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Convergence of multiple ergodic averages along cubes
for several commuting transformations

by

Qing Chu (Marne-la-Vallée)

Abstract. We prove the norm convergence of multiple ergodic averages along cubes
for several commuting transformations, and derive corresponding combinatorial results.
The method we use relies primarily on the “magic extension” established recently by B. Host.

1. Introduction

1.1. Results. By a system, we mean a probability space endowed with a
single or several commuting measure preserving transformations. We prove
the following result regarding the convergence of multiple ergodic averages
along cubes for several commuting transformations:

Theorem 1.1. Let d ≥ 1 be an integer and (X,B, µ, T1, . . . , Td) be a
system. Let fε, ε ∈ {0, 1}d\{00 . . . 0}, be 2d−1 bounded measurable functions
on X. Then the averages

(1)
d∏
i=1

1
Ni −Mi

∑
ni∈[Mi,Ni)
i=1,...,d

∏
ε∈{0,1}d
ε6=00...0

Tn1ε1
1 · · ·Tndεd

d fε

converge in L2(µ) for all sequences of intervals [M1, N1), . . . , [Md, Nd) whose
lengths Ni −Mi (1 ≤ i ≤ d) tend to ∞.

To illustrate, when d = 2, the average (1) is

(2)
1

(N1 −M1) · (N2 −M2)

∑
n1∈[M1,N1)
n2∈[M2,N2)

Tn1
1 f10 · Tn2

2 f01 · Tn1
1 Tn2

2 f11.

When Theorem 1.1 is restricted to the case that each function fε is the
indicator function of a measurable set, we have the following lower bound
for these averages:
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Theorem 1.2. Let (X,B, µ, T1, . . . , Td) be a system and let A ∈ B. Then
the limit of the averages

(3)
d∏
i=1

1
Ni −Mi

∑
ni∈[Mi,Ni)
i=1,...,d

µ
( ⋂
ε∈{0,1}d

T−n1ε1
1 · · ·T−ndεd

d A
)

exists and is greater than or equal to µ(A)2
d

for all sequences of intervals
[M1, N1), . . . , [Md, Nd) whose lengths Ni −Mi (1 ≤ i ≤ d) tend to ∞.

Recall that the upper density d∗(A) of a set A ⊂ Zd is defined to be

d∗(A) = lim sup
Ni→∞
1≤i≤d

d∏
i=1

1
Ni
|A ∩ ([1, N1]× · · · × [1, Nd])|.

A subset E of Zd is said to be syndetic if Zd can be covered by finitely
many translates of E.

We have the following corresponding combinatorial result:

Theorem 1.3. Let A ⊂ Zd with d∗(A) > δ > 0. Then the set of n =
(n1, . . . , nd) ∈ Zd such that

d∗
( ⋂
ε∈{0,1}d

{A+ (n1ε1, . . . , ndεd)}
)
≥ δ2d

is syndetic.

1.2. History of the problem. In the case where T1 = · · · = Td = T ,
the average (1) is

(4)
d∏
i=1

1
Ni −Mi

∑
ni∈[Mi,Ni)
i=1,...,d

∏
ε∈{0,1}d
ε6=00...0

Tn1ε1+···+ndεdfε.

The norm convergence of (4) was proved by Bergelson for d = 2 in [4], and
more generally, by Host and Kra for d > 2 in [7]. The related pointwise
convergence problem was studied by Assani who showed in [1] that the
averages (4) converge a.e.

Some lower bounds for the average (3) were provided by Leibman in [8].
In the same paper, he gave an example showing that the average (2) can
diverge if the transformations do not commute.

However, Assani showed in [1] that the averages

1
N2

N∑
n,m=1

f(Tn1 x)g(Tm2 x)h(Tn+m
3 x)
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do converge a.e. even if the transformations do not necessarily commute. He
extended this result to the case of six functions in [2].

The norm convergence of multiple ergodic averages with several com-
muting transformations of the form

(5)
1
N

N∑
n=1

Tn1 f1 · . . . · Tnd fd

was proved by Conze and Lesigne [5] when d = 2. The general case was
originally proved by Tao [9], and subsequent proofs were given by Austin [3],
Host [6] and Towsner [10].

