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More classes of non-orbit-transitive operators

by

Carl Pearcy and Lidia Smith (College Station, TX)

Abstract. In [9] and its sequel [7] the authors initiated a program whose (announced)
goal is to eventually show that no operator in L(H) is orbit-transitive. In [9] it is shown,
for example, that if T ∈ L(H) and the essential (Calkin) norm of T is equal to its essential
spectral radius, then no compact perturbation of T is orbit-transitive, and in [7] this result
is extended to say that no element of this same class of operators is weakly orbit-transitive.
In the present note we show that no compact perturbation of certain 2-normal operators
(which in general satisfy ‖T‖e > re(T )) can be orbit-transitive. This answers a question
raised in [9]. Our main result herein is that if T belongs to a certain class of 2-normal
operators in L(H(2)) and there exist two constants δ, ρ > 0 satisfying ‖T k‖e > ρkδ for all
k ∈ N, then for every compact operator K, the operator T + K is not orbit-transitive.
This seems to be the first result that yields non-orbit-transitive operators in which such
a modest growth rate on ‖T k‖e is sufficient to give an orbit {T kx} tending to infinity.

1. Introduction. Let H be a separable, infinite-dimensional, complex
Hilbert space, and denote the algebra of all bounded linear operators on
H by L(H). If T ∈ L(H) and x ∈ H, the countable (finite or infinite)
set {Tnx}∞n=0 is called the orbit of x under T , and is denoted by O(x, T ).
If O(x, T ) is dense in H, then x is called a hypercyclic vector for T , and
T is said to be a hypercyclic operator. The question of which operators
in L(H) are hypercyclic and properties of the set of hypercyclic vectors
of a hypercyclic operator have been much studied during the past twenty
years. An operator T in L(H) is called transitive if T has no invariant sub-
space (closed linear manifold) other than {0} and H, and is called orbit-
transitive (or hypertransitive as in [9]) if every nonzero vector in H is hy-
percyclic for T . Presently one does not know whether there exist transi-
tive or orbit-transitive operators in L(H). (It is obvious that every orbit-
transitive operator is transitive, and Read [13] has constructed an oper-
ator on the Banach space (l1) that is orbit-transitive.) Denote the set of
all nontransitive operators in L(H) by (NT) and the set of all non-orbit-
transitive operators in L(H) by (NOT). The invariant subspace problem is
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the open question whether (NT) = L(H), and the orbit-transitive opera-
tor problem is the question whether (NOT) = L(H). (The orbit-transitive
operator problem is sometimes referred to as the hypertransitive-operator
problem [9] or the nontrivial-invariant-closed-set problem. At present, nei-
ther the term “hypertransitive” nor “orbit-transitive” has been in use long
enough to be considered standard, but note that if an operator T in L(H) is
called “supertransitive” if every nonzero vector y in H is supercyclic for T ,
i.e., {ρTny : n ∈ N, ρ ∈ C}− = H, then “hypertransitive” would seem to be
a reasonable alternative to “orbit-transitive”.)

As the abstract indicates, this paper is a continuation of the study, initi-
ated in [9] and continued in [7], of classes of non-orbit-transitive operators,
with the purpose (as mentioned explicitly in [9]) of eventually showing that
(NOT) = L(H), and thus to give convincing evidence that operators on
Hilbert space are very different creatures from operators on more general
complex Banach spaces. More exactly, in this article we make progress on
the problem of showing that if T is n-normal andK is compact, then T+K ∈
(NOT). In particular, we produce the only known subset of (NOT) invariant
under compact perturbations, consisting of operators which satisfy the very
modest growth condition ‖T k‖e ≥ ρkδ for some ρ, δ > 0 and all k ∈ N.

All the notation and terminology to follow is consistent with that of [9]
and [7], but for the reader’s convenience, we briefly review the main points.
The sets of positive and nonnegative integers will be denoted by N and N0,
and the complex plane by C. The ideal of compact operators in L(H) will
be written as K(H), or more simply as K, and the quotient (Calkin) map
L(H) → L(H)/K by π. For T in L(H) we write σ(T ) and σp(T ) for the
spectrum and point spectrum of T , respectively, and σe(T ) := σ(π(T )),
σlre(T ) := σlr(π(T )) (the intersection of the left and right spectra of π(T )).
We also write r(T ) and re(T ) for the spectral radii of T and π(T ), as well
as ‖T‖e := ‖π(T )‖.

