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On a construction of majorizing measures
on subsets of Rn with special metrics

by

Jakub Olejnik (Łódź)

Abstract. We consider processes Xt with values in Lp(Ω,F , P ) and “time” index t in
a subset A of the unit cube. A natural condition of boundedness of increments is assumed.
We give a full characterization of the domains A for which all such processes are a.e.
continuous. We use the notion of Talagrand’s majorizing measure as well as geometrical
Paszkiewicz-type characteristics of the set A. A majorizing measure is constructed.

Introduction. The aim of this paper is to present some conditions of
almost sure convergence of series and continuity of processes with “bounded
increments” in Lp spaces, for p > 1. For a fixed probability space we will say
that a process (Xt)t∈T on a metric space (T, d) has bounded increments if

(?) ∀s,t∈T ‖Xt −Xs‖p ≤ d(t, s).

In this study we will restrict ourselves to T being subsets of the unit cube in
Euclidean spaces. More precisely, T ⊂ [0, 1]η, η ≥ 1, and d(s, t) = dq(s, t) =
q
√

max1≤i≤η |si − ti| for s = (s1, . . . , sη), t = (t1, . . . , tη) in T . It is assumed
that p, q > 1 are arbitrary numbers. We give conditions on T which are
sufficient for a.e. continuity of X satisfying (?). These conditions are also
necessary. A natural interpretation for a.e. convergence of series in Lp is also
described (cf. Corollary 1).

Description of a.e. convergent sequences is a problem which has been
addressed for decades. It seems that Paszkiewicz ([4], [5]) was the first to
give a complete characterization of a.e. convergent sequences in L2. The
important result of Patrice Assouad (see e.g. [6, Theorem 2.3]) concerns a
more general class of series or processes (not necessarily determined by a
sequence), but its proof is nonconstructive and the condition it formulates is
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not expressed in terms of the geometrical properties of the space T . In fact,
it uses the dual to the space of continuous functions on T × T \ {(x, x)}x∈T .

We stress that Paszkiewicz characterized orthogonal series in L2 which
are a.e. convergent, whereas a conclusion which could be drawn from our pa-
per is a characterization of a.e. convergent series

∑
Φn satisfying a condition

‖
∑k

n=m Φn‖
q
p ≤ f(k,m) for some additive function of interval in N. Our rea-

sonings are considerably simpler than those in [5] (particularly constructions
in [5, Sections 3–7]).

The classical paper of Talagrand [6] investigates conditions of a.s. con-
tinuity of processes with bounded increments in general Orlicz spaces by
means of existence of so called majorizing measures. The concept of ma-
jorizing measure has been extensively used in the literature, most notably,
to characterize continuity and boundedness of Gaussian process (e.g. [7]). For
short yet exhaustive reviews on majorizing measures see [5], [6], [1] or [8].

We should mention that while the author was working on this paper,
W. Bednorz [2] presented a proof of existence of majorizing measures for
a wide class of metric spaces: roughly speaking, for spaces whose metric
is a root of another metric. Nevertheless, we believe our reasoning is still
interesting since, using Paszkiewicz-type operators, it is constructive and it
clarifies, in an elementary way, the case of the space Rη.

The first section of this paper presents a fundamental result (Theorem 1)
which connects three quantities: the norm of the maximal function of a pro-
cess with bounded increments on a finite set A of time instances, Talagrand’s
majorizing measure characteristic and the values of Paszkiewicz’s character-
istics of the set A.

Theorem 2 in Section 2 provides an explicit relation between the charac-
teristics under study and a majorizing measure on an arbitrary closed subset
of [0, 1]η. Theorem 3 provides a construction of a.e. divergent process. To
avoid excessive difficulties we perform the construction in the case of η = 1;
nonetheless, the general idea based on, roughly speaking, the Borel–Cantelli
lemma is worth highlighting.