1.3. Methods. The main tools we use in this paper are the seminorms
and the existence of “magic extensions” for commuting transformations es-
tablished by Host [6]. The magic extensions can be viewed as a concrete
form of the pleasant extensions built by Austin in [3].

2. Seminorms and upper bound

2.1. Notation and definitions. Given a probability space (X,B, µ),
in general we omit the σ-algebra from our notation and write (X,µ).

For an integer d ≥ 1, we write [d] = {1, . . . , d} and identify {0, 1}d with
the family of subsets of [d]. Therefore, the assertion “i ∈ ε” is equivalent to
εi = 1. In particular, ∅ is the same as 00 . . . 0 ∈ {0, 1}d. We write |ε| =

∑
i εi

for the number of elements in ε.
Let (X,µ, T1, . . . , Td) be a system. For each n = (n1, . . . , nd), ε =

{i1, . . . , ik} ⊂ [d], and for each integer 1 ≤ k ≤ d, we write

Tnε = T
ni1
i1
· · ·Tnik

ik
.

For any transformation S of some probability space, we denote by I(S)
the σ-algebra of S-invariant sets.

We define a measure µ1 on X2 by

µ1 = µ×I(T1) µ1.

This means that for f0, f1 ∈ L∞(µ), we have�
(f0 ⊗ f1)(x0, x1) dµ1(x0, x1) =

�
E(f0 | I(T1)) · E(f1 | I(T1)) dµ.

For 2 ≤ k ≤ d, we define a measure µk (see [6]) on X2k
by

µk = µk−1 ×I(T4k )
µk−1, where T4k := Tk × · · · × Tk︸ ︷︷ ︸

2k−1

.

We write X∗ = X2d
, and points of X∗ are written as x = (xε : ε ⊂ [d]). We

write µ∗ := µd.
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For f ∈ L∞(µ), define

|||f |||T1,...,Td
:=
( � ∏

ε∈{0,1}d
f(xε) dµ∗(x)

)1/2d

.

It was shown in Proposition 2 of [6] that ||| · |||T1,...,Td
is a seminorm on L∞(µ).

We call this the box seminorm associated to T1, . . . , Td.

For ε ⊂ [d], ε 6= ∅, we write |||·|||ε for the seminorm on L∞(µ) associated to
the transformations Ti, i ∈ ε. For example, ||| · |||110...00 is the seminorm asso-
ciated to T1, T2 because ε = 110 . . . 0 ∈ {0, 1}d is identified with {1, 2} ⊂ [d].

By Proposition 3 in [6], if we rearrange the order of the digits in ε, the
seminorm ||| · |||ε remains unchanged.

2.2. Upper bound. In the following, we assume that all functions fε,
ε ⊂ [d], are real-valued and satisfy |fε| ≤ 1.

Proposition 2.1. Under the above notation and hypotheses,

(6) lim sup
Ni−Mi→∞
i=1,...,d

∥∥∥∥ d∏
i=1

1
Ni −Mi

∑
n∈[M1,N1)×···×[Md,Nd)

∏
ε⊂[d]
ε6=∅

Tnε fε

∥∥∥∥
L2(µ)

≤ min
ε⊂[d]
ε6=∅

|||fε|||T1...Td
.

Proof. We proceed by induction on d. For d = 1, we have∥∥∥∥ 1
N1 −M1

∑
n1∈[M1,N1)

Tn1
1 f1

∥∥∥∥2

L2(µ)

→
�
E(f1 | I(T1))2 dµ = |||f1|||2T1

.

Let d ≥ 2 and assume that (6) is established for d − 1 transformations.
We show that for every α ⊂ [d], α 6= ∅, the lim sup on the left hand side of
(6) is bounded by |||fα|||T1,...,Td

. By a permutation of digits if needed, we can
assume that α 6= 0 . . . 01 (d − 1 zeros). The square of the norm on the left
hand side of (6) is equal to∥∥∥∥ 1

Nd −Md

∑
nd∈[Md,Nd)

Tnd
d f0...01

·
d−1∏
i=1

1
Ni −Mi

∑
m∈[M1,N1)×···×[Md−1,Nd−1)

∏
η⊂[d−1]
η 6=∅

Tmη (fη0 · Tnd
d fη1)

∥∥∥∥2

L2(µ)

.
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By the Cauchy–Schwarz inequality, this is less than or equal to

(7)
1

Nd −Md

∑
nd∈[Md,Nd)

∥∥∥∥d−1∏
i=1

1
Ni −Mi

·
∑

m∈[M1,N1)×···×[Md−1,Nd−1)

∏
η⊂[d−1]
η 6=∅

Tmη (fη0 · Tnd
d fη1)

∥∥∥∥2

L2(µ)

.