Finally, for any positive integer n we write H(n) for the direct sum of n
copies of H.

2. Some new ideas. Our first new result is a supplement to the follow-
ing theorem of Ansari.

Theorem 2.1 (Ansari [1]). For every T ∈ L(H) and for every n ∈ N,
T and Tn have exactly the same set of hypercyclic vectors.

Our supplement is as follows:
Proposition 2.2. Suppose T ∈ L(H), x ∈ H, and there exists n0 ∈ N

such that ‖(Tn0)kx‖ k→∞. Then ‖T kx‖ k→∞ too. Consequently,

{y ∈ H : ‖T ky‖ k→∞} = {y ∈ H : ∃n0 ∈ N with ‖(Tn0)ky‖ k→∞}.
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Proof. Assume that ‖T kx‖ 9 ∞. Then there exist M ≥ 0 and a subse-
quence {kj} ⊂ N such that

(2.1) ‖T kjx‖ →M.

If, for kj > n0, we write kj = n0qj − rj , where qj , rj ∈ N0, 0 ≤ rj < n0, we
have

(2.2) ‖(Tn0)qjx‖ = ‖T rj+kjx‖ ≤ ‖T‖rj · ‖T kjx‖.

But under the assumption (2.1), (2.2) contradicts ‖(Tn0)kx‖ k→∞.

The essence of the main new technique of this note is contained in the
following proposition.

Proposition 2.3. Let {Tn}n∈N be a sequence of operators in L(H) with
the property that there exists a sequence of infinite-dimensional subspaces
{Mn}n∈N such that, for every n ∈ N, the operator Tn is bounded below on
the subspaces Mn, . . . ,M2n−1 by some M(n) > 0. Moreover, let {αn}n∈N be
any sequence in l2(N). Then for every x0 ∈ H there exists y ∈ H such that

(2.3) ‖y − x0‖2 ≤
∞∑
i=1

|αi|2, ‖Tny‖2 ≥
2n−1∑
i=n

|αi|2M2(n), n ∈ N.

Proof. From each subspace Mn we will choose by induction a unit vector
fn such that the sequence {fi}∞i=1 will satisfy a set of orthogonality condi-
tions, and we will define

y = x0 +
∞∑
i=1

αifi.

To simplify notation, let f0 := x0, α0 := 1, T0 := I, and

yn =
n∑
i=0

αifi, n ∈ N.

We will choose the vector fn ∈Mn, with ‖fn‖ = 1, such that

(2.4) Tkfn ⊥ Tkfj , 0 ≤ j ≤ n− 1, 0 ≤ k ≤ n.
After defining fj we will have, by hypothesis, for every n ∈ N,
(2.5) ‖Tnfj‖ ≥M(n), n ≤ j ≤ 2n− 1,

and for n ≤ i, j, i 6= j, we will have Tnfi ⊥ Tnyn−1 and Tnfj ⊥ Tnfi, so

‖Tny‖2 =
∥∥∥Tn(yn−1 +

∞∑
i=n

αifi

)∥∥∥2
= ‖Tnyn−1‖2 +

∥∥∥Tn( ∞∑
i=n

αifi

)∥∥∥2
(2.6)

= ‖Tnyn−1‖2 +
∞∑
i=n

|αi|2‖Tnfi‖2.
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Now we give more details on the recursive construction of the sequence
{fn}. If M is a subspace of H, we will write PM for the (orthogonal) projec-
tion of H onto M.

Choose f1 ∈ M1 such that ‖f1‖ = 1, f1 ⊥ f0 and T1f1 ⊥ T1f0. To
accomplish this, define S1 =

∨
{f0, T

∗
1 T1f0} and choose f1 ∈M1	PM1(S1).

In general, in order to have all the conditions in (2.4) satisfied, after
f0, . . . , fn−1 have been defined, set Sn =

∨
0≤j≤n−1, 0≤k≤n{T ∗kTkfj}, which

is a finite-dimensional vector space, and choose fn to be a unit vector in
Mn 	 PMn(Sn). This defines the sequence {fn}n∈N0 with the desired prop-
erties.