1. Upper bounds for processes on finite subsets of a finite-
dimensional cube. In this section we will be considering finite subsets
A of the η-dimensional cube [0, 1]η, for some fixed η ≥ 1. We will investi-
gate bounds for the maximal function of an arbitrary process (Xt)t∈A with
bounded increments (see Definition 1 below).

Throughout the paper we fix p, q > 1 and set

(1) dq(x, y) = q

√
max
1≤i≤η

|xi − yi|, x, y ∈ Rη,

with x = (x1, . . . , xη) and y = (y1, . . . , yη).
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Definition 1. Let (Ω, T ,P) be a probability space. For a set T ⊂ [0, 1]η

we say that a processX = (Xt)t∈T ⊂ Lp(Ω) has bounded increments, written
X ∈ BI(T ), if for all t, s ∈ T ,

‖Xt −Xs‖p ≤ dq(t, s).

We will also use the notion of majorizing measure (cf. Talagrand [6]).
More precisely, we will utilize the definition used in [5].

Definition 2. A finite Borel measure m concentrated on a set T ⊂
[0, 1]η is a majorizing measure on T if

sup
t∈T

diamT�

0

dε
p
√
m(B(t, ε))

≤ 1,

where B(t, ε) is an open ball and diam is diameter with respect to the met-
ric dq.

For a finite set A ⊂ [0, 1]η we define

(2) Sp = sup
X∈BI(A)

∥∥max
s,t∈A

|Xt −Xs|
∥∥
p
, S = sup

X∈BI(A)

∥∥max
s,t∈A

|Xt −Xs|
∥∥

1
,

with BI(A) as in Definition 1, and

(3) Mp = inf{ p
√
m(A) : m is a majorizing measure on A}.

The aim of this section is to provide a comparison of the following char-
acteristics of a finite set A ⊂ [0, 1]η:

S, Sp, Mp and Vp,

where

(4) Vp = ‖V0V1 . . . ViA 0‖p;

the integer iA and the sequence of operators Vi : Lp([0, 1]η) → Lp([0, 1]η),
i ≥ 0 (to be defined later in this section, cf. (9)) depend on the set A.

It is clear that all the above mentioned characteristics also depend on
the choice of the metric (cf. (1)), thus on the number q. For ease of notation
the additional index is omitted.

Once we obtain the desired comparison of characteristics, we will be able
to extend a result of Paszkiewicz to the case of the space Lp, p > 1.

For any i ≥ 0 and 0 ≤ n < 2i − 1 let P in = [n2−i, (n + 1)2−i) and
P i

2i−1
= [1− 2−i, 1]. We write n = (n1, . . . , nη) for multiindices n ∈ Nη. For

any n ∈ {0, . . . , 2i − 1}η denote

(5) δin =
η∏
k=1

P ink .
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Then we can define
(6) ∆i = ∆A

i =
⋃

n: δin∩A 6=∅

δin.

Moreover, we will consider the σ-fields
(7) Fi = σ(δin : n ∈ {0, . . . , 2i − 1}η).

We also introduce the constant
(8) τ = 2η/p−1/q.

For any h ∈ Lp([0, 1]η) we will use the conditional Lp-norm defined by

‖h‖p,i = (E(|h|p | Fi))1/p.
This notation may seem unusual but it will prove convenient. For any integer
i ≥ 0 let us define operators

(9) V A
i h = τ iI∆i + ‖h‖p,i and Wih =

‖h‖p,i + τ i

‖h‖p,i
· h

for h ∈ Lp([0, 1]η), with an agreement that 1/0 := 0. We omit the superscript
A whenever it does not lead to misunderstanding.

Another crucial definition assigns to a finite set A ⊂ [0, 1]η the smallest
integer iA for which the family of sets FiA separates points of A. Namely,
for a finite set A we define (cf. (1), (5), (6))
(10) iA = min{k ≥ 0: ∀δkn,δkm⊂∆kdq(δ

k
n, δ

k
m) > 0}.

