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Optimal bounds of restricted type for
the Hardy operator minus the identity

on the cone of radially decreasing functions

by

Javier Soria (Barcelona)

Abstract. We find the norm of the Hardy operator minus the identity acting on the
cone of radially decreasing functions on minimal Lorentz spaces (restricted type estimates).

The study of the Hardy operator (see (2)) on monotone functions has
its origins in the works of Ariño–Muckenhoupt [1] and Sawyer [12], deal-
ing with the characterization of the boundedness on the weighted Lorentz
spaces Λp(w) (see (11)), of the Hardy–Littlewood maximal operator, and the
normability properties for these spaces, extending the well known results of
Lorentz [11] (see [7, 6] for a modern account of this theory).

Recently, several results concerning the Hardy operator minus the iden-
tity have been considered (see [10, 5, 4]). In particular, in [10] the authors
study the norm of this difference of operators, restricted to the cone of de-
creasing functions on Lp(R+), and are able to calculate the exact constant
for the case p ∈ {2, 3, 4, . . .}.

In this paper we study the same kind of questions, but now we look at
estimates of restricted type, and we will obtain a complete answer in the
more general setting of rearrangement invariant (r.i.) spaces [3], and for the
n-dimensional Hardy operator (see (1) for the definition and [9] for some
previous results). The main tool we will use is the integral representation
of Lemma 3 (see also [5]), which will allow us to easily prove the main
estimate in Theorem 5. This result introduces a new class of functions R(X)
(see Definition 6) which is identified, for the Lorentz space Lp,q(Rn), in
Propositions 8 and 11. As a consequence, we find the best constants for
the restricted type boundedness (see Propositions 9 and 12). Finally, in
Theorem 13, we show that, in most cases, R(X) is the minimal Lorentz
space Λ(X).
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We start by introducing some basic definitions and notations:

Definition 1. Let X be an r.i. Banach function space in Rn. We define

Xrd = {f ∈ X : f is a positive radially decreasing function};
that is, f(x) = f̄(|x|) ∈ X and f̄ is a positive decreasing function on R+.

The distribution function of f is defined as

λf (t) = |{x ∈ Rn : |f(x)| > t}|,
and the nonincreasing rearrangement of f by

f∗(t) = inf{s > 0 : λf (s) ≤ t}.
The Hardy operator in Rn is

(1) Snf(x) =
1

|B(0, |x|)|

�

B(0,|x|)

f(y) dy,

and the Hardy operator in R+ is

(2) Sf(t) =
1
t

t�

0

f(r) dr.

Remark 2. Observe that if f(x) = f̄(|x|), then

(3) λf (t) = vnλ
n
f̄ (t),

where vn is the measure of the unit ball of Rn, and

Snf(x) =
n

|x|n−1
S(rn−1f̄(r))(|x|).

Also, if f∗∗(t) = t−1
	t
0 f
∗(s) ds is the maximal function of f [3] then, for a

radially (i.e., even) decreasing function f(x) = f̄(|x|) in R, we have

S1f(x)− f(x) = S(f̄)(|x|)− f̄(|x|) = f∗∗(2|x|)− f∗(2|x|).

The next result is the key to obtaining the main estimate in Theorem 5.
It was first proved (for n = 1 and with a more involved argument) in [5,
Lemma 2.1(6)].

Lemma 3. If f(x) = f̄(|x|) is a positive radially decreasing function
on Rn, then

(4) Snf(x)− f(x) =
1
|x|n

∞�

f̄(|x|)

λnf̄ (t) dt, x ∈ Rn.

Proof. For a fixed x ∈ Rn we consider the measure

dµx(y) =
χB(0,|x|)(y)
|B(0, |x|)|

dy − δx(y),
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which is positive on balls centered at the origin:

µx(B(0, a)) =
{

(a/|x|)n, a ≤ |x|,
0, a > |x|.

Therefore, since for a positive radially decreasing function f , the level sets
are balls centered at zero and of radius λf̄ (t), we have

Snf(x)− f(x) =
�

Rn

f(y) dµx(y) =
∞�

0

µx(f > t) dt

=
∞�

0

µx(B(0, λf̄ (t))) dt =
1
|x|n

∞�

f̄(|x|)

λnf̄ (t) dt.

Remark 4. Observe that using (3) we also have

Snf(x)− f(x) =
1

vn|x|n
∞�

f(x)

λf (t) dt.

Theorem 5. Let X be an r.i. Banach function space in Rn. Then

(5) ‖Snf − f‖X ≤
∞�

0

λnf̄ (t)
∥∥∥∥ 1
λn
f̄
(t) + | · |n

∥∥∥∥
X

dt

for every f ∈ Xrd. Moreover, the inequality is sharp.

