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Convolutions on compact groups and
Fourier algebras of coset spaces
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Brian E. Forrest (Waterloo), Ebrahim Samei (Saskatoon)
and Nico Spronk (Waterloo)

Abstract. We study two related questions. (1) For a compact group G, what are
the ranges of the convolution maps on A(G×G) given for u, v in A(G) by u× v 7→ u ∗ v̌
(v̌(s) = v(s−1)) and u × v 7→ u ∗ v? (2) For a locally compact group G and a compact
subgroup K, what are the amenability properties of the Fourier algebra of the coset space
A(G/K)? The algebra A(G/K) was defined and studied by the first named author.

In answering the first question, we obtain, for compact groups which do not admit
an abelian subgroup of finite index, some new subalgebras of A(G). Using those algebras
we can find many instances in which A(G/K) fails the most rudimentary amenability
property: operator weak amenability. However, using different techniques, we show that if
the connected component of the identity of G is abelian, then A(G/K) always satisfies the
stronger property that it is hyper-Tauberian, which is a concept developed by the second
named author. We also establish a criterion which characterises operator amenability
of A(G/K) for a class of groups which includes the maximally almost periodic groups.
Underlying our calculations are some refined techniques for studying spectral synthesis
properties of sets for Fourier algebras. We even find new sets of synthesis and nonsynthesis
for Fourier algebras of some classes of groups.

In a recent article [30, §3.3], the third named author posed a question
which, for a compact group G, reduces to asking if the maps from A(G×G)
to A(G), given on elementary functions by u × v 7→ u ∗ v̌ and u × v 7→
u ∗ v, are surjective. We show in Sections 2 and 4 that this is not the case
when G does not admit an abelian subgroup of finite index. Moreover, the
ranges of both maps are quite different: the first gives us a new algebra
A∆(G), and the second gives us an algebra Aγ(G), which was originally
discovered by B. E. Johnson [17]. It is worth noting that Johnson used Aγ(G)
in a very clever way to show that for compact groups G, A(G) is generally
not amenable, in fact not even weakly amenable. Johnson’s results were
surprising when his article was published, since at the time the expectation
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was that amenability of A(G) would be equivalent to classical amenability
for the underlying group G. Recent applications of the theory of operator
spaces to the study of A(G) have given us a much better understanding of
why A(G) fails to be amenable as a Banach algebra for any group which
does not contain abelian subgroups of finite index. However, it is one of the
main themes of this paper that subalgebras of A(G) such as Aγ(G) can shed
further light on the amenability problem and allow us to deduce much more
about the relationship between A(G) and G.

Motivated by Johnson’s beautiful theorem that the group algebra L1(G)
of a locally compact group G is amenable as a Banach algebra if and only
if G is amenable, together with the spectacular failure of the natural analog
of this result for A(G), Z.-J. Ruan demonstrated the tremendous value in
recognising the operator space structure on A(G) by introducing the concept
of operator amenability and then using this to show that A(G) is operator
amenable if and only if G is amenable [25]. This was followed by the third
named author [29], and independently the second named author [27], each
establishing that A(G) is always operator weakly amenable. The general
question of when A(G) is weakly amenable as a Banach algebra remains
open. However, using, in part, techniques developed in the present article,
the authors have recently shown that A(G) fails to be weakly amenable for
any G which contains a connected nonabelian compact subgroup. See [9].

For a compact subgroup K of G, the Fourier algebra of the coset space,
A(G/K), was described by the first named author [6]. A(G/K) may be si-
multaneously viewed as an algebra of continuous functions on the coset space
G/K and as a sublgebra of A(G). The latter view allows us to define a natural
operator space structure on A(G/K). It was shown in [6] that many proper-
ties of A(G/K) associated with amenability, such as existence of a bounded
approximate identity, and factorisation, are closely linked to such properties
of A(G). Thus we are naturally led to consider the amenability properties of
A(G/K). Surprisingly, positive results are rather sparse, even in the category
of operator spaces. In Section 3 we establish that whenever G has a compact
connected nonabelian subgroup K, then there exists a compact subgroup
K∗ of G×G such that A(G×G/K∗) is not operator weakly amenable. This
contrasts sharply with the positive result of [29, 27], mentioned above. As
a complement, we establish in Section 3.3 that A(G/K) is hyper-Tauberian
whenever the connected component of the identity Ge in G is abelian. The
hyper-Tauberian property, developed by the second named author [28], im-
plies weak amenability of a commutative semisimple Banach algebra. Note
that this result does not address the operator space structure of A(G) at
all. This generalises a result of the first named author and V. Runde [8]
that A(G) is weakly amenable when Ge is abelian. In Section 3.4 we obtain,
for certain groups which we call [MAP]K-groups, a characterisation of when
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A(G/K) is operator amenable. Using related techniques, we also find new
sets of local synthesis for A(G×G) when G has an abelian connected com-
ponent of the identity, ones which are not known to be in the closed coset
ring of G×G.

Many of the results of Section 3 rely heavily on constructions relating to
convolutions on compact groups. In Section 1 we develop a general frame-
work in which to view the “twisted” convolution f × g 7→ f ∗ ǧ on functions
on compact G. We realise the image of this map as a special example of
functions on a coset space. We find that our general framework naturally
accommodates an easy, though far reaching generalisation of a result re-
lating spectral information between various different algebras, obtained for
abelian compact groups by N. Th. Varapolous [33], and generalised to ar-
bitrary compact groups by L. Turowska and the third named author; see
Theorem 1.4. Since it takes little extra effort, we prove our spectral results
for a class we call [MAP]K-groups, which includes maximally almost peri-
odic groups. In Section 2 we apply our twisted convolution framework to
A(G × G). In doing so, we obtain not one, but an infinite sequence of new
subalgebras of A(G), when G does not admit an abelian subgroup of finite in-
dex. In Section 4 we provide a framework for convolutions on compact G, and
show how it differs from the twisted convolution when applied to A(G×G).
In effect, we have an alternative method to obtain the algebra Aγ(G) of
Johnson.

As well as answering questions posed by the third author in [30], many of
the ideas and techniques of the present article have inspired new work of the
authors. In [9] the present authors have obtained a general weak amenability
characterisation for A(G) when G is compact. Moreover, general amenability
properties of algebras A∆(G) have been characterised, improving on the
present article’s Theorem 3.1, and partially generalising Theorem 3.9. In
[23], D. Park and the second author have studied weak synthesis for sets
which occur in Corollary 3.2 amongst other related sets.

0.1. Background and notation. The Fourier algebra A(G) of a lo-
cally compact group G was defined by Eymard [5]. For compact G, there
is an alternative description in [14, Chap. 34]. That the two descriptions
coincide can be seen by comparing [5, p. 218] with [14, (34.16)]. We note
that the Fourier algebra is closed under both group actions of left and right
translations (s, u) 7→ s ∗ u, s · u : G×A(G)→ A(G), given by

s ∗ u(t) = u(s−1t), s · u(t) = u(ts).

Moreover, these actions are continuous in G and isometric on A(G). We
note that A(G) admits a von Neumann algebra VN(G) as its dual space. As
such, it comes equipped with a natural operator space structure. See [4], for
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example, for more on this. We use the same definitions as [4] for completely
bounded map, complete isometry and complete quotient map. We note that
right and left translations on A(G), being the preadjoints of multiplications
by unitaries on VN(G), are complete isometries.

Our main references for amenability are [16] and [26]. A Banach alge-
bra A is said to be amenable if for any Banach A-bimodule X , and any
bounded derivation D : A → X ∗, where X ∗ is the dual space with adjoint
module actions, D is inner. For a commutative Banach algebra A, we say A
is weakly amenable if for any symmetric A-bimodule X , the only bounded
derivation D : A → X is 0; this is equivalent to having the same happen
for X = A∗. Weak amenability for commutative Banach algebras was in-
troduced in [1]. For both amenability and weak amenability there are some
homological characterisations; see [18, 2, 12, 26].