Similarly to (4) we define another characteristic of a finite set A, related
to the operations Wi, i ≥ 0, i.e.
(11) Wp = ‖W0 . . .WiA−1(τ iAI∆iA )‖p.

Theorem 1. For any finite set A ⊂ [0, 1]η and any probability space
(Ω, T ,P),

S = Sp ≤ 2η+1Vp, 2−p/qMp ≤ Vp =Wp, Vp ≤ γSp+γ, Sp ≤ 12
√

3Mp,

where γ = 3η2(q+1)/q{( q
√

2− 1)−1 + 4(2− q
√

2)−1}.
Proof. The relation S = Sp and the last inequality are known in the

general setting (cf. [1, Proposition 2.1]). The rest of the proof will be accom-
plished in the following four steps.

Step 1. We show that
(12) Sp ≤ 2η+1Vp.
Let (Xt)t∈A be a process with bounded increments. For i ≤ iA and n ∈
{0, . . . , 2i − 1}η such that δin ∩ A 6= ∅ fix an element tin ∈ δin ∩ A. Then, for
any n ∈ {0, . . . , 2i − 1}η, set (cf. (5))

M i
n = max

t∈δin∩A
|Xt −Xtin

| if δin ∩A 6= ∅; M i
n = 0 otherwise.
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By (10), ‖M iA
n ‖p = 0 for all n ∈ {0, . . . , 2iA − 1}η. Let us assume that for

m ∈ {0, . . . , 2i+1 − 1}η,

‖M i+1
m ‖p ≤ 2η · ‖Iδi+1

m
Vi+1 . . . ViA0‖p.

By Definition 1 and the inductive assumption, for any n ∈ {0, . . . , 2i − 1}η
we have

‖M i
n‖p ≤

∥∥ max
2n≤m≤2n+1

|Xti+1
m
−Xtin

|
∥∥
p

+ ‖ max
2n≤m≤2n+1

M i+1
m ‖p

≤ 2η diam(δin) +
( ∑

2n≤m≤2n+1

‖M i+1
m ‖pp

)1/p

≤ 2η2−i/q + 2η ·
( ∑

2n≤m≤2n+1

‖Iδi+1
m
Vi+1 . . . ViA‖

p
p

)1/p

= 2η(2−iη/pτ i + ‖IδinVi+1 . . . ViA‖p) = 2η‖IδinVi . . . ViA0‖p,

where we put |Xti+1
m
−Xtin

| = 0 whenever ti+1
m is not defined.

Since maxs,t∈A |Xt−Xs| ≤ 2 ·M0
0 ≤ 2η+1Vp, we have the inequality (12).

Step 2. To show thatWp = Vp we will use a simple downward induction.
Let us assume that for an i < iA (cf. (10)) we have

(13) ‖Wi+1 . . .WiA−1(τ iAI∆iA )‖p,i+1 = Vi+1 . . . ViA0,

and that

(14) supp ‖Wi+1 . . .WiA−1(τ iAI∆iA )‖p,i+1 = ∆i+1,

which is true for i+ 1 = iA since τ iAI∆iA = ViA0. Then the inductive step

ViVi+1 . . . ViA0 = τ iI∆i + ‖Vi+1 . . . ViA0‖p,i
= τ iI∆i + ‖Wi+1 . . .WiA−1(τ iAI∆iA )‖p,i = ‖Wi . . .WiA−1(τ iAI∆iA )‖p,i

follows from (13). Moreover, by (14),

supp ‖Wi . . .WiA−1(τ iAI∆iA )‖p,i = supp ‖Wi+1 . . .WiA−1(τ iAI∆iA )‖p,i = ∆i.

By induction, (13) is valid for i+ 1 = 0.

Step 3. In order to show that Mp ≤ q
√

2 · Wp we will construct a ma-
jorizing measure with total mass 2p/q‖W0 . . .WiA−1(τ iAI∆iA )‖pp.