By the induction hypothesis, when Ni − Mi → ∞, i = 1, . . . , d − 1, the
lim sup of the square of the norm in (7) is less than or equal to

min
η⊂[d−1]
η 6=∅

‖fη0 · Tnd
d fη1‖2T1,...,Td−1

,

where ‖ · ‖T1,...,Td−1
is the seminorm associated to the d− 1 transformations

T1, . . . , Td−1.
Note that α is equal to η0 or η1 for some η ⊂ [d − 1], and by the

Cauchy–Schwarz inequality, we have

lim
Nd−Md→∞

1
Nd −Md

∑
nd∈[Md,Nd)

‖fη0 · Tnd
d fη1‖2

d−1

T1,...,Td−1

= lim
Nd−Md→∞

1
Nd −Md

∑
nd∈[Md,Nd)

� ⊗
η⊂[d−1]

(fη0 · Tnd
d fη1) dµd−1

=
�
E
( ⊗
η⊂[d−1]

fη0

∣∣∣ I(T4d )
)
· E
( ⊗
η⊂[d−1]

fη1

∣∣∣ I(T4d )
)
dµd−1

≤
( � ∣∣∣E( ⊗

α⊂[d]

fα

∣∣∣ I(T4d )
)∣∣∣2 dµd−1

)1/2
=
( � ⊗

α⊂[d]

fα dµ
∗
)1/2

= |||fα|||2
d−1

T1,...,Td
.

This completes the proof.

The following is a generalization of Proposition 2.1, although its proof
depends upon that result.

Proposition 2.2. Let r be an integer with 1 ≤ r ≤ d. Then

(8) lim sup
Ni−Mi→∞
i=1,...,d

∥∥∥∥ d∏
i=1

1
Ni−Mi

∑
n∈[M1,N1)×···×[Md,Nd)

∏
ε⊂[d]

0<|ε|≤r

Tnε fε

∥∥∥∥
L2(µ)

≤min
ε⊂[d]
|ε|=r

|||fε|||ε.

Proof. We show that for every α ⊂ [d] with |α| = r, the lim sup in (8) is
bounded by |||fα|||α.

By a permutation of digits we can restrict to the case that

α = 11 . . . 1︸ ︷︷ ︸
r

00 . . . 0.
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We show that

(9) lim sup
Ni−Mi→∞
i=1,...,d

∥∥∥∥ d∏
i=1

1
Ni−Mi

∑
n∈[M1,N1)×···×[Md,Nd)

∏
ε⊂[d]

0<|ε|≤r

Tnε fε

∥∥∥∥
L2(µ)

≤|||fα|||α.

The norm in (9) is equal to

(10)
∥∥∥∥ d∏
i=r+1

1
Ni−Mi

∑
m∈[Mr+1,Nr+1)×···×[Md,Nd)

∏
ε⊂{r+1,...,d}

ε6=∅

Tmε fε ·
r∏
j=1

1
Nj−Mj

·
∑

n∈[M1,N1)×···×[Mr,Nr)

( ∏
η⊂[r]
η 6=∅

Tnη
∏

θ⊂[d−r]
|ηθ|≤r

Tnr+θfηθ

)
· (Tn1

1 · · ·T
nr
r fα)

∥∥∥∥
L2(µ)

.

where r + θ = {r + k : k ∈ θ}. Let

gη =


∏

θ⊂[d−r]
|ηθ|≤r

Tnr+θfηθ, 0 < |η| < r,

fα, |η| = r.
Then (10) is equal to∥∥∥∥ d∏

i=r+1

1
Ni −Mi

∑
m∈[Mr+1,Nr+1)×···×[Md,Nd)

( ∏
ε⊂{r+1,...,d}

ε6=∅

Tmε fε

)
(11)

·
r∏
j=1

1
Nj −Mj

∑
n∈[M1,N1)×···×[Mr,Nr)

(∏
η⊂[r]
η 6=∅

Tnη gη

)∥∥∥∥
L2(µ)

.

