi)3i=1, a subspace of `∗∗∞, and let ε > 0.

By the local characterization of u-ideals (Proposition 3.6 in [9]), there is
an operator L : H → `∞ such that ‖L‖ ≤ 1 + ε, ‖h − 2L(h)‖ ≤ (1 + ε)‖h‖
for all h ∈ H and L(x) = x for all x ∈ H ∩ `∞. Since L(1) = 1 we get∑3

i=1 L(fi) = −1.
Using ‖fi − 2L(fi)‖ ≤ (1 + ε)‖fi‖ ≤ 1 + ε we see that on S, −(1 + ε) ≤

−fi + 2L(fi) ≤ 1 + ε or fi − 1− ε ≤ 2L(fi) ≤ fi + 1 + ε. So on Si we have
−ε/2 ≤ L(fi) ≤ 1 + ε/2.

By density of N in its compactification βN we must have L(f1) ≥ −ε/2
on βN since L(f1) ≥ −ε/2 on N. Also, we have L(f2) ≥ −ε/2 on βN \ N.
Since N is countable the continuous measure µ corresponding to s ∈ S3 has
support on βN \ N so

Lfi(s) =
�

extS

Lfi dµ =
�

βN\N

Lfi dµ ≥ −ε/2

for i = 1, 2. Thus on S3 we have

−ε/2 ≤ L(f3) = −1− L(f1)− L(f2) ≤ −1 + ε,

or 0 ≤ −1 + 3ε/2. Since ε > 0 is arbitrary this is a contradiction.

Remark 2.3. Since `∞ is injective, `∞ is never a strict u-ideal in Z =
span{`∞, f} for f ∈ `∗∗∞. In some cases it is a u-ideal, however.

In the notation above, set f = 1 on S1 and f = −1 on S′1 = conv(S2∪S3).
Let ε > 0, xi ∈ `∞ and ri = ‖f−xi‖ for i = 1, 2, 3. Without loss of generality
we may assume that xi =

∑m
k=1 ai,kχAk

where Ak is a partition of N (use an
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ε-net on the set (xi(n))∞n=1 if necessary). We may assume that A1, . . . , Ap
are finite sets and that Ap+1, . . . , Am are infinite.

Define an element x ∈ `∞ by setting xn = 2 for n ∈
⋃p
k=1Ak and xn = 0

for n ∈
⋃m
k=p+1Ak. Then x ∈ `∞∩

⋂3
i=1BZ(f+xi, ri+ε) and by Theorem 1.3

in [15], `∞ is a u-ideal in Z.

As noted in Proposition 2.5, a non-reflexive dual space can never be a
strict u-ideal. Using that `∞ is not a u-ideal in its bidual we can say even
more.

Theorem 2.12. Let X be a Banach space such that X∗ is a u-ideal in
its bidual. Then X∗ is a u-summand.

Proof. If X∗ contains a copy of c0 then it contains a copy of `∞ by
Bessaga and Pełczyński [5]. By Partington [16] and Talagrand [19, Theo-
rem 6] (and injectivity) it has (1 + ε)-complemented copies of `∞ for every
ε > 0. The local characterization of u-ideals (Proposition 4.1 in [9]) would
then imply that `∞ is a u-ideal in its bidual, which is impossible by Theo-
rem 2.11. Hence X∗ is a u-ideal not containing c0, so it is a u-summand by
Theorem 3.5 in [9].

Remark 2.4. Assume X is a strict u-ideal in its bidual. Then ‖I − 2π‖
= 1 and considering the adjoint projection P = π∗ on X(4) we have kerP =
(imπ)⊥ = (X∗)⊥. Since ‖I − 2P‖ = ‖I − 2π‖ = 1 we conclude that X∗ is a
u-ideal in its bidual and by the above theorem even a u-summand.

We do not know whether X a u-ideal in its bidual and X∗ a u-summand
in its bidual implies that X is a strict u-ideal.

3. Geometric properties. A slice of a bounded, closed, convex subset
C of X is a subset S(C, x∗, α) of C defined by

S(C, x∗, α) = {x ∈ C : x∗(x) > sup
y∈C

x∗(y)− α},

where x∗ ∈ X∗\{0} and α > 0. If X is a dual space we can speak of a weak∗-
slice when the defining functional is weak∗-continuous. A bounded, closed,
convex set C is dentable if it has slices of arbitrarily small diameter. Recall
that the diameter of a non-empty set A is given by diam(A) = sup{‖x−y‖ :
x, y ∈ A}. A point x ∈ C is called a denting point in C if there is a sequence
of slices Sn of C with x ∈ Sn, for all n, such that diam(Sn) → 0. If C is
a subset of a dual space X∗ then x∗ ∈ C is a weak∗-denting point in C
if there is a sequence of weak∗-slices Sn of C with x∗ ∈ Sn for all n such
that diam(Sn) → 0. A point x ∈ C is called a strongly exposed point in
C if there is an x∗ ∈ X∗ such that x∗(x) > x∗(y) for all x 6= y ∈ C and
diam(S(C, x∗, α))→ 0 as α→ 0. Weak∗ strongly exposed points are defined
in the obvious way.
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By definition ω∗-str.exp.BX∗ ⊂ ω∗-dent.BX∗ . When X is a strict u-ideal
in its bidual we can say much more. The next proposition highlights that
this is a really strong geometric property.