Operator space notions of amenability and weak amenability were intro-
duced in [25] and in [10] respectively, specifically for use with A(G). If A is
a commutative Banach algebra which is also an operator space we say A is a
completely contractive Banach algebra if the multiplication map A×A → A
is completely contractive in the sense of [4, Chap. 7]. An operator space V is
a completely contractive A-module if it is an A-module for which the module
maps A×V,V ×A → V are completely contractive. The class of completely
contractive A-modules is closed under taking dual spaces with adjoint ac-
tions. We say A is operator (weakly) amenable if every completely bounded
derivation D : A → V∗ (with V = A) is inner (zero). Many of the homo-
logical characterisations alluded to above carry over to this setting, though
with Banach space projective tensor products ⊗γ replaced by operator space
projective tensor products ⊗̂.

Let A be a commutative semisimple (completely contractive) Banach
algebra. Suppose A is regular on its spectrum X = ΣA; we regard A as an
algebra of functions on X. If ϕ ∈ A∗ we define

supp(ϕ) =
{
x ∈ X :

for every neighbourhood U of x there is f
in A such that supp(f) ⊂ U and ϕ(f) 6= 0

}
.

Here supp(f) = {x ∈ X : f(x) 6= 0}. An operator T : A → A∗ is called
a local map if

supp(Tf) ⊂ supp(f)

for every f in A. We say A is (operator) hyper-Tauberian if every (completely
bounded) bounded local map T : A → A∗ is an A-module map. This concept
was developed in [28] to study the reflexivity of the (completely bounded)
derivation space of A, and it generalises (operator) weak amenability.

For a commutative semisimple Banach algebra which is regular on its
spectrum we have the following implications:
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amenable ⇒ weakly amenable ⇐ hyper-Tauberian

Moreover, if A is a completely contractive Banach algebra, each property
implies its operator analogue, and the operator analogues satisfy the same
implications.

1. Algebras on coset spaces and a twisted convolution on com-
pact groups

1.1. The basic construction. Let G be a locally compact group. Let
A(G) be a Banach algebra of continuous functions on G which is closed
under right translations and such that for any f in A(G) we have

• ‖s · f‖ = ‖f‖ for any s in G,
• s 7→ s · f is continuous.

If, moreover, A(G) is an operator space, we require for each t in G that
f 7→ t · f is a complete isometry.

If K is a compact subgroup of G we let

A(G : K) = {f ∈ A(G) : k · f = f for each k in K},
which is a closed subalgebra of A(G) whose elements are constant on left
cosets of K. We let G/K denote the space of left cosets with the quotient
topology. We define two maps

P : A(G)→ A(G), Pf =
�

K

k · f dk,

and
M : A(G : K)→ Cb(G/K), Mf(sK) = f(s).

The map P is to be regarded as a Bochner integral over the normalised Haar
measure on K; its range is A(G : K) and P is a (completely) contractive
projection. The map M is well-defined by comments above, and its range
consists of continuous functions since A(G : K) ⊂ Cb(G : K). We note
that M is an injective homomorphism and denote its range by A(G/K). We
assign a norm (operator space structure) to A(G/K) in such a way that M
is a (complete) isometry. We finally define two maps

N = M−1 : A(G/K)→ A(G) and Γ = M ◦ P : A(G)→ A(G/K)

so N is a (completely) isometric homomorphism and Γ is a (complete) quo-
tient map.

Let us record some basic properties of A(G/K). For a commutative Ba-
nach algebra A, we let ΣA denote its Gelfand spectrum.

Proposition 1.1.

(i) Suppose A(G) is regular on G and G separates the points of A(G).
Then A(G/K) is regular on G/K and G/K separates the points
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of A(G/K). Moreover, if ΣA(G)
∼= G via evaluation maps, and K

is a set of spectral synthesis for A(G), then ΣA(G/K)
∼= G/K via

evaluation maps.
(ii) If the subalgebra Ac(G) of compactly supported elements of A(G) is

dense in A(G), then the algebra Ac(G/K) of compactly supported
elements in A(G/K) is dense in A(G/K).

We remark that (i) applies to the Fourier algebra A(G) for any locally
compact group G and compact subgroup K by [13] or [32].

Proof. (i) Same as [6, Thm. 4.1].
(ii) It is obvious that ΓAc(G) = Ac(G/K). If w in A(G) is the limit of

a sequence (wn) ⊂ Ac(G), then ‖Γw − Γwn‖ ≤ ‖w − wn‖ → 0 as n→∞.

For Fourier algebras, we have the important identification

A(G) ⊗̂A(H) ∼= A(G×H)

via f ⊗ g 7→ f × g, where ⊗̂ denotes the operator projective tensor product.
See [3]. This is known to fail when the usual projective tensor product ⊗γ is
used [19].

Proposition 1.2. If G and H are locally compact groups with respective
compact subgroups K and L, then there is a complete isometry identifying

A(G/K) ⊗̂A(H/L) ∼= A(G×H/K × L)

given on elementary tensors by f ⊗ g 7→ f × g.

Note that there is a natural homeomorphism G×H/K×L ∼= G/K×H/L,
which is in fact a G×H-space morphism.

Proof. We identify A(G/K) ∼= A(G : K), etc. We have the following
commuting diagram:

A(G) ⊗̂A(H)
f⊗g 7→f×g //

PK⊗PL
��

A(G×H)

PK×L
��

A(G : K) ⊗̂A(G : K)
?�

OO

f⊗g 7→f×g //______ A(G×H : K × L)

where the inclusion map A(G : K) ⊗̂ A(G : K) ↪→ A(G) ⊗̂ A(H) is a com-
plete isometry, since each of PK and PL is a complete quotient projection.
Notice that this inclusion map is a right inverse to PK ⊗ PL. The desired
map from A(G : K) ⊗̂ A(G : K) to A(G × H : K × L) completes this
diagram, and may be realised as the composition of the inclusion map (up
arrow) with the identification map (top arrow), and then PK×L. It is clear
that PK×L|spanA(G:K)×A(H:L) = id. Hence the desired map is injective. Since
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the map identifying A(G) ⊗̂A(H) ∼= A(G×H) is a complete isometry, and
PK ⊗ PL and PK×L are complete quotient maps, our desired map is a com-
plete quotient map. Hence we have an injective complete quotient map, i.e.
a complete isometry.

1.2. A twisted convolution. Let G be a compact group for the re-
mainder of this section. We use G × G in place of G above, and K = ∆ =
{(s, s) : s ∈ G}. Since the map

(1.1) (s, e)∆ 7→ s : (G×G)/∆→ G

is a homeomorphism, we identify the coset space with G. We observe that
in this case the map P : A(G×G)→ A(G×G) satisfies

Pw(s, t) =
�

G

w(sr, tr) dr =
�

G

w(st−1r, r) dr

and the maps M : A(G × G : ∆) → C(G) and N : C(G) → C(G × G : ∆)
satisfy

(1.2) Mw(s) = w(s, e) and Nf(s, t) = f(st−1).

We denote the range of M by A∆(G), and then N |A∆(G) = M−1. The map
Γ = M ◦P above can be regarded as a “twisted” convolution, for if A(G×G)
contains an elementary function f × g, then for s in G,

Γ (f × g)(s) =
�

G

f × g(st, t) dt =
�

G

f(st)g(t) dt = f ∗ ǧ(s).

We list some examples of A(G×G) and A∆(G).

(i) If A(G×G) = C(G×G), then C∆(G) = C(G), by easy computation.
(ii) Let V(G × G) = C(G) ⊗h C(G) (Haagerup tensor product). Then

V∆(G) = A(G), completely isometrically. See [31]. Note that by
Grothendieck’s inequality V(G × G) = C(G) ⊗γ C(G) (projective
tensor product) isomorphically, though not isometrically.