More precisely, let

(15) dm̃k,j = [Wk . . .Wj−1(τ jI∆j )]
pdλ

with λ being the Lebesgue measure, 0 ≤ k ≤ j, ∆j = ∆A
j and (cf. (6))

(16) mk,j(E) = m̃k,j(∆E
j ) for E ⊂ A.
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By (10), mk,j is a well defined measure for j ≥ iA. In particular, mj,j(E) =
2−jητ jp card(E) for any E ⊂ A. Each measure 2p/q ·m0,j for j ≥ iA turns
out to be a majorizing measure on A.

First we show an auxiliary relation between mk,j and mk+1,j . Taking an
arbitrary E ⊂ δkn for some k < j, j ≥ iA, n ∈ {0, . . . , 2k− 1}η (cf. (10)), and
denoting

g = Wk+1 . . .Wj−1(τ jI∆j )

for brevity, we have ∆E
j ⊂ δkn and (cf. (9), (15), (16))

(17) mk,j(E) = ‖Wkg · I∆Ej ‖
p
p =

∥∥∥∥‖g‖p,k + τk

‖g‖p,k
gI∆Ej

∥∥∥∥p
p

=
(‖Iδkng‖p + 2−kη/pτk)p

‖Iδkng‖
p
p

‖gI∆Ej ‖
p
p =

( p
√
mk+1,j(δkn) + 2−k/q)p

mk+1,j(δkn)
mk+1,j(E).

To prove that 2p/q ·m0,j for j ≥ iA is a majorizing measure on A, it is
enough to show that

(18) ∀j≥iA∀1≤k≤j

q√2 diam δkr�

0

[mk,j(B(t, ε) ∩ δkr )]−1/p dε ≤ 21/q

for t ∈ δkr ∩A. Notice that for j ≥ iA, t ∈ δjr ∩A, r ∈ {0, . . . , 2j − 1}η,

q√2 diam δjr�

0

[mj,j(B(t, ε) ∩ δjr)]−1/p dε = q
√

2 · 2−j/q · 2jη/pτ−j = 21/q,

thus (18) is valid for k = j. Furthermore, assuming (18) to hold for some
j ≥ k ≥ 1, for t ∈ δkr ∩A ⊂ δk−1

n we have by (17), (18),

q√2 diam δk−1
n�

0

[mk−1,j(B(t, ε) ∩ δk−1
n )]−1/p dε

≤
q√2 diam δkr�

0

[mk−1,j(B(t, ε) ∩ δkr )]−1/p dε

+

q√2 diam δk−1
n�

diam δk−1
n

[mk−1,j(δk−1
n )]−1/p dε
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≤
p

√
mk,j(δk−1

n )

p

√
mk,j(δk−1

n ) + 2(−k+1)/q

q√2 diam δkr�

0

[mk,j(B(t, ε) ∩ δkr )]−1/p dε

+ q
√

2 · (2(−k+1)/q − 2−k/q)
1

p

√
mk,j(δk−1

n ) + 2(−k+1)/q
≤ 21/q.

Thus, the desired relation (18) is proved.

Step 4. The proof will be complete if we show that Wp ≤ γSp + γ for
some γ > 0.

Let A ⊂ [0, 1]η be a finite set. Let us introduce some additional notation.
For any t ∈ A and k ≥ 0 let (cf. (6))

δk(t) = ∆
{t}
k ,

which is the Fk-measurable atom containing t. Moreover, for an atom δ in
Fk let

N (δ) = {∆{t}k : t ∈ A ∧ dq(δ,∆{t}k ) = 0},

which is the set of all Fk-atoms adjacent to δ (including δ).
For t ∈ A, j ≥ 0 and ω ∈ [0, 1]η let

Xj
t (ω) =

iA∑
k=j

∑
δ∈N (δk(t))

(
1− dqq(t, δ)

2−k

)
τkWk+1 . . .WiA−1(τ iAI∆iA )(ω)

‖Wk+1 . . .WiA−1(τ iAI∆iA )‖p,k
Iδ(ω);

moreover, let Xt = X0
t . An easy computation shows that for any j ≥ 0 and

t ∈ A we have

(19) ‖Xj
t ‖p ≤

iA∑
k=j

3η‖τkIδk(t)‖p ≤ 3η
iA∑
k=j

2−k/q =
3η q
√

2
q
√

2− 1
· 2−j/q.