Using (2.5) and (2.6) we have

‖Tny‖2 ≥
∞∑
i=n

|αi|2‖Tnfi‖2 ≥
2n−1∑
i=n

|αi|2M2(n), n ∈ N.

Remark 2.4. Notice first that the hypothesis of Proposition 2.3 could be
modified so as to be valid only for n sufficiently large without changing the
conclusion. Moreover, the relation between the sequence of operators {Tn}
and the sequence of subspaces {Mn} has an essentially equivalent formula-
tion, as follows: given the sequence of operators {Tn}, there exist a sequence
of infinite-dimensional subspaces {Mn} and a sequence of positive real num-
bers {N(n)} such that, for every n sufficiently large, all operators from the
set T[(n+1)/2], . . . , Tn are bounded below by N(n) on Mn.

The following is one of our two main results.

Theorem 2.5. Let {Tn}n∈N ⊂ L(H) be such that there exist positive
numbers ρ, δ with the property that for every n ∈ N sufficiently large, there
exists an infinite-dimensional subspace Mn on which T[(n+1)/2], . . . , Tn are
bounded below by ρnδ, and let {Kn} be any sequence of compact operators.
Define

An = Tn +Kn, n ∈ N.

Then the set of vectors y ∈ H such that ‖Any‖ → ∞ is dense in H.

Proof. Fix ε such that 0 < ε < 1 and choose N0 sufficiently large that,
for n ≥ N0, there exists an infinite-dimensional subspace Mn on which
T[(n+1)/2], . . . , Tn are bounded below by ρnδ. Note that the compact operators
K[(n+1)/2], . . . ,Kn, when restricted to Mn, remain compact operators, and
thus for j = [(n+1)/2], . . . , n, there is a finite-dimensional subspace Fj ⊂Mn

such that ‖Kj |(Mn	Fj)‖ < ερnδ. Thus ‖Kj |(Mn	
∨n
j=[(n+1)/2] Fj)‖ < ερnδ

for j = [(n+1)/2], . . . , n. Thus by defining Nn = Mn	 (
∨n
j=[(n+1)/2] Fj), we

see that each of the operators A[(n+1)/2], . . . , An is bounded below on Nn by
N(n) := (1− ε)ρnδ.
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Next, note that the sequence of operators {An}, together with the se-
quence of subspaces {Nn} and the sequence of lower bounds {N(n)}, satis-
fies the hypothesis of Proposition 2.3 (and Remark 2.4). Given an arbitrary
vector x0 ∈ H, let y be as in the conclusion of Proposition 2.3. Then we have

‖y − x0‖2 ≤
∞∑
i=1

|αi|2, ‖Any‖2 ≥
2n−1∑
i=n

|αi|2N2(n), n ∈ N.

Take αn = ε/n(1+δ)/2. Then

‖Any‖2 ≥ (1− ε)2ρ2
2n−1∑
i=n

ε2

i1+δ
· n2δ

≥ (1− ε)2 ρ2

21+δ
·
2n−1∑
i=n

ε2

n1−δ = (1− ε)2 ρ
2ε2

21+δ
· nδ,

and

‖y − x0‖2 ≤ ε2
∞∑
i=1

1
i1+δ

,

from which it is immediate that ‖Any‖ → ∞ and that the set of vectors y
with this property is dense in H.

The obvious application to powers of a single operator is this:
Corollary 2.6. Assume T ∈ L(H) has the property that there exist

positive numbers ρ, δ such that for every n ∈ N sufficiently large, there exists
an infinite-dimensional subspace Mn on which the powers T [(n+1)/2], . . . , Tn

are bounded below by ρnδ. If K ∈ K and A := T + K, then there exists a
dense set of vectors y in H such that ‖Any‖ → ∞.

Proof. There exists a sequence of compact operators {Kn} such that
An = Tn +Kn.

Theorem 2.5 has a generalization that should be quite useful in enlarging
the class (NOT).