(iii) Let A(G × G) = A(G) ⊗γ A(G). Then A∆(G) = Aγ(G) is the
subalgebra of A(G) considered by B. Johnson [17]. He used it to
study the amenability of A(G).

(iv) Consider A(G × G) ∼= A(G) ⊗̂ A(G) (operator projective tensor
product). The algebra A∆(G) thus formed will be an essential object
of our study.

We summarise some basic properties of the algebras A∆(G) which clearly
apply to the examples above. We say a norm (operator space structure) α on
X ⊗Y is (operator) homogeneous if for every pair of (completely) contractive
linear maps S : X → X ′, T : Y → Y ′ the map S⊗T extends to a (complete)
contraction from X ⊗α Y to X ′ ⊗α Y ′.
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Proposition 1.3.

(i) If there is a (completely contractive) Banach algebra B(G) of contin-
uous functions on G and a homogeneous (operator) norm (operator
space structure) α on B(G) ⊗ B(G) so A(G × G) = B(G) ⊗α B(G),
then A∆(G) is a (completely contractive) subalgebra of B(G).

(ii) If A(G×G) is closed under left translations and the translation maps
are continuous in G×G and (completely) isometric on A(G×G), then
A∆(G) is closed under both left and right translations, and the trans-
lations are continuous on G, and (completely) isometric on A∆(G).

Proof. (i) The map M : A(G × G : ∆) → A∆(G) is the restriction of
the slice map id ⊗ δe : A(G) ⊗α A(G) → A(G) where δe is the evaluation
functional at e.

(ii) For f ∈ A∆(G), r in G and any (s, t) ∈ G×G we have

N(r · f)(s, t) = f(st−1r) = f(s(r−1t)−1) = (e, r) ∗Nf.
Our assumptions ensure that the space A(G × G : ∆) is closed under left
translations and each translation map is a (complete) isometry. For left trans-
lations we note that, for r in G and f ∈ A∆(G), we have

N(r ∗ f) = (r, e) ∗Nf
and we argue as above.

1.3. Relationships between ideals. Let A be a Banach algebra con-
tained in C0(X) for some locally compact Hausdorff space X. For any closed
subset E of X we define

IA(E) = {f ∈ A : f(x) = 0 for x ∈ E},
I0
A(E) = {f ∈ A : supp(f) ∩ E = ∅ and supp(f) is compact},

J0
A(E) = {f ∈ IA(E) : supp(f) is compact},

where supp(f) = {x ∈ X : f(x) 6= 0}. If X = ΣA and A is regular on X,
we say E is a set of spectral synthesis for A if I0

A(E) = IA(E), and of local
synthesis if I0

A(E) = J0
A(E).

If G is a compact group we let Ĝ denote the dual object of G, a set
of representatives, one from each unitary equivalence class, of irreducible
continuous representations of G. If π ∈ Ĝ, we fix an orthonormal basis
{ξπ1 , . . . , ξπdπ} for Hπ and define

(1.3) πij : G→ C, πij(s) = 〈π(s)ξπj | ξπi 〉,
for i, j = 1, . . . , dπ. We recall the well-known fact that

(1.4) T (G) = span{πij : π ∈ Ĝ, i, j = 1, . . . , dπ}
is uniformly dense in C(G).
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If G is not compact, we let Ĝf denote the finite-dimensional part of the
dual object. We let Tf (G) be defined as the span of matrix coefficients of Ĝf ,
just as above. The almost periodic compactification is the compact group

Gap = {(π(s))
π∈ bGf : s ∈ G} ⊂

∏
π∈ bGf

π(G).

There is a canonical identification T (Gap) ∼= Tf (G). We say G is maximally
almost periodic, or [MAP], if Ĝf , or equivalently Tf (G), separates the points
of G. If K is a compact subgroup of G, we say G is [MAP]K if the map
k 7→ (π(k))

π∈ bGf : K → Gap is injective. Clearly, a [MAP] group is [MAP]K
for any compact subgroup K.

The following is an adaptation of [31, Thm. 3.1]. A change in perspective
allows us to gain not only more general, but finer results than in [31].

Theorem 1.4. Let G be a locally compact group, K a compact subgroup
so G is [MAP]K , and A(G) be as in Section 1.1 and additionally satisfy
Tf (G)A(G) ⊂ A(G). If E is a closed subset of G/K let E∗ = {s ∈ G :
sK ∈ E}. Then

(i) Γ IA(G)(E∗) = IA(G/K)(E),
(ii) IA(G)(E∗) is the closed ideal generated by N IA(G/K)(E).

Note that if G is compact then in the case of Section 1.2 we have E∗ =
{(s, t) ∈ G×G : st−1 ∈ E} via the identification (1.1).

Proof. We will let I(E∗) = IA(G)(E∗) and I(E) = IA(G/K)(E) below.
(i) It is clear that

Γ I(E∗) ⊂ I(E) and N I(E) ⊂ I(E∗).

Thus
I(E) = Γ ◦N I(E) ⊂ Γ I(E∗) ⊂ I(E).

(ii) Let w ∈ I(E∗). For each π in Ĝf we define “matrix-valued” functions
wπ, w̃π : G→ B(Hπ) by

wπ(s) =
�

K

w(sk)π(k) dk, w̃π(s) = π(s)wπ(s).

Then for any i, j = 1, . . . , dπ we let wπij = 〈wπ(·)ξπj | ξπi 〉 and we notice that

wπij = πij |K · w

where f · w =
	
G f(k)k · w dk for any f in L1(K). We note that since w ∈

I(E∗), we have k ·w ∈ I(E∗) for any k in K and hence f ·w ∈ I(E∗) for any
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f in L1(K). Thus each wπij is in I(E∗). Now for any s in G and i, j = 1, . . . , dπ
we have

w̃πij(s) =
dπ∑
l=1

πil(s)wπlj(s), i.e. w̃πij =
dπ∑
k=1

πikw
π
lj .

Since Tf (G)A(G) ⊂ A(G) it follows that each w̃πij is in I(E∗). However, it is
easily seen that w̃π(sk) = w̃π(s) for any s in G and k in K, so each w̃πij is
also in A(G : K). Thus

w̃πij ∈ I(E∗) ∩ A(G : K) = N I(E).

Now we use the relation wπ(s) = π(s−1)w̃π(s), for s in G, to see that for
each i, j we have

wπij =
dπ∑
l=1

π̌ilw̃
π
lj =

dπ∑
l=1

π̄liw̃
π
lj

so wπij = πij |K · w lies in the ideal generated by N I(E).
Since G is [MAP]K , we may regard K as a closed subgroup of Gap.

We see that Tf (G)|K = T (Gap)|K is a conjugation-closed point-separating
subalgebra of C(K), thus is uniformly dense in C(K), and hence norm dense
in L1(K). Thus there is a bounded approximate identity (fβ) for L1(K) with
each fβ in Tf (G)|K . Then for each β we have

fβ · w ∈ span{πij |K · w : π ∈ Ĝ and i, j = 1, . . . , dπ}

and is thus in the ideal generated byN I(E). Hence, since A(G) is an essential
L1(K)-module, we find that w = limβ fβ ·w and thus w is in the closed ideal
generated by N I(E).

For any subalgebra B of a commutative normed algebra A, we let

〈B〉 = span{ab1 + b2 : a ∈ A, b1, b2 ∈ B} and B2 = span{ab : a, b ∈ B}.

Corollary 1.5. With G, K, A(G), E ⊂ G/K and E∗ ⊂ G as in
Theorem 1.4, we have:

(i) IA(G)(E∗) has a bounded approximate identity (b.a.i.) if and only if
IA(G/K)(E) has a b.a.i.;

(ii) I0
A(G)(E

∗) = IA(G)(E∗) if and only if I0
A(G/K)(E) = IA(G/K)(E);

(ii′) I0
A(G)(E

∗) = J0
A(G)(E

∗) if and only if I0
A(G/K)(E) = J0

A(G/K)(E);

(iii) IA(G)(E∗)2 = IA(G)(E∗) if and only if IA(G/K)(E)2 = IA(G/K)(E).