To show that γ−1Xt has bounded increments for a suitably large constant
γ > 0 fix s, t ∈ A and set

l = min{k ∈ N : dq(δk(s), δk(t)) > 0}.

Notice that 2−l/q ≤ dq(s, t) ≤ 4 · 2−l/q. Thus it is enough to show that
‖Xt −Xs‖p is also of the order 2−l/q.

We have

‖Xt −Xs‖p ≤ ‖Xt −X l
t +X l

s −Xs‖p + ‖X l
t‖p + ‖X l

s‖p.

We can also compute that, with

ξk =
(2τ)kWk+1 . . .WiA−1(τ iAI∆iA )

‖Wk+1 . . .WiA−1(τ iAI∆iA )‖p,k
, k ≥ 1,
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we have

‖Xt −X l
t +X l

s −Xs‖p

≤
∥∥∥ l−1∑
k=0

∑
δ∈N (δk(t))∪N (δk(s))

|(dq(t, δ) ∧ 2−k/q)q − (dq(s, δ) ∧ 2−k/q)q| · ξkIδ
∥∥∥
p

≤
l−1∑
k=0

2·3η(dq(t, s))q · 2k‖τk · Iδk0‖p ≤ 8 ·3η
l−1∑
k=0

2−l2k2−k/q =
8 · 3η q

√
2

2− q
√

2
· 2−l/q.

This, together with (19), implies that we can take

γ = 3η2(q+1)/q{( q
√

2− 1)−1 + 4(2− q
√

2)−1}.
Now, a simple induction will show that

max
t∈A

X0
t ≥W0 . . .WiA−1(τ iAI∆iA ).

For any k ≥ 0 and δkn ⊂ ∆k we have

(20) Iδkn max
t∈A∩δkn

Xk
t ≥ IδknWk . . .WiA−1(τ iAI∆iA ).

Indeed, this is true for k = iA. If we assume that (20) holds for a k ≤ iA,
then for δk−1

m ⊂ ∆k−1 we have

Iδk−1
m

max
t∈A∩δk−1

m

Xk−1
t ≥

∑
δkn⊂∆k∩δ

k−1
m

Iδkn max
t∈A∩δkn

Xk−1
t

≥
∑

δkn⊂∆k∩δ
k−1
m

Iδkn max
t∈A∩δkn

[
Xk
t +

τkWk . . .WiA−1(τ iAI∆iA )

‖Wk . . .WiA−1(τ iAI∆iA )‖p,k−1
Iδk−1(t)

]
≥ Iδk−1

m
Wk−1 . . .WiA−1(τ iAI∆iA ).

Finally, we have

Sp(A) ≥ γ−1‖max
t∈A

Xt‖p − γ−1‖XminA‖p ≥ γ−1Wp − 1,

which completes the proof of Step 4, and the proof of Theorem 1.

2. Processes on infinite sets. In this section we will present a selection
of corollaries to Theorem 1. Let us notice that for an arbitrary set A ⊂ [0, 1]η

the finiteness of the quantity

(21) V̄ = V̄(A) = lim
n→∞

‖V A
0 . . . V A

n 0‖p

determines whether the set A has the property that every process with
bounded increments on A has an a.s. continuous modification.

The first result below shows how the existence of a majorizing measure
on an arbitrary closed set can be obtained from Theorem 1. The second gives
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an example of a construction of an a.e. discontinuous process on an infinite
set.