Theorem 2.7. Suppose that {Bn} ∈ L(H(2)) has the property that

Bn =
(
Tn ∗
0 ∗

)
,

where the asterisks denote arbitrary entries, and {Tn}n∈N ⊂ L(H) is such
that there exist positive numbers ρ, δ with the property that for every n ∈ N
sufficiently large, there exists an infinite-dimensional subspace Mn on which
T[(n+1)/2], . . . , Tn are bounded below by ρnδ. Let {Kn} ⊂ K(H(2)) and define
An = Bn +Kn. Then the set of vectors y ∈ H(2) satisfying ‖Any‖ → ∞ is
dense in H⊕ (0).
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Proof. It is clear that the sequence of operators {Bn} together with the
sequence of subspaces {Mn ⊕ (0)} satisfies the hypothesis of Theorem 2.5,
and thus the conclusion is immediate.

We turn now to the application of the results of Section 2 to the class of
n-normal operators.

3. n-Normal operators. Recall that for any n ∈ N, an operator T ∈
L(H) is called an n-normal operator if T is unitarily equivalent to an n× n
operator matrix (Nij) acting onH(n) in the usual fashion, where the set {Nij}
consists of mutually commuting normal operators in L(H). The theory of n-
normal operators is quite well developed. It was begun in [3], and continued
in [10], [11], [5], [6] and [8], where it was proved that every n-normal operator
has a nontrivial hyperinvariant subspace (n.h.s.).

We will show below that compact perturbations of certain classes of 2-
normal operators are subsets of (NOT) by virtue of having an orbit that
tends to infinity.

We begin with the following well-known fact from [5].

Proposition 3.1. Let T be any n-normal operator in L(H). Then T
is unitarily equivalent to an n-normal operator (Nij), acting on H(n) in the
usual matricial fashion, which satisfies

(i) the Nij are mutually commuting normal operators in L(H),
(ii) Nij = 0 whenever i > j, i.e., the matrix (Nij) is in upper triangular

form.

Notation 3.2. We shall say that an n-normal operator is in standard
form if it is an n × n matrix (Nij) acting as usual on H(n) and satisfying
(i) and (ii) of Proposition 3.1. (Of course, except in rare cases the standard
form of an n-normal operator is not unique.)

The next lemma is elementary.

Lemma 3.3. Let T = (Nij) ∈ L(H(2)) be a 2-normal operator in standard
form, and suppose that the polar decompositions N11 = V1P1 and N22 = V2P2

(with P1, P2 ≥ 0) satisfy V1 = V2. Then there exists a unitary operator
U ∈ L(H) such that Nii = UPi, i = 1, 2, and U commutes with all the Nij.
Moreover, for every K ∈ K, there exists a sequence {Jk}k∈N ⊂ K such that

(3.1) ‖(T +K)kx‖ = ‖(Sk + Jk)x‖, k ∈ N, x ∈ H,

where S is the 2-normal operator in L(H(2)) in standard form given by the
matrix

(3.2) S =
(
P1 U−1N12

0 P2

)
.
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Proof. The first statement of the lemma is an easy consequence of the
spectral theorem for normal operators. Next, write Diag(U) for the 2× 2
diagonal matrix with each diagonal entry equal to U . Note that S and
Diag(U) are mutually commuting 2-normal operators in standard form, and
T = Diag(U)S. Furthermore, if we write (T+K)k = T k+Kk where Kk ∈ K,
we obtain

(T +K)k = T k +Kk = (Diag(U)S)k +Kk(3.3)

= Diag(Uk)(Sk + Jk), k ∈ N,

where Jk := Diag(U−k)Kk ∈ K, and since for each k ∈ N, Diag(Uk) is a
unitary operator, (3.1) is immediate from (3.3).

We turn now to some preliminary lemmas.

Lemma 3.4. Let 1 ≥ a ≥ b ≥ 0 and let k be a given positive integer.
Then, for every m ∈ N ∩ [k/2, k], we have

(3.4) am − bm ≥ 1
2

(ak − bk),

and thus

(3.5)
m−1∑
i=0

am−1−ibi ≥ 1
2

k−1∑
i=0

ak−1−ibi.