Proof. We let I(E∗) = IA(G)(E∗), I(E) = IA(G/K)(E), etc.
(i) If (fα) is a b.a.i. for I(E), then (Nfα) is a b.a.i. for the subalgebra

N I(E). It is readily checked that (Nfα) is a b.a.i. for 〈N I(E)〉.
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If (wα) is a b.a.i. for I(E∗), then (Γwα) is a b.a.i. for I(E). Indeed,
Γ ◦N = id and, since P is an idempotent, we have the following “expectation
property”:

(1.5) Γ (wNf) = Γ (w)f

for w ∈ A(G×G) and f ∈ A(G/K). Thus if f in I(E) then

Γ (wα)f − f = Γ (wαNf −Nf)→ 0.

(ii) & (ii′) It is clear that

f ∈ I0(E) ⇔ Nf ∈ I0(E∗) and f ∈ J0(E) ⇔ Nf ∈ J0(E∗).

It can then be proved exactly as in Theorem 1.4 that

〈N I0(E)〉 = I0(E∗), 〈NJ0(E)〉 = J0(E∗).

Indeed, it is sufficient to note that if supp(f) is compact then so too is
supp((πij |K · f)) for each π ∈ Ĝf and i, j = 1, . . . , dπ.

(iii) If I(E)2 = I(E), thenN(I(E)2) = (N I(E))2 is dense inN I(E). Hence
we have

I(E∗) = 〈N I(E)〉 = 〈(N I(E))2〉 = 〈N I(E)〉2 = I(E∗)2.

Conversely, if I(E∗)2 = I(E∗) then from the theorem above we have

I(E∗) = I(E∗)2 = I(E∗)N I(E).

But it follows from (1.5) that

I(E) = Γ I(E∗) = Γ (I(E∗)N I(E)) = Γ I(E∗) I(E) = I(E)2 ⊂ I(E),

whence I(E) = I(E)2.

2. Some subalgebras of Fourier algebras

2.1. The algebra A∆(G). In this section, we will always let G denote a
compact group. We have the following characterisation of the Fourier algebra
in [14, (34.4)]: for f ∈ C(G),

(2.1) f ∈ A(G) ⇔ ‖f‖A =
∑
π∈ bG

dπ‖f̂(π)‖1 <∞

where f̂(π) =
	
G f(s)π̄(s) ds and ‖·‖1 denotes the trace class norm. We also

recall the following orthogonality relations [14, (27.19)]: if π, σ ∈ Ĝ then in
the notation of (1.3) we have

(2.2)
�

G

πij(s)σkl(s) ds =
1
dπ

δπσδjlδik

where i, j = 1, . . . , dπ, k, l = 1, . . . , dσ and each δαβ is the Kronecker δ-
symbol.
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We first wish to characterise A∆(G), as defined in the previous section.
We will make use of the following lemma. For π, σ ∈ Ĝ we let π×σ ∈ Ĝ×G
be the Kronecker product representation. Also, we let N : C(G)→ C(G×G)
be given by Nf(s, t) = f(st−1) for (s, t) in G×G, as suggested by (1.2).

Lemma 2.1. For any f ∈ C(G) and π ∈ Ĝ, we have

‖N̂f(π̄ × π)‖p =
1√
dπ
‖f̂(π)‖2

where ‖·‖p is the Schatten p-norm for 1 ≤ p ≤ ∞.

Proof. We first note that

N̂f(π̄ × π) =
�

G

�

G

f(st−1)π(s)⊗ π̄(t) ds dt(2.3)

=
�

G

�

G

f(s)π(st)⊗ π̄(t) ds dt

=
[ �
G

f(s)π(s)⊗ π̄(e) ds
]
◦
[ �
G

π(t)⊗ π̄(t) dt
]

= [f̂(π̄)⊗ IHπ̄ ] ◦ P1

where P1 is a rank 1 projection, as we shall see below. Indeed, the Schur
orthogonality relations [14, (27.30)] tell us that π ⊗ π̄ contains the trivial
representation 1 with multiplicity 1. Thus when we decompose into irre-
ducibles π ⊗ π̄ ∼=

⊕
σ∈ bGmσ · σ, we obtain
�

G

π(t)⊗ π̄(t) dt ∼=
⊕
σ∈ bG

mσ ·
�

G

σ(t) dt

where
	
G σ(t) dt = 0 unless σ = 1, and hence the formula above reduces to a

rank 1 projection, P1. Let {ξ1, . . . , ξdπ} be an orthonormal basis for Hπ; we
claim that

P1 = 〈· | η〉η where η =
1√
dπ

dπ∑
k=1

ξk ⊗ ξ̄k.

Indeed, for any dπ × dπ unitary matrix U we have
∑dπ

k=1 Uξk ⊗ Uξk =∑dπ
k=1 ξk ⊗ ξ̄k. Hence η is a norm 1 vector, invariant for π ⊗ π̄, and the

formula for P1 follows.
Thus

N̂f(π̄ ⊗ π) = [f̂(π̄)⊗ IHπ̄ ] ◦ P1 = 〈· | η〉[f̂(π̄)⊗ IHπ̄ ]η

and, using the standard formula for rank 1 operators, ‖〈· | ζ〉ϑ‖p = ‖ζ‖ ‖ϑ‖,
we obtain

(2.4) ‖N̂f(π̄ ⊗ π)‖p = ‖[f̂(π̄)⊗ IHπ̄ ]η‖Hπ⊗2Hπ̄ .
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Letting f̂(π̄)kl = 〈f̂(π̄)ξl | ξk〉 we have

[f̂(π̄)⊗ IHπ̄ ]η =
1√
dπ

dπ∑
k=1

[f̂(π̄)ξk]⊗ ξ̄k =
1√
dπ

dπ∑
k=1

dπ∑
l=1

f̂(π̄)klξk ⊗ ξ̄l.

Since {ξl ⊗ ξ̄k : k, l = 1, . . . , dπ} is an orthonormal basis for Hπ ⊗2 Hπ̄ we
obtain

(2.5) ‖[f̂(π̄)⊗ IHπ̄ ]η‖2Hπ⊗2Hπ̄ =
1
dπ

dπ∑
k=1

dπ∑
l=1

|f̂(π̄)kl|2 =
1
dπ
‖f̂(π̄)‖22.

The result is obtained by combining (2.4) with (2.5) and the fact that
‖f̂(π̄)‖2 = ‖f̂(π)‖2.

We now obtain a characterisation of A∆(G) in the spirit of (2.1).

Theorem 2.2. If f ∈ C(G), then

f ∈ A∆(G) ⇔
∑
π∈ bG

d3/2
π ‖f̂(π)‖2 <∞.

Moreover, the latter quantity is

‖f‖A∆ = inf{‖w‖A : w ∈ A(G×G) with Γw = f}.
Proof. Since N : A∆(G)→ A(G×G : ∆) ⊂ A(G×G) is an isometry we

have
f ∈ A∆(G) ⇔ Nf ∈ A(G×G),

in which case ‖f‖A∆ = ‖Nf‖A. Recall that Ĝ×G = {π × σ : π, σ ∈ Ĝ}
(see [14, (27.43)], for example). Note that analogous computations to (2.3),
combined with (2.2), show that

(2.6) N̂f(π × σ) = 0 if σ 6= π̄.

We see that Nf ∈ A(G×G) exactly when

‖Nf‖A =
∑

(σ,π)∈ bG× bG
dσdπ‖N̂f(σ × π)‖1 by (2.1)

=
∑
π∈ bG

d2
π‖N̂f(π̄ × π)‖1 by (2.6)

=
∑
π∈ bG

d3/2
π ‖f̂(π)‖2 by Lemma 2.1,

and the latter quantity is finite.

