STUDIA MATHEMATICA 195 (3) (2009)

Erratum to "Can $\mathcal{B}(\ell^p)$ ever be amenable?"

(Studia Math. 188 (2008), 151–174)

by

MATTHEW DAWS (Leeds) and VOLKER RUNDE (Edmonton)

Some of the results of Section 3 of [2] are incorrect; in particular, we claimed that the implication (i) \Rightarrow (ii) of Lemma 3.3 was "routine", whereas it appears to be false, or at least difficult to prove.

The main result of this section, Theorem 3.2, claims that a separable Banach algebra \mathfrak{A} is ultra-amenable (that is, all ultrapowers of \mathfrak{A} are amenable) if and only if $\ell^{\infty}(\mathfrak{A})$ is amenable. However, if we let $\mathfrak{A} = \mathbb{C}$, then any ultrapower of \mathfrak{A} is also \mathbb{C} , and hence trivially amenable. While ℓ^{∞} is amenable, this is not trivial, and in no sense do our arguments reduce to this special case.

Furthermore, the motivation for Section 3 was [1, Section 5], where the first named author studied similar ideas for ultra-amenability. The proof of [1, Proposition 5.4], (ii) \Rightarrow (i), also needs further justification, as currently the map ψ_0 is implicitly assumed to be at least bounded below. However, in this case, in light of [1, Proposition 4.7], it seems possible that this could be true, at least for certain well-behaved spaces \mathfrak{A} .

Let us restate Theorem 3.2. In light of the example of $\mathfrak{A} = \mathbb{C}$, it seems unlikely that Lemma 3.3, even suitably adjusted, could be true, and so fully correcting Theorem 3.2 seems out of reach.

THEOREM. Let \mathfrak{A} be a Banach algebra, and consider the conditions:

- (i) $\ell^{\infty}(\mathfrak{A})$ is amenable;
- (ii) $\ell^{\infty}(\mathbb{I}, \mathfrak{A})$ is amenable for every index set \mathbb{I} ;
- (iii) \mathfrak{A} is ultra-amenable.

Then (ii) \Rightarrow (i) and (ii) \Rightarrow (iii).

Proof. Clearly (ii) \Rightarrow (i), and as an ultrapower of \mathfrak{A} is a quotient of $\ell^{\infty}(\mathbb{I}, \mathfrak{A})$ for a suitable \mathbb{I} , and as amenability passes to quotients, it follows that (ii) \Rightarrow (iii).

2010 Mathematics Subject Classification: Primary 47L10; Secondary 46B08, 46H20.

Corollary 4.4 uses Theorem 3.2, but only implication (ii) \Rightarrow (iii), and hence remains true. The rest of [2] is unaffected. In particular, the tentative approach, outlined in Section 6, to showing that $\mathcal{B}(\ell^p)$ is not amenable, is not affected. We remark that the second named author has recently shown in [3] that, in particular, $\mathcal{B}(\ell^p)$ is not amenable for any $p \in [1, \infty)$; the arguments only rely upon Section 2 of [2] and are hence unaffacted by this erratum.

Acknowledgments. We wish to thank Seytek Tabaldyev who brought this problem to our attention.

References

- M. Daws, Amenability of ultrapowers of Banach algebras, Proc. Edinburgh Math. Soc. (2) 52 (2009), 307–338.
- [2] M. Daws and V. Runde, Can $\mathcal{B}(\ell^p)$ ever be amenable?, Studia Math. 188 (2008), 151–174.
- [3] V. Runde, $\mathcal{B}(\ell^p)$ is never amenable, preprint, arXiv:0907.3984v3 [math.FA].

School of Mathematics University of Leeds Leeds LS2 9JT, United Kingdom E-mail: matt.daws@cantab.net Department of Mathematical and Statistical Sciences University of Alberta Edmonton, Alberta, Canada T6G 2G1 E-mail: vrunde@ualberta.ca

Received August 24, 2009

(6687)