Proof. The inequality (3.4) is equivalent to

bk − 2bm ≥ ak − 2am for k/2 ≤ m ≤ k.
Consider the function f(x) = xk − 2xm. Then f ′(x) = kxk−1 − 2mxm−1 =
xm−1(kxk−m− 2m). But since 2m ≥ k we have f ′(x) ≤ xm−1(kxk−m− k) =
xm−1k(xk−m− 1), and for x ∈ [0, 1] we have f ′(x) ≤ 0. Thus f is decreasing
on the interval [0, 1] and thus (3.4) follows.

The inequality (3.5) is immediate in the case a = b, and it follows from
(3.4) by dividing by a− b when a > b .

Lemma 3.5. Suppose

T =
(
P1 N

0 P2

)
is a 2-normal operator in standard form, where Pi ≥ 0, i = 1, 2, and let
K ∈ K and A = T +K. Then

(3.6) T k =
(
P k1 N

∑k−1
i=0 (P k−1−i

1 P i2)
0 P k2

)
, k ∈ N,

and Ak = T k + Kk, where Kk ∈ K. Moreover, if max{‖P1‖e, ‖P2‖e} > 1,
then there exists a vector x ∈ H(2) such that ‖Akx‖ → ∞.
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Proof. Equation (3.6) results from an easy calculation, and since re(A) =
max{‖P1‖e, ‖P2‖e}, if this maximum is greater than 1, then the existence of
such a vector x is immediate from Corollary 1.6 of [9].

The next result is our second main theorem.

Theorem 3.6. Suppose

T =
(
N1 M

0 N2

)
is a 2-normal operator in standard form, with N1 = V P1 and N2 = V P2

(polar decompositions), K ∈ K, and there exist ρ, δ > 0 such that

(3.7) ‖T k‖e > ρkδ, k ∈ N.

Then there exists x ∈ H(2) such that ‖(T +K)nx‖ → ∞, and consequently
T +K ∈ (NOT).

Proof. By Lemmas 3.3 and 3.5, with

(3.8) S =
(
P1 N

0 P2

)
,

a 2-normal operator in standard form, it suffices to show that if {Jk} is any
sequence of compact operators, then there exists x ∈ H(2) such that

‖(Sk + Jk)x‖ → ∞.

Moreover, we may suppose that ‖P1‖e, ‖P2‖e ≤ 1, and that (via (3.3))

(3.9) ‖Sk‖e = ‖T k‖e ≥ ρkδ, k ∈ N.

Applying (3.9), (3.8) and Lemma 3.5, we immediately obtain

(3.10)
∥∥∥N k−1∑

i=0

P k−1−i
1 P i2

∥∥∥
e
> ρkδ − 1 > ρ̂kδ,

where ρ̂ > 0 is defined appropriately for k sufficiently large.
Since P1, P2 and N are mutually commuting normal operators, it follows

from [4] that there exist compact operators J1, J2, J3, an orthonormal basis
E = {en}n∈N for H, and sequences {αn}, {βn} and {γn} in (l∞), with 0 ≤
αn, βn ≤ 1, such that

P1 = Diag(αn) + J1, P2 = Diag(βn) + J2, N = Diag(γn) + J3,

and thus (see (3.10)) the (1, 2) entry of Sk is

Diag
(
γn

k−1∑
i=0

(αk−1−i
n βin)

)
+ J

(k)
4 , k ∈ N,



Non-orbit-transitive operators 51

where J (k)
4 is compact. Moreover, since∥∥∥N k−1∑

i=0

P k−1−i
1 P i2

∥∥∥
e

= re

(
Diag

(
γn

k−1∑
i=0

(αk−1−i
n βin)

))
is a largest (in modulus) limit point of the sequence{

γn

k−1∑
i=0

αk−1−i
n βin

}
,

for each fixed k ∈ N there exists a subsequence{
|γnq |

k−1∑
i=0

αk−1−i
nq βinq

}
q
,

where {nq} depends on k, that converges to ‖N
∑k−1

i=0 P
k−1−i
1 P i2‖e. Thus for

nq sufficiently large (say q ≥ q0), we see, with

Mk =
∨
{enq}q≥q0 ,

that N
∑k−1

i=0 P
k−1−i
1 P i2 is bounded below on Mk by ρ̂kδ (see (3.10)), and

thus Sk has the same lower bound on (0)⊕Mk.
By Lemma 3.4, for m = [(k + 1)/2], . . . , k we have

|γn|
m−1∑
i=0

αm−1−i
n βin ≥

1
2

(
|γn|

k−1∑
i=0

αk−1−i
n βin

)
,

and using this fact for the subsequence of indices {nq} we deduce that
S[(k+1)/2], . . . , Sk have 1

2 ρ̂k
δ as a lower bound on (0)⊕Mk. Now the conclu-

sion follows from Theorem 2.5.