We prove some consequences of the result above. Let us note for any d×d
matrix the well-known inequalities

(2.7)
1√
d
‖A‖1 ≤ ‖A‖2 ≤ ‖A‖1.
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These inequalities are sharp with scalar matrices αI serving as the extreme
case for the left inequality, and rank 1 matrices serving for the extreme case
on the right.

We let ZL1(G) be the centre of the convolution algebra L1(G).

Corollary 2.3. We have A(G) ∩ ZL1(G) = A∆(G) ∩ ZL1(G) with
‖f‖A = ‖f‖A∆ for f in this space.

Proof. It is well-known that f ∈ ZL1(G) only if f̂(π) = αf,πIHπ for some
scalar αf,π, for each π in Ĝ. Thus by the left extreme case of (2.7) we have∑

π∈ bG
d3/2
π ‖f̂(π)‖2 =

∑
π∈ bG

dπ‖f̂(π)‖1.

Hence it follows that f ∈ A(G)∩ZL1(G) if and only if f ∈ A∆(G)∩ZL1(G),
with ‖f‖A = ‖f‖A∆ .

Corollary 2.4. We have A∆(G) = A(G) if and only if G admits an
abelian subgroup of finite index.

Proof. We invoke the well-known result of [21] that

G admits an abelian subgroup of finite index ⇔ dG = sup
π∈ bG dπ <∞.

Now if dG <∞, then for any u in A(G), by (2.7),∑
π∈ bG

d3/2
π ‖û(π)‖2 ≤ d1/2

G

∑
π∈ bG

dπ‖û(π)‖1 <∞,

so u ∈ A∆(G). Conversely, if A(G) = A∆(G), then since ‖·‖A ≤ ‖·‖A∆ , the
open mapping theorem provides us with a constant K such that ‖·‖A∆ ≤
K ‖·‖A. For any π in Ĝ we let π11 be as in (1.3). We have

π̂11(σ) =
�

G

〈π(s)ξπ1 | ξπ1 〉σ̄(s) ds =
{

(1/dπ)〈· | ξ̄π1 〉ξ̄π1 if σ = π,

0 otherwise.

Thus by the rank 1 case of (2.7) we have

d3/2
π ‖π̂11(π)‖1 = d3/2

π ‖π̂11(π)‖2 = ‖π̂11‖A∆ ≤ K ‖π̂11‖A = Kdπ‖π̂11(π)‖1,

so dπ ≤ K2. Thus dG ≤ K2 <∞.

We remark that despite the identification (G × G)/∆ ∼= G, the result
above tells us that the Fourier algebra over this coset space, A(G × G/∆)
∼= A∆(G), is not naturally isomorphic to A(G). We will see in Section 3
that A∆(G) can fail to be operator weakly amenable, while A(G) is always
operator weakly amenable.
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2.2. Some subalgebras of A∆(G). Let us begin with a variant of
Proposition 1.2.

Proposition 2.5.

(i) There is a completely isometric identification

A∆(G) ⊗̂A∆(H) ∼= A∆(G×H)

given on elementary tensors by f ⊗ g 7→ f × g.
(ii) If K is a closed subgroup of G, and L is a closed subgroup of H, then

we obtain a completely isometric identification

A∆(G/K) ⊗̂A∆(H/L) ∼= A∆(G×H/K × L).

Proof. (i) Using Proposition 1.2, we have completely isometric identifi-
cations

A∆(G) ⊗̂A∆(H) ∼= A(G×G/∆G) ⊗̂A(H ×H/∆H)
∼= A(G×G×H ×H/∆G ×∆H).

Moreover, we have a completely isometric identification

A∆(G×H) ∼= A(G×H ×G×H/∆G×H).

Thus we must show that

(2.8) A(G×G×H ×H/∆G ×∆H) ∼= A(G×H ×G×H/∆G×H).

Let ς be the topological group isomorphism (s1, t1, s2, t2) 7→ (s1, s2, t1, t2) :
G×H×G×H → G×G×H×H. This map induces a completely isometric
isomorphism u 7→ u ◦ ς from A(G × G × H × H) to A(G × H × G × H).
Moreover, the following diagram commutes:

A(G×G×H ×H)
u7→u◦ς //

P∆G×∆H
��

A(G×H ×G×H)

P∆G×H
��

u7→u◦ς−1
oo

A(G×G×H ×H : ∆G ×∆H)
u7→u◦ς // A(G×H ×G×H : ∆G×H)
u7→u◦ς−1

oo

Since both top row maps are complete isometries, and both P∆G×∆H and
P∆G×H are complete quotient maps, we deduce that the bottom row maps
must each be complete quotient maps which are mutual inverses, hence com-
plete isometries. By standard identifications, (2.8) follows.

(ii) This can be proved exactly as Proposition 1.2 using (i) above, in place
of the identification A(G) ⊗̂A(H) ∼= A(G×H).

We now define a sequence of subalgebras of A(G).

Theorem 2.6. Let A∆1(G) = A∆(G) and for each n ≥ 1 let

A∆n+1(G) = Γ (A∆n(G×G)).
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(i) Each A∆n(G) is a subalgebra of A(G), which is closed under both
left and right translations and for which all translations are complete
isometries. Also, for each n, the map Γ : A∆n(G×G)→ A∆n+1(G)
is a complete quotient map.

(ii) If f ∈ C(G), then

f ∈ A∆n(G) ⇔
∑
π∈ bG

d(2n+1)/2
π ‖f̂(π)‖2 <∞.

Moreover, the latter quantity is the norm, ‖f‖A∆n .

Proof. (i) We use induction. If the ascribed properties hold for A∆n(G),
and we have

(2.9) A∆n(G) ⊗̂A∆n(G) ∼= A∆n(G×G),

then it follows from Proposition 1.3(i) that A∆n+1(G) is a subalgebra of
A(G), which is completely isometrically isomorphic to a completely con-
tractively complemented subspace of A∆n(G×G). It follows from Proposi-
tion 1.3(ii) that A∆n+1(G) is closed under left and right translations. The
formula (2.9) holds for n = 1 by Proposition 2.5(i). Moreover, if (2.9) holds
for n, then we can use the proof of Proposition 2.5(ii), then (i), to see that
(2.9) holds for n+ 1.

(ii) This follows exactly as the proof of Theorem 2.2, using Lemma 2.1
in the case p = 2, and induction.

We note that a simple modification of Corollary 2.4 shows that if G
admits no abelian subgroup of finite index then {A∆n(G)}∞n=1 is a properly
nested sequence of subalgebras of A(G). We also note that it follows from
Proposition 1.1(i) that ΣA∆(G)

∼= G. We suspect the same holds for each
A∆n(G) (n ≥ 2), but have not been able to prove it. We cannot copy the
method of proof of [6, Thm. 4.1] which we cited in Proposition 1.1(i) to obtain
ΣA∆2 (G)

∼= G. Indeed, ∆ is not a set of spectral synthesis for A∆(G × G)
when G is a nonabelian connected Lie group, by (3.1) below.

3. Amenability properties

3.1. Failure of operator weak amenability of A∆(G). We adapt
arguments from [17, Thm. 7.2 & Cor. 7.3]. We also use the Fourier series of
any f in T (G) (with T (G) defined in (1.4)):

f(s) =
∑
π∈ bG

dπ

dπ∑
i,j=1

f̂(π)ijπij(s) =
∑
π∈ bG

dπ trace[f̂(π)π(s)t]

where f̂(π)ij = 〈f̂(π)ξπj | ξπi 〉 and At is the transpose of a matrix A. This is
a variant of the formula given in [14, (34.1)].
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Theorem 3.1. If G is a nonabelian connected compact Lie group, then
A∆(G) ∼= A(G×G/∆) is not operator weakly amenable.