Theorem 2. Let A ⊂ [0, 1]η be a closed set for which V̄ < ∞. The
sequence of measures (µn)n∈N defined by

dµn = [W0 . . .WnI∆n+1 ]pdλ,

with ∆n = ∆A
n , is weakly convergent and 2p/q limn→∞ µn is a majorizing

measure on A with total mass 2p/qV̄p.
Proof. Since the family (µn) is tight, by Prokhorov’s theorem there exists

a measure µ which is its cluster point, i.e. µ = limi→∞ µni for some (ni)i∈N.
The measure µ is finite since µ([0, 1]η) = V̄p <∞, and it is concentrated

on
⋂
n∈N∆n = A, with the bar denoting closure. Moreover, by [3, Theorem

29.1] for any k ∈ N there exist integers ak ≥ bk ≥ k for which

(22) µak(Z)− k−1 ≤ lim sup
i→∞

µni(Z) ≤ µ(Z)

for every Z ∈ Fbk (cf. (7)). The sequence (bk)k∈N can be easily chosen to be
increasing.

Let t be a point in A. For every natural number n we define the function

%n(ε) = µ
(
∆
B(t,ε)∩A
n \B(t, ε)

)
,

where ∆B(t,ε)∩A
n is defined in (6) with B(t, ε) ∩ A substituted for A, and

B denotes the closed ball in [0, 1]η with the metric dq. Obviously %n ↘ 0
pointwise.

Taking (22) into account, for any k ∈ N we have the estimate
1�

0

dε

p

√
µ(B(t, ε) ∩A) + %bk(ε) + k−1

=
1�

0

[
µ
(
∆
B(t,ε)∩A
bk

)
+

1
k

]−1/p

dε ≤
1�

0

µak(∆B(t,ε)∩A
bk

)−1/p dε

=
1�

0

dε

‖I
∆
B(t,ε)∩A
ak

·W0 . . .Wak−1τak(I∆Aak I∆Eak )‖p
=

1�

0

dε

m̃0,ak(∆B(t,ε)∩A
ak )1/p

≤
1�

0

m̃0,ak(∆B(t,ε)∩E
ak

)−1/p dε ≤
1�

0

m0,ak(B(t, ε) ∩ E)−1/p dε ≤ q
√

2.

Here the set E can be chosen to be any finite subset of A such that ∆A
ak

=
∆E
ak
, iE = ak (cf. (10)). The measures m̃0,j , m0,j , j ≥ 0, are defined as

in the proof of Theorem 1, Step 3, on the stipulation that m0,j , j ≥ 0, is
concentrated on E, instead of A. The last estimate results from (18).



10 J. Olejnik

By the monotone convergence theorem and an easy observation that
µn(A) = ‖V0 . . . Vn0‖pp, we can take 2p/qµ for a majorizing measure on A.

It remains to justify that (µn)n∈N has a weak limit. Observe that for
every k ∈ N, Z ∈ Fk and n > k we have (cf. (13))

µn(Z) = ‖IZ ·W0 . . .WnI∆n+1‖pp
= ‖IZ ·W0 . . .Wk‖Wk+1 . . .WnI∆n+1‖p,k‖pp
= ‖IZ ·W0 . . .Wk‖Vk+1 . . . Vn+10‖p,k‖pp.

Since the operator W0 . . .Wk is continuous and ‖Vk+1 . . . Vn+10‖p,k in-
creases with n, the limit limn→∞ µn(Z) exists. Moreover, any (uniformly)
continuous function f on [0, 1]η lies in the L∞ closure of the set of all⋃
i∈NFi-measurable simple functions, thus by a straightforward argument,

�

[0,1]η

f dµn →
�

[0,1]η

f dµ.

Theorem 3. Let A be an infinite subset of [0, 1] with 0 being its only
cluster point. If V̄(A) =∞ (cf. (21)) then there exists a process on A∪ {0}
with bounded increments which is almost surely discontinuous at 0.