By the Cauchy–Schwarz inequality, the square of (11) is less than or equal
to

(12)
d∏

i=r+1

1
Ni −Mi

·
∑

m∈[Mr+1,Nr+1)×···×[Md,Nd)

∥∥∥∥ r∏
j=1

1
Nj−Mj

∑
n∈[M1,N1)×···×[Mr,Nr)

∏
η⊂[r]
η 6=∅

Tnη gη

∥∥∥∥2

L2(µ)

.

By Proposition 2.1, the lim sup of (12) as Ni −Mi → ∞, i = 1, . . . , r, is
bounded by

d∏
i=r+1

1
Ni −Mi

∑
ni∈[Mi,Ni)
i=r+1,...,d

‖fα‖2T1,...,Tr
= ‖fα‖2T1,...,Tr

.

This completes the proof.
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3. The case of the magic extension. We recall the definition of a
“magic” system.

Definition 3.1 (Host [6]). A system (X,µ, T1, . . . , Td) is called magic if
whenever f ∈ L∞(µ) is such that E(f |

∨d
i=1 I(Ti)) = 0, then |||f |||T1,...,Td

= 0.

Given a system (X,µ, T1, . . . , Td), let X∗ and µ∗ be defined as in Section
2.1. We denote by T ∗i the side transformations of X∗, given by

for every ε ∈ {0, 1}d, (T ∗i x)ε =
{
Tixε if εi = 0,
xε if εi = 1.

By Theorem 2 in [6], (X∗, µ∗, T ∗1 , . . . , T
∗
d ) is a magic system, and admits

(X,µ, T1, . . . , Td) as a factor.
For ε ⊂ [d], ε 6= ∅, we write ||| · |||∗ε for the seminorm on L∞(µ∗) associated

to the transformations T ∗i , i ∈ ε. Moreover, we define the σ-algebra

Z∗ε :=
∨
i∈ε
I(T ∗i )

of (X∗, µ∗). For example, Z∗{1,2,d} = I(T ∗1 ) ∨ I(T ∗2 ) ∨ I(T ∗d ).
We prove Theorem 1.1 for the magic system (X∗, µ∗, T ∗1 , . . . , T

∗
d ).

Theorem 3.2. Let fε, ε ⊂ [d], be functions on X∗ with ‖fε‖L∞(µ∗) ≤ 1
for every ε. Then the averages

(13)
d∏
i=1

1
Ni −Mi

∑
n∈[M1,N1)×···×[Md,Nd)

∏
ε⊂[d]
ε 6=∅

T ∗nε fε

converge in L2(µ∗) for all sequences of intervals [M1, N1), . . . , [Md, Nd)
whose lengths Ni −Mi (1 ≤ i ≤ d) tend to ∞.

Since the system (X∗, µ∗, T ∗1 , . . . , T
∗
d ) admits (X,µ, T1, . . . , Td) as a fac-

tor, Theorem 3.2 implies our main result, Theorem 1.1.

Theorem 3.3. For every ε ⊂ [d], ε 6= ∅, and every function f ∈ L∞(µ∗),

(14) if Eµ∗(f | Z∗ε ) = 0, then |||f |||∗ε = 0.

Proof. Assume |ε| = r > 0. By a permutation of digits we can assume
that

ε = {d− r + 1, d− r + 2, . . . , d}.

We define a new system (Y, ν, S1, . . . , Sr), where Y = X2d−r
and ν =

µd−r, the d− r step measure associated to T ∗1 , . . . , T
∗
d−r. Define

Si = Td−r+i × · · · × Td−r+i︸ ︷︷ ︸
2d−r
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on Y for i = 1, . . . , r. Note that by definition, Y ∗ = X2d
= X∗, and

S∗i = T ∗d−r+i, S4i = T4d−r+i

for i = 1, . . . , r. Moreover,

ν1 = ν ×I(S1) ν = µd−r ×I(T4d−r+1)
µd−r = µd−r+1.

By induction,

νi+1 = νi ×I(S4i+1)
νi = µd−r+i ×I(T4d−r+i+1)

µd−r+i = µd−r+i+1,

for i = 1, . . . , r − 1. Therefore (X∗, µ∗, T ∗d−r+1, . . . , T
∗
d ) is just the magic

extension (Y ∗, ν∗, S∗1 , . . . , S
∗
r ) of (Y, ν, S1, . . . , Sr). So

Z∗ε =
∨
i∈ε
I(T ∗i ) =

r∨
i=1

I(S∗i ) :=W∗Y .