Proof. We will establish that A∆2(G) admits a point derivation at e.
This implies that IA∆2 (G)({e})2 6= IA∆2 (G)({e}). Indeed, the point derivation
will vanish on IA∆2 (G)({e})2, but not on IA∆2 (G)({e}). Hence it follows from
the construction of A∆2(G) (Theorem 2.6), and Corollary 1.5(iii), that

(3.1) IA∆(G×G)(∆)2 6= IA∆(G×G)(∆).

This condition implies that A∆(G) is not operator weakly amenable by [12,
Thm. 3.2], which was shown to be a valid characterisation of operator weak
amenability in [29].

It has been shown in [24] that under the assumptions given, there is a
subgroup T ∼= T in G such that for any π in Ĝ,

π|T ∼=
dπ⊕
k=1

χnk with each |nk| < dπ

where χn(z) = zn for n in Z ∼= T̂. We let θ 7→ tθ : (−π, π] → T be the
parameterisation of T which corresponds to θ 7→ eiθ : (−π, π]→ T. For each
π in Ĝ we can choose an orthonormal basis for Hπ with respect to which
π(tθ) = diag(ein1θ, . . . , eindπ θ); and it follows by elementary estimates that

‖π(tθ)t − I‖
θ

= max
k=1,...,dπ

|einkθ − 1|
|θ|

< dπ

for θ in a neighbourhood of 0.
For f in T (G) we have

f(tθ)− f(e)
θ

=
∑
π∈ bG

dπ trace
[
f̂(π)

π(tθ)t − I
θ

]
.

We note that for small θ we have, using (2.7)∣∣∣∣f(tθ)− f(e)
θ

∣∣∣∣ ≤∑
π∈ bG

dπ‖f̂(π)‖1
‖π(tθ)t − I‖

|θ|
≤
∑
π∈ bG

d5/2
π ‖f̂(π)‖2

where the last quantity is ‖f‖A∆2
, by Theorem 2.6(ii). Hence, since each

limn→∞(π(tθ)− I)/θ exists, it follows that

d(f) =
d

dθ

∣∣∣∣
θ=0

f(tθ) = lim
θ→0

f(tθ)− f(e)
θ

exists, and |d(f)| ≤ ‖f‖A∆2
for f in T (G). Hence d extends to a contractive

point derivation on A∆2(G) at e.
We remark that Johnson [17, Cor. 7.3] showed that the point derivation

d : T (G) → C extends to a bounded map on Aγ(G) (see Section 4 below),



240 B. E. Forrest et al.

and hence established that A(G) is not weakly amenable. Since ∆ is a set of
spectral synthesis for A(G×G), we can proceed as in the first paragraph of
the proof above to see that d cannot be extended to A∆(G).

As an application of the above result, we obtain a new set of nonsynthesis.

Corollary 3.2. Let G be a compact connected nonabelian Lie group.
Then (∆G ×∆G)∆G×G fails spectral synthesis for A(G×G×G×G).

Proof. It follows from (3.1) that ∆G is not a set of spectral synthesis for
A∆(G×G). We then appeal to Proposition 2.5(ii) to see that

A∆(G) ⊗̂A∆(G) ∼= A∆(G×G) ∼= A(G×G×G×G/∆G×G).

In the identification (1.1) we have ∆G
∼= {(s, s, e, e)∆G×G : s ∈ G}. It then

follows from Corollary 1.5(iii) that

∆∗G
∼= (∆G × {1})∆G×G = (∆G ×∆G)∆G×G

is not spectral for A(G×G×G×G).

3.2. Failure of operator weak amenability of A(G/K). Let us now
turn our attention to general locally compact groups. We will let G denote
a locally compact group. Let us collect some useful facts.

Lemma 3.3. Let H be a closed subgroup of G and K be a compact
subgroup of H. Then the restriction map u 7→ u|H maps A(G : K) onto
A(H : K).

Proof. This is [11, Lemma 3.6(ii)].

Lemma 3.4. Let N be a compact normal subgroup of G, and q : G →
G/N be the canonical quotient map. If K̃ is a compact subgroup of G/N and
K = q−1(K̃), then the algebras A(G : K) and A(G/N : K̃) are completely
isometrically isomorphic.

Proof. The map u 7→ u ◦ q : A(G/N) → A(G) is a complete isometry
with range A(G : N). If u ∈ A(G/N : K̃), then for s in G and k in K we
have

u ◦ q(sk) = u(q(s)q(k)) = u(q(s)) = u ◦ q(s)

so u ◦ q ∈ A(G : K). Conversely, let v ∈ A(G : K) ⊂ A(G : N). Let
u in A(G/N) be such that v = u ◦ q. For any s̃ in G/N and k̃ ∈ K̃, find
s ∈ G and k ∈ K so q(s) = s̃ and q(k) = k̃. We have

u(s̃k̃) = u ◦ q(sk) = v(sk) = v(s) = u(s̃)

so u ∈ A(G/N : K̃).
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We now obtain a generalisation of Theorem 3.1.

Theorem 3.5. Suppose that G contains a connected nonabelian com-
pact subgroup K. Then there is a compact subgroup K∗ of G ×G such that
A(G×G/K∗) is not operator weakly amenable.

Proof. There exists a closed normal subgroup N of K such that K/N is
a compact Lie group [14, (28.61)(c)]. Moreover, we can, and shall, arrange
for K/N to be nonabelian. Indeed, if st 6= ts in K, find a neighbourhood U
of e in K such that ts 6∈ stU ; find in U a compact subgroup N so K/N is
a Lie group. Then by Theorem 3.1, A(K/N ×K/N : ∆K/N ) is not operator
weakly amenable. Let q : K × K → K/N × K/N be the quotient map
and K∗ = q−1(∆K/N ). Then by Lemma 3.4, A(K ×K : K∗) ∼= A(K/N ×
K/N : ∆K/N ) is not operator weakly amenable. Moreover, by Lemma 3.3,
A(G×G/K∗) ∼= A(G×G : K∗) admits A(K ×K : K∗) as a quotient, and
hence is not operator weakly amenable either.

3.3. Examples of hyper-Tauberian A(G/K). In this section we will
always let G denote a locally compact group. We shall generalise the fact
that A(G) is hyper-Tauberian when the connected component of the identity
is abelian [28, Thm. 21]. Our approach is inspired by that of [8, Thm. 3.3].
However, in dealing with coset spaces some extra technicalities arise. The
following lemma deals with some of these technicalities.

Lemma 3.6. Suppose G contains an open subgroup G0 and a compact
subgroup K for which A(G0/G0 ∩K) is hyper-Tauberian. Then A(G/K) is
hyper-Tauberian.

Proof. We will identify A(G/K) ∼= A(G : K), etc., so we may work
within the algebra A(G).

Let H = G0 ∩ K. We will first establish that A(G0 : H) is boundedly
isomorphic to a certain subalgebra of A(G : K).

Since H is open in K, it is of finite index. Thus there is a finite set
{k1, . . . , kn} ⊂ K for which

(3.2) K =
n⋃
i=1

Hki and Hki ∩Hkj = ∅ if i 6= j.

It then follows easily that

G0K =
n⋃
i=1

G0ki and G0ki ∩G0kj = ∅ if i 6= j

and thus GK is a union of open cosets. Then the indicator function 1GK
is in B(G), and it is clear that k · 1G0K = 1G0K for each k ∈ K. Hence
1G0KA(G : K) is a closed subalgebra of A(G : K).
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Now if u ∈ A(G : K), then u|G0 ∈ A(G0 : H) by Lemma 3.3. The
restriction map

(3.3) u 7→ u|G0 : 1G0KA(G : K)→ A(G0 : H)

is injective, for if u in A(G : K) satisfies u(s) 6= 0 for some s = s0k in G0K,
where s0 ∈ G0 and k ∈ K, then u(s0) = u(s) 6= 0. Let us see that the map
in (3.3) is surjective. Indeed, if v ∈ A(G0 : H) we define ṽ, w in A(G) by

ṽ(s) =
{
v(s) if s ∈ G0

0 otherwise
and w =

n∑
i=1

k−1
i · ṽ.