Proof. Basically, the idea is to use Theorem 1 to obtain a sequence of
(independent) processes, say Xn, on some finite sets An, which have large
upper bounds and the sets An are (exponentially) close to 0 at the same
time. Then we apply the Borel–Cantelli lemma.

Let α0 = β0 = 1 and θ > 0. If αn, βn are defined then αn+1, βn+1 are
chosen so that αn+1 < βn+1 <

1
2αn and for An+1 := [αn+1, βn+1] ∩ A we

have (cf. (10))
‖V An+1

0 . . . V An+1

iAn+1
0‖p ≥ θ.

This can be done since for any B ⊂ [0, 1] and Bl := B ∩ [l−1, 1] with l ≥
(maxB)−1 the condition limk→∞ ‖V B1 . . . V Bk 0‖p =∞ implies both

lim
m→∞

‖V Bm0 . . . V BmiBm
0‖p =∞ and lim

k→∞
‖V B\Bl0 . . . V

B\Bl
k 0‖p =∞.

Indeed, we have the inequalities

lim
k→∞

‖V B0 . . . V Bk 0‖p ≤ lim
k→∞

‖V Bl0 . . . V Blk 0‖p + lim
k→∞

‖V B\Bl0 . . . V
B\Bl
k 0‖p,

lim
k→∞

‖V Bl0 . . . V BliBl
0‖p <∞,

lim
k→∞

‖V B0 . . . V Bk 0‖p = lim
k→∞

lim
m→∞

‖V Bm0 . . . V Bmk 0‖p

= lim
m→∞

lim
k→∞

‖V Bm0 . . . V Bmk 0‖p

≤ lim
m→∞

lim
k→∞

(‖V Bm0 . . . V BmiBm
0‖p + ‖V BmiBm+1

. . . V Bmk 0‖p)
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and for any finite set E with iE < k,

‖V E
iE+1 . . . V

E
k 0‖p ≤ ‖τ iE+1I∆EiE+1

‖p + · · ·+ ‖τkI∆Ek ‖p

< 1 + 2−1/q + 2−2/q + · · · <∞.
Theorem 1 implies that if we take θ sufficiently large, for every n ∈ N

there exists a process Xn with bounded increments on the set An for which
‖maxs,t∈An |Xt−Xs| ‖p ≥ 2 and Xn

minAn = 0. Moreover, by applying a fairly
standard argument we can choose the process so that

Prob( max
s,t∈An

|Xt −Xs| ≥ 1) ≥ 1
2
.

Furthermore, (Xn)n∈N can be chosen so that X1, X2, . . . are independent.
Let Xt = Xn

t for t ∈ An, X0 = 0. By the Borel–Cantelli lemma Xt di-
verges almost surely as t → 0. It is a simple exercise to show that
(c·Xt)t∈S

n A
n with c = 2(1−q)/q has bounded increments. Namely, it is enough

to notice that for t, s ∈
⋃
n∈NA

n, t ∈ [αm, βm], s ∈ [αk, βk], k > m ≥ 1, we
have

‖c ·Xt − c ·Xs‖qp = ‖c ·Xm
t − c ·Xk

s ‖qp ≤ ‖c ·Xm
t ‖qp + ‖c ·Xk

s ‖qp

≤ t−minAm + s−minAk ≤ t− αm + βk ≤ t−
1
2
αm ≤ t− βk ≤ t− s.

Corollary 1. Let (an)n∈N be a sequence of nonnegative numbers such
that

∑∞
n=1 an = 1. The series

∑∞
n=1 φn converges a.e. for any sequence of

functions (φn)n∈N ⊂ Lp(0, 1) satisfying ‖
∑n2

n=n1
φn‖p ≤ q

√∑n2
n=n1

an for all
n1, n2 ∈ N if and only if for the set A = {

∑∞
n=k an : k ∈ N ∪ {∞}} we have

lim
k→∞

‖V A
0 . . . V A

k 0‖p <∞.
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