Proposition 3.1. Assume that X is a strict u-ideal in its bidual. Then

str.exp.BX∗ ⊂ ω∗-dent.BX∗ .
Proof. Let x∗ ∈ str.exp.BX∗ and let x∗∗ ∈ SX∗∗ be a strongly exposing

functional for x∗. Let ε > 0 and choose δ0 > 0 such that {u∗ ∈ BX∗ :
x∗∗(u∗) > 1−

√
δ0} ⊂ BX∗(x∗, ε) and 1 + εδ0 > 2

√
δ0(1 + ε).

Let δ ∈ (0, δ0). Then 1 + εδ > 2
√
δ(1 + ε), which is equivalent to

2(1− δ)/(1 + εδ)−2+
√
δ > 0. Choose η > 0 with 0 < η < 2(1− δ)/(1 + εδ)

− 2 +
√
δ and {u∗ ∈ BX∗ : x∗∗(u∗) > 1− η} ⊂ BX∗(x∗, εδ/(1 + εδ)).

SinceX is a strict u-ideal we have 1 = infx∈SX
‖x∗∗−2x‖. Choose x ∈ SX

such that ‖x∗∗ − 2x‖ < 1 + η. Choose u∗ ∈ BX∗ such that u∗(x) = 1. Then

1 + η > ‖x∗∗ − 2x‖ ≥ u∗(2x− x∗∗) = 2− x∗∗(u∗).
Thus x∗∗(u∗) > 1− η. It follows that ‖u∗ − x∗‖ < εδ/(1 + εδ).

Let u = x/x∗(x). Then x∗(x) ≥ u∗(x) − ‖x∗ − u∗‖ > 1/(1 + εδ) so
‖u‖ = 1/x∗(x) ≤ 1 + εδ. If z∗ ∈ BX∗ and z∗(u) > 1 − δ, then z∗(x) =
z∗(u)x∗(x) > (1− δ)x∗(x). Hence

1 + η > ‖x∗∗ − 2x‖ ≥ z∗(2x− x∗∗) ≥ 2(1− δ)x∗(x)− x∗∗(z∗),
and x∗∗(z∗) > 2(1 − δ)x∗(x) − 1 − η ≥ 2(1− δ)/(1 + εδ) − 1 − η. But then
x∗∗(z∗) > 1−

√
δ, from which it follows that ‖z∗ − x∗‖ < ε. Thus x∗ is con-

tained in weak∗-slices of arbitrarily small diameter, i.e. x∗ is weak∗-denting.

Next we use the weak∗-denting points in the unit ball to characterize
when a u-ideal is a strict u-ideal. For Banach spaces not containing `1 the
equivalence of (a) and (d) was proved in Theorem 7.4 in [9].

Proposition 3.2. Let X be a Banach space. Assume that X is a u-ideal
in its bidual. Then the following are equivalent.

(a) X is a strict u-ideal in its bidual.
(b) BX∗ = conv(ω∗-str.exp.BX∗).
(c) BX∗ = conv(ω∗-dent.BX∗).
(d) X∗ contains no proper norming subspaces.
(e) Tφ = IX∗∗ where φ ∈ HB(X,X∗∗) is the unconditional extension op-

erator.

Proof. (a)⇒(b) follows from Theorem 2.8 and Proposition 4.1 in [13].
(b)⇒(c) is trivial.
(c)⇒(a). The weak∗-denting points have unique norm-preserving exten-

sion so HB(X,X∗∗) = {kX∗}. X is a strict u-ideal by Theorem 2.8.
(a)⇒(d). Follows from Theorem 2.8 and Proposition 2.7 in [9].
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(d)⇒(e). By Proposition 2.5 in [10],X has the unique extension property
and by definition the only contractive operator T : X∗∗ → X∗∗ with T |X =
IX is T = IX∗∗ .

(e)⇒(a). X is a strict u-ideal by Theorem 2.8.

Remark 3.1. The dual of a Banach space X has the Radon–Nikodým
property if and only if every separable subspace of X has separable dual
(see e.g. [7, Corollary VII.2.8]). This is the case if X is a strict u-ideal in its
bidual (see e.g. Proposition 4.1 in [13] or Proposition 2.8 in [9]).

On the other hand, if X∗ has the Radon–Nikodým property then BX∗ =
convw

∗
(ω∗-str.exp.BX∗) [17, Theorem 5.12]. We do not know if this is enough

to ensure that a u-ideal is strict.
It is also an open problem whether a u-ideal is strict if the space does

not contain `1 (see Question 5 in [9]).
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