Then w ∈ 1G0KA(G) with w|G0 = v. Now, if s0 ∈ G0, h ∈ H and ki is as
above, then, since s0h ∈ G0 and v ∈ A(G0 : H), we have

w(s0hki) = v(s0h) = v(s0) = w(s0)

and hence by (3.2), w(s0k) = w(s0) for s0 in G0 and k in K. Thus if s ∈ G
and k ∈ K, then either s ∈ G0K and we can find s0 in G0 and ki as above
such that s = s0ki, so we have

w(sk) = w(s0kik) = w(s0) = w(s0ki) = w(s);

or s 6∈ G0K, so for any k in K, sk 6∈ G0K and thus w(sk) = 0 = w(s). We
conclude that w ∈ A(G : K). Thus the map in (3.3) is a contractive bijection
which is also a homomorphism. It follows from the open mapping theorem
that this map is an isomorphism. Thus, since A(G0 : H) is hyper-Tauberian,
1G0KA(G : K) is hyper-Tauberian.

Now let T : A(G : K) → A(G : K)∗ be a bounded local operator, i.e.
N∗ ◦ T ◦ N : A(G/K) → A(G/K)∗ is a local operator. We will show for
u1, u2, u3 in A(G : K), each having compact support, that

(3.4) 〈T (u1u2), u3〉 = 〈u1T (u2), u3〉.
Then it follows from Proposition 1.1(ii) that (3.4) holds for any u1, u2, u3 in
A(G : K).

Since G0 is open, there are t1, . . . , tn in G such that
3⋃
j=1

supp(uj) ⊂
n⋃
i=1

tiG0 ⊂
n⋃
i=1

tiG0K.

The map u 7→ ti ∗ u is an isometric isomorphism from 1G0KA(G : K) to
1tiG0KA(G : K) for each i, so each 1tiG0KA(G : K) is hyper-Tauberian.
Now let

w1 = 1t1G0K , wi = 1tiG0K

(
1−

i−1∑
k=1

wk

)
for i = 2, . . . , n.

Then each wi is an idempotent in B(G) with k · wi = wi for each k
in K. Moreover, wiwj = 0 if i 6= j. For each i the map u 7→ wiu
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from 1tiG0KA(G : K) to wiA(G : K) is a surjective homomorphism, so
wiA(G : K) is hyper-Tauberian by [28, Thm. 12]. Then the algebra

A =
n∑
i=1

wiA(G : K) ∼=
n⊕
i=1

wiA(G : K)

is hyper-Tauberian, by [28, Cor. 13], and contains each uj . The inclusion
map ι : A → A(G : K) is an A-module map, so ι∗ ◦ T ◦ ι : A → A∗ is an
A-local operator. Hence ι∗ ◦ T ◦ ι is an A-module map and (3.4) holds.

Theorem 3.7. If G has abelian connected component of the identity, Ge,
then for any compact subgroup K, A(G/K) is hyper-Tauberian.

Proof. As in the proof of the lemma above, we will identify A(G/K) ∼=
A(G : K), etc.

We will first assume that G is almost connected.
Let U be a neighbourhood of the identity in G. Then, by [20], there is

a compact normal subgroup NU ⊂ U such that G̃ = G/NU is a Lie group.
Let q : G → G̃ be the canonical quotient map and K̃ = q(K), so K̃ is
a compact subgroup of G̃. The connected component of the identity of G̃
satisfies G̃e = q(Ge) by [15, (7.12)]. Thus G̃e is abelian, and open in G̃ since
the latter is a Lie group. It then follows that G̃e ∩ K̃ is normal in G̃e and
A(G̃e : G̃e∩K̃) ∼= A(G̃e/G̃e∩K̃) is hyper-Tauberian by [28, Prop. 18]. Then
it follows from Lemma 3.6 that A(G̃ : K̃) is hyper-Tauberian.

We let KU = q−1(K̃) = KNU . Then Lemma 3.4 tells us that A(G : KU )
is isometrically isomorphic to A(G̃ : K̃), and hence is hyper-Tauberian. Since
KU ⊃ K, it follows that A(G : KU ) ⊂ A(G : K).

Let u ∈ A(G : K), and ε > 0. Fix a compact neighbourhood V of e. Find
a neighbourhood U of e such that U ⊂ V and

‖s · u− u‖A <
ε

m(KV )
for s ∈ U.

Then find a normal subgroup NU ⊂ U as above and let
PUu =

�

KU

k · u dk ∈ A(G : KU ).

We note that for any k = k′n ∈ KNU with k′ in K and n in NU we have

‖k · u− u‖A = ‖k′ · (n · u)− u‖A = ‖n · u− k′−1 · u‖A
= ‖n · u− u‖A <

ε

m(KV )
since u ∈ A(G : K) and right translation on A(G) is an isometry. Hence we
find that

‖PUu− u‖A ≤
�

KU

‖k · u− u‖A dk <
ε

m(KV )
m(KU ) ≤ ε.

Thus limU↘{e} PUu = u.
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Now let T : A(G : K) → A(G : K)∗ be a bounded local operator. Since
the inclusion ι : A(G : KU ) → A(G : K) is an A(G : KU )-module map,
and A(G : KU ) is hyper-Tauberian, ι∗ ◦ T ◦ ι : A(G : KU ) → A(G : KU )∗

is an A(G : KU )-local map and hence an A(G : KU )-module map. Hence if
u1, u2, u3 ∈ A(G : K), then

〈T (PUu1 PUu2)− PUu1T (PUu2), PUu3〉 = 0.

Taking U ↘ {e}, as above, we obtain

〈T (u1u2)− u1T (u2), u3〉 = 0.

and hence T is an A(G : K)-module map too.
Finally, if G is not almost connected, we can find an almost connected

open subgroup G0. Then, from above, A(G0 : G0 ∩K) is hyper-Tauberian.
We then appeal to Lemma 3.6.

We say G is a [SIN]-group if there is a neighbourhood basis at e consisting
of sets invariant under inner automorphisms. We obtain for such groups
a partial converse of Theorem 3.7, which is similar to [8, Thm. 3.7].

Corollary 3.8. If G is a [SIN]-group, then A(G × G/K∗) is hyper-
Tauberian for every compact subgroup K∗ of G × G if and only if Ge is
abelian.

Proof. Sufficiency is an obvious consequence of Theorem 3.7. To see ne-
cessity, we first note that Ge is a [SIN]-group and the Freudenthal–Weil
theorem (see [22, 12.4.28]) tells us that Ge ∼= V × K where V is a vector
group and K a connected compact group. If K is nonabelian, we appeal to
Theorem 3.5 to see that there exists a subgroup K∗ of G × G such that
A(G×G/K∗) is not operator weakly amenable, hence not weakly amenable
and not hyper-Tauberian.

3.4. Operator amenability of A(G/K). We recall that [MAP]K-
groups were defined in Section 1.3. We note that Tf (G)A(G) ⊂ A(G), since
Tf (G) is a subalgebra of the Fourier–Stieltjes algebra B(G).

Theorem 3.9. Let G be an amenable locally compact group and K
a compact subgroup so that G is [MAP]K . Then the following are equiva-
lent:

(i) A(G/K) is operator amenable;
(ii) (K ×K)∆ is in the closed coset ring of G×G.

Moreover, if G is compact, each of the above is equivalent to

(iii) IA∆(G)(K) has a bounded approximate identity.