If f ∈ L∞(µ∗) with Eµ∗(f | Z∗ε ) = 0, this is equivalent to Eµ∗(f |W∗Y )
= 0, and by Theorem 2 in [6], we have |||f |||∗S∗1 ,...,S∗r = 0. Thus |||f |||∗ε =
|||f |||∗S∗1 ,...,S∗r = 0

Proposition 3.4. Let fε, ε ⊂ [d], be functions on X∗ with ‖fε‖L∞(µ∗)

≤ 1 for every ε. Let r be an integer with 1 ≤ r ≤ d. Then the averages

(15)
d∏
i=1

1
Ni −Mi

∑
n∈[M1,N1)×···×[Md,Nd)

∏
ε⊂[d]

0<|ε|≤r

T ∗nε fε

converge in L2(µ∗) for all sequences of intervals [M1, N1), . . . , [Md, Nd)
whose lengths Ni −Mi (1 ≤ i ≤ d) tend to ∞.

We remark that Theorem 3.2 follows immediately from this proposition
when r = d.

Proof. We proceed by induction on r. When r = 1, the average (15) is

(16)
d∏
i=1

1
Ni −Mi

∑
ni∈[Mi,Ni)
i=1,...,d

T ∗n1
1 f10...0 · · ·T ∗nd

d f0...01.

By the Ergodic Theorem, this converges to

E(f10...0 | I(T ∗1 )) · · ·E(f0···01 | I(T ∗d )).

Assume r > 1, and that the proposition is true for r−1 transformations.
For α ⊂ [d], |α| = r, if Eµ∗(fα | Z∗α) = 0, then by Theorem 3.3, we have

|||fα|||∗α = 0. By Proposition 2.1, the average (15) converges to 0. Otherwise,
by a density argument, we can assume that

fα =
∏
i∈α

fα,i
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where fα,i is T ∗i -invariant. Then

T ∗nα fα =
∏
i∈α

T ∗nα\{i}fα,i.

Thus ∏
ε⊂[d]

0<|ε|≤r

T ∗nε fε =
∏
η⊂[d]

0<|η|≤r−1

T ∗nη gη,

where

gη =


fη |η| < r − 1,
fη
∏
i/∈η

fη∪i,i |η| = r − 1.

Therefore (15) converges by the induction hypothesis.

4. Combinatorial interpretation

Proof of Theorem 1.2. Apply Theorem 1.1 to the indicator function 1A.
We know that the limit of the averages

(17)
d∏
i=1

1
Ni −Mi

∑
ni∈[Mi,Ni)
i=1,...,d

� ∏
ε∈{0,1}d

Tn1ε1
1 · · ·Tndεd

d 1A dµ

exists. By Lemma 1 in [6], if we take the limit as N1 −M1 → ∞, then as
N2 −M2 →∞, . . . , and then as Nd −Md →∞, the average (17) converges
to |||1A|||2

d

T1,...,Td
. Thus the limit of the average (17) is |||1A|||2

d

T1,...,Td
. Since

|||f |||2d

T1,...,Td
=
∥∥∥E( ⊗

ε⊂[d−1]

f
∣∣∣ I(T4d )

)∥∥∥2

L2(µd−1)

≥
( � ⊗

ε⊂[d−1]

f dµd−1

)2
= |||f |||2d

T1,...,Td−1
,

we have |||1A|||T1,...,Td
≥ |||1A|||T1 ≥

	
1A dµ = µ(A), and the result follows.

Theorem 1.2 has the following corollary:

Corollary 4.1. Let (X,B, µ, T1, . . . , Td) be a system, where T1, . . . , Td
are commuting measure preserving transformations, and let A ∈ B. Then
for any c > 0, the set of n ∈ Zk such that

µ
( ⋂
ε∈{0,1}d

T−n1ε1
1 · · ·T−ndεd

d A
)
≥ µ(A)2

d − c

is syndetic.

The proof is exactly the same as for Corollary 13.8 in [7].
Theorem 1.3 follows by combining Furstenberg’s correspondence princi-

ple and Corollary 4.1.
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