This result combined with Theorem 2.7 yields the following:

Corollary 3.7. If R is an operator that has an invariant subspace on
which it is a 2-normal operator satisfying the hypothesis of Theorem 3.6, and
A = R+K, where K is compact, then A has an orbit tending to infinity.

Remark 3.8. It follows as in Theorem 2.5 that the set of vectors x as
in the conclusion of Theorem 3.6 is dense in H.

We continue by recalling the definition of the operator A from Example
4.5 of [9]. (The question whether A belongs to (NOT) was left unresolved
there.)

Example 3.9. Let H be a Hermitian 2-normal operator in L(H(2)) rep-
resented as an operator matrix

(3.11) H =
(
H1 0
0 H2

)
,
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where H1 and H2 are commuting Hermitian operators in L(H) satisfying
σ(Hi) = σe(Hi) = [1/2, 1], i = 1, 2, and on the space

⊕∞
n=2H(2) consider

the 2-normal operator

T =
∞⊕
n=2

(
(1− 1/n)1H (1/

√
n)1H

0 (1− 1/n)1H

)
.

Then, as was noted in [9], for all k ∈ N, ‖T k‖e satisfies

(3.12)
k√

2k − 1

(
2k − 2
2k − 1

)k−1

≤ ‖T k‖e ≤ 1 +
k√

2k − 1

(
2k − 2
2k − 1

)k−1

.

Let K be an arbitrary compact operator on
⊕∞

n=1H(2) and set

(3.13) A = (H ⊕ T ) +K.

(The presence here of the direct summand H is simply to prevent A from
having disconnected spectrum, and thus to have a nontrivial hyperinvariant
subspace.) Then σe(A) = σe(H ⊕ T ) = [1/2, 1], but A is not essentially
power bounded. In fact, from (3.12) we see that, asymptotically, ‖Ak‖e =
‖T k‖e ∼

√
k; and this growth is too slow for [9, Th. 1.5] to be applicable.

However, that the operator A in (3.13) belongs to (NOT) is now immediate
from Theorem 3.6.

A natural question to ask, in view of Theorem 3.6, is whether the hy-
pothesis (3.7) is really necessary in order to conclude that T has some orbit
converging to infinity. Example 4.1 below shows that (3.7) cannot be omit-
ted in general, but the next proposition shows that there are some classes of
n-normal operators in which (3.7) is not needed.

Proposition 3.10. Suppose K ∈ K(H(2)) and

T =
(
N1 N3

0 N2

)
∈ L(H(2))

is a 2-normal operator in standard form such that max{re(N1), re(N2)} < 1.
Then T + K is essentially power bounded, and thus (by [9, Theorem 1.2])
belongs to (NOT). Moreover, if, on the other hand, σe(N1) = σe(N2) = {1}
and N3 is essentially invertible (i.e., π(N3) is invertible), then either T +K
is essentially power bounded or ‖(T + K)k‖e ∼ k asymptotically, so again
(by [9, Theorems 1.2 and 1.5]), T +K ∈ (NOT).

Proof. Since re(T+K) = re(T ) = max{re(N1), re(N2)}, if re(T+K) < 1,
then the general theory of Banach algebras implies that ‖(T + K)k‖e
k→ 0, so T + K is essentially power bounded. Now suppose that σe(N1) =
σe(N2) = {1} and π(N3) is invertible. Then one knows from [12] that there
exist compact operators Ki, i = 1, 2, 3, in L(H) such that N1 = 1H + K1,
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N2 = 1H +K2, and N3 = J +K3, where J is invertible. Thus

T =
(

1H J

0 1H

)
+K,

where K ∈ L(H(2)) is compact. An easy matricial calculation ([9, Prop. 3.2])
gives ‖(T + K)k‖e = ‖T k‖e ∼ k, and it is now immediate from [9, Theo-
rem 1.5] that T +K has (a dense set of) orbits tending to infinity.