Proof. Since the map u 7→ ǔ is an isomorphism on A(G × G), we see
that IA(G×G)((K × K)∆) has a b.a.i. if and only if IA(G×G)(∆(K × K))
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has a b.a.i. It follows from [7] that IA(G×G)(∆(K × K)) has a b.a.i. if and
only if ∆(K × K) is in the closed coset ring of G × G. An application of
Corollary 1.5(i) tells us that IA(G×G)(∆(K ×K)) has a b.a.i. if and only if
IA(G×G/K×K)(∆G/K) has a b.a.i., where ∆G/K = {(s, s)K × K : s ∈ G}.
Under the identification

A(G/K) ⊗̂A(G/K) ∼= A(G×G/K ×K)

provided by Proposition 1.2, IA(G×G/K×K)(∆G/K) corresponds to the ker-
nel of the multiplication map m : A(G/K) ⊗̂ A(G/K) → A(G/K). Since
A(G/K) has a bounded approximate identity, this kernel has a bounded
approximate identity if and only if A(G/K) is operator amenable, by the
completely bounded version of a splitting result from [18] (also see [2, 3.10]).
This establishes the equivalence of (i) and (ii).

If G is compact, then by Corollary 1.5(i), IA∆(G)(K) has a b.a.i. if and
only if IA(G×G)(K∗) has a b.a.i., where

(3.5) K∗ = (K × {e})∆ = (K ×K)∆.

Hence it again follows from [7] that (ii) and (iii) are equivalent.

The situation that (K ×K)∆ is in the coset ring of G × G seems rare.
It does occur, for example, when K contains a subgroup N , of finite index,
which is normal in G. Thus it is only in such cases that we know A(G/K)
is operator amenable.

However, we gain some situations in which (K × K)∆ is a set of local
synthesis for A(G×G).

Theorem 3.10. If G has abelian connected component of the identity
and K is a compact subgroup of G so that G is [MAP]K , then

(i) (K ×K)∆ is a set of local synthesis for A(G×G).

Moreover, if G is compact then

(ii) K is a set of spectral synthesis for A∆(G).

Proof. (i) By Theorem 3.7, A(G/K) is hyper-Tauberian. Hence it is oper-
ator hyper-Tauberian. Thus, by [28, Thm. 6], ∆G/K = {(s, s)K×K : s ∈ G}
is a set of local synthesis for A(G×G/K×K), since the latter is isomorphic
to A(G/K) ⊗̂ A(G/K) by Proposition 1.2. (We note that [28, Thm. 6] is
proved for the projective tensor product of a hyper-Tauberian algebra with
itself. However, an inspection of the proof, coupled with the formula repre-
senting an arbitrary element of the operator projective tensor product in
[4, 10.2.1], shows that it holds for an operator hyper-Tauberian algebra
with the operator projective tensor product.) Then it follows from Corol-
lary 1.5(ii′) that ∆∗G/K = ∆(K×K) is a set of local synthesis for A(G×G).
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Since u 7→ ǔ is an isomorphism on A(G×G), (K×K)∆ is also a set of local
synthesis.

(ii) By Corollary 1.5(ii), K is spectral for A∆(G) ∼= A(G×G/∆) if and
only if K∗ = (K × K)∆ (see (3.5)) is spectral for A(G × G). We appeal
to (i).

4. Convolution

4.1. Convolution on compact groups. We close this article by ad-
dressing, in part, the case of what happens if we replace the map Γ , in
Section 1.2, with convolution.

We let A(G×G) be as in Section 1.2, and insist further that the group
action of left translation is isometric on A(G×G) and continuous on G×G.
We then define a group action (r, f) 7→ r � f : G ×A(G ×G) → A(G ×G)
by

r � w(s, t) = w(sr, r−1t) = (r, e) · [(e, r) ∗ w](s, t) = (e, r) ∗ [(r, e) · w](s, t).

We let ∆̌ = {(t, t−1) : t ∈ G} and define

A(G×G : ∆̌) = {f ∈ A(G×G) : r � f = f for every r in G}.
We note that w(s, t) = w(s1, t1) for w ∈ A(G×G : ∆̌), provided (ss−1

1 , tt−1
1 )

∈ ∆̌ for w ∈ A(G × G : ∆̌), even though ∆̌ is not a subgroup unless G is
abelian. We then define

P̌ : A(G×G)→ A(G×G), P̌w =
�

G

r � w dr,

and
M̌ : A(G×G : ∆̌)→ C(G), M̌f(s) = f(s, e).

Then P̌ is a contractive idempotent whose range is A(G × G : ∆̌), in par-
ticular P̌ is a quotient map. The map M̌ is injective; we denote its range by
A∆̌(G) and assign to it the norm which makes M̌ an isometry. Then M̌ has
inverse

Ň : A∆̌(G)→ A(G×G : ∆̌), Ňf(s, t) = f(st).

Finally, we define

Γ̌ : A(G×G)→ A∆̌(G), Γ̌ = M̌ ◦ P̌ .
If A(G × G) contains an elementary product f × g, then Γ̌ f × g = f ∗ g.
Thus, Γ̌ may be regarded simply as the convolution map.

4.2. Convolution on the Fourier algebras. We will now consider
only the case where A(G × G) = A(G × G). As in Section 1.2, it is easy
to verify that Γ̌ : A(G × G) → A∆̌(G) is a complete quotient map and
A∆̌(G) ⊂ A(G).
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We recall that Aγ(G) is the subalgebra of A(G) defined in Section 1.2,
Example (iii). For this algebra we have

(4.1) f ∈ Aγ(G) ⇔
∑
π∈ bG

d2
π‖f̂(π)‖1 <∞

and the latter quantity is the norm ‖f‖Aγ , by [17, Prop. 2.5].

Theorem 4.1. We have A∆̌(G) = Aγ(G) isometrically. Moreover,
A∆̌(G)=A(G) if and only if G admits an abelian subgroup of finite index.

Proof. We have a computation similar to that in Lemma 2.1. For f in
C(G) and π in Ĝ we havê̌Nf(π̄ × π̄) =

�

G

�

G

f(st)π(s)⊗ π(t) dt =
�

G

�

G

f(s)π(st−1)⊗ π(t) dt

=
[ �
G

f(s)π(s)⊗ π(e) ds
]
◦
[ �
G

π(t−1)⊗ π(t) dt
]

= [f̂(π)⊗ IHπ ] ◦ 1
dπ

U

where U is a unitary, in fact a permutation matrix, as we shall see below.
Indeed, identify the linear operators on Hπ with the matrix space Mdπ via
an orthonormal basis, and then identify Mdπ ⊗ Mdπ

∼= Md2
π
. We obtain,

using (2.2), the (ij, kl)th entry( �
G

π(t−1)⊗ π(t) dt
)
ij,kl

=
�

G

πij(t−1)πkl(t) dt =
�

G

πji(t)πkl(t) dt =
1
dπ

δilδjk

where δil and δjk are the Kronecker δ-symbols.
Thus it follows that

‖̂̌Nf(π̄ × π̄)‖1 =
1
dπ
‖f̂(π)⊗ IHπ‖1 = ‖f̂(π)‖1.

If π 6= σ in Ĝ then it can be shown, just as above, that ̂̌Nf(π × σ) = 0.
We then obtain

f ∈ ran Γ̌ ⇔
∑

(π,σ)∈Ĝ×G

dπdσ‖̂̌Nf(π × σ)‖1 =
∑
π∈ bG

d2
π‖f̂‖1 <∞.

This is precisely the characterisation obtained for Aγ(G) in (4.1).
It can be shown, as in Corollary 2.4, that Aγ(G) = A(G) if and only if

G has an abelian subgroup of finite index.

Note that it follows from (2.7) and Theorems 2.2 and 2.6 that there are
contractive inclusions

A∆2(G) ⊂ Aγ(G) ⊂ A∆(G).
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Also, note that since u 7→ ǔ is an isometric isomorphism on A(G), the
definition of Aγ(G) given in Section 1.2, Example (iii), yields the equality

Γ̌ (A(G) ⊗̂A(G)) = Γ̌ (A(G)⊗γ A(G)).
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