4. Oscillating behavior. Here we construct a 2-normal operator B =
(Bij) ∈ L(H(2)) in standard form, with B11 = B22 ≥ 0, but B is not essen-
tially power bounded, and neither does it satisfy the hypothesis of Theorem
3.6. The operator B will have the property that there exists a subsequence
of powers {kn} and ρ, δ > 0 such that ‖Bkn‖e > ρkδn for all kn, but at the
same time, there exists a subsequence of powers {jn} such that {‖Bjn‖} is
bounded.

Example 4.1. Let

B =
∞⊕
n=2

Tmn ,

where Tn is given by

Tn :=
(

(1− 1/n)1H (1/
√
n)1H

0 (1− 1/n)1H

)
, n ∈ N,

and {mn} is defined recursively as m2 = 2, mn+1 = m4
n, which gives mn

= 24n−2 . The sequences of powers {kn} and {jn} are given by kn := mn and
jn := m2

n.
Note that

T kn =
(

(1− 1/n)k1H (k/
√
n)(1− 1/n)k1H

0 (1− 1/n)k1H

)
.

Consider the magnitude of the (1, 2) entry of T kn as a function of n, with k
as parameter, denoted as

g(n) =
k√
n

(
1− 1

n

)k−1

.

Note that the (1, 2) entry of T kn is the one that determines the growth of the
essential norm, since the diagonal entries T kn have norms bounded by 1. The
first derivative of g is

g′(n) =
1
n

k√
n

(
1− 1

n

)k−2(
−1

2
n− 1
n

+
k − 1
n

)
,
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with the only zero of interest at

n = 2k − 1.

By computing the second derivative we note that n = 2k − 1 is a maximum
point for g.

We are now ready to estimate the growth of the sequences {‖Bkn‖e} and
{‖Bjn‖}. As noted above, the growth of T kmn is determined by the expression

k
√
mn

(
1− 1

mn

)k−1

.

For the first sequence, we observe that ‖Bkn‖e = ‖Bmn‖e ≥ ‖Tmnmn ‖e and
since the sequence {(1− 1/mn)mn−1}n is decreasing to 1/e, we have

‖Tmnmn ‖e ≥
√
mn

(
1− 1

mn

)mn−1

>
√
mn ·

1
e
.

It follows that here we can take δ = 1/2 and ρ = 1/3 to get

‖Bkn‖e > ρkδn.

Next, to show that {‖Bjn‖} is a bounded sequence, it is sufficient to show
that there exists a constant M such that for all n and p we have

‖T jnmp‖ ≤M.

By the above remarks, for the fixed power k := jn = m2
n (and thus for a

fixed n), we deduce that the entry of T kq that determines the growth of the
‖T kq ‖ has a maximum at q0 = 2k−1 (= 2m2

n−1), increasing for q up to that
value and decreasing after the maximum is attained. Notice that the sequence
{mr}r does not assume the value q0; in particular, mn < q0 < mn+1. Thus,
to show ‖T jnmp‖ is bounded for all p and n, it is sufficient to show that, for
fixed n, the norms ‖T jnmn‖ and ‖T

jn
mn+1‖ have upper bounds independent of n.

The norm of the (1, 2) entry of T jnmn+1 is(
1− 1

m4
n

)m2
n−1

≤ 1,

and the norm of the (1, 2) entry of T jnmn is

m2
n√
mn

(
1− 1

mn

)m2
n−1

= 2 ·m3/2
n

(
1− 1

mn

)m2
n

≤ 2 ·m3/2
n

(
1
2

)mn
,

since the sequence {(1− 1/mn)mn}n is increasing and bounded by 1/e; thus
‖T jnmn‖

n→ 0.

5. Open problems. We close with some open problems that seem to
be of interest.
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Problem 5.1. If the operator H is as in (3.11) and B is the operator
from Example 4.1, how does one show that a compact perturbation of H⊕B
belongs to (NOT)?

Problem 5.2. Does every compact perturbation of an arbitrary n-nor-
mal operator belong to (NOT)?
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