Proof. Using Lemma 3 and Minkowski’s integral inequality, we have

‖Snf − f‖X ≤
∞�

0

λnf̄ (t)
∥∥∥∥χ(f̄(|·|),∞)(t)

| · |n

∥∥∥∥
X

dt.

Set now

gt(x) =
1

λn
f̄
(t) + |x|n

, ht(x) =
χ(f̄(|x|),∞)(t)

|x|n
.

Then

|{x : gt(x) > s}| = |{x : 1/s > λnf̄ (t) + |x|n}|

=

{
0, λn

f̄
(t) ≥ 1/s,

vn(1/s− λn
f̄
(t), λn

f̄
(t) < 1/s.

Similarly, ∣∣{x : ht(x) > s}| = |{x : f̄(|x|) < t, 1/|x|n > s}|
= |{x : λf̄ (t) ≤ |x| < 1/s1/n}|

=

{
0, λn

f̄
(t) ≥ 1/s,

vn(1/s− λn
f̄
(t)), λn

f̄
(t) < 1/s.
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Therefore, gt and ht are equimeasurable functions, and hence

(6)
∥∥∥∥χ(f̄(|·|),∞)(t)

| · |n

∥∥∥∥
X

=
∥∥∥∥ 1
λn
f̄
(t) + | · |n

∥∥∥∥
X

,

which proves (5). The optimality of the inequality follows by choosing f(x) =
χB(x) = χ[0,1)(|x|):

Snf(x)− f(x) =
{

0, |x| < 1,
1/|x|n, |x| ≥ 1,

and, as we did in (6), we get
∞�

0

λnf̄ (t)
∥∥∥∥ 1
λn
f̄
(t) + | · |n

∥∥∥∥
X

dt =
∥∥∥∥ 1

1 + | · |n

∥∥∥∥
X

= ‖Snf − f‖X .

Theorem 5 motivates the study of the class of functions for which the
right hand side of the inequality (5) is finite.

Definition 6. Let X be an r.i. space in Rn. We define the class of
functions

R(X) = {f ∈M(Rn) : ‖f‖R(X) <∞},

where

‖f‖R(X) = v−1
n

∞�

0

λf (t)
∥∥∥∥ 1
v−1
n λf (t) + | · |n

∥∥∥∥
X

dt <∞.

Remark 7.

(i) Using (3) we see that if f ∈ Xrd, then

‖f‖R(X) =
∞�

0

λnf̄ (t)
∥∥∥∥ 1
λn
f̄
(t) + | · |n

∥∥∥∥
X

dt.

(ii) It is easy to see that ‖f‖R(X) = 0 if and only if f ≡ 0. Moreover,
‖af‖R(X) = |a| ‖f‖R(X).

(iii) A necessary condition for R(X) 6= {0} is that there exists a δ > 0
such that 1/(|x|n + δ) ∈ X, which is equivalent to L1,∞ ∩ L∞ ⊂ X.
In particular, R(L1) = {0}.

(iv) Theorem 5 can now be rewritten as ‖Snf − f‖X ≤ ‖f‖R(X) for
f ∈ Xrd.

We are now going to identify R(X) for some particular cases, like the
Lorentz space Lp,q(Rn), with exact norms. In Theorem 13 we will prove a
more general result for an r.i. space X, but only up to equivalence of norms.
We consider first the definition of Lp,q(Rn) in terms of the standard norm,
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which is only valid in the range 1 ≤ p <∞, 1 ≤ q ≤ p:

‖f‖p,q = p1/q

(∞�
0

(tλ1/p
f (t))q

dt

t

)1/q

=
(∞�

0

(t1/pf∗(t))q
dt

t

)1/q

,

where f∗ is the nonincreasing rearrangement of f [3].

Proposition 8. If 1 < p < ∞, 1 ≤ q ≤ p, and Lp,q(Rn) is endowed
with the norm ‖ · ‖p,q, then

‖f‖R(Lp,q) = p−1/q′
(
Γ
( (p−1)q

p

)
Γ
(p+q

p

)
Γ (q + 1)

)1/q

‖f‖p,1.

Proof. Fix a > 0 and consider ϕa(x) = 1/(a + |x|n). Then, as in Theo-
rem 5,

‖ϕa‖p,q = p1/q

( 1/a�

0

vq/pn

(
1
t
− a
)q/p

tq−1 dt

)1/q

= p1/qv1/p
n

(∞�
a

(u− a)q/pu−q−1 du
)1/q

= p1/qv1/p
n

(
Γ
( (p−1)q

p

)
Γ
(p+q

p

)
Γ (q + 1)

)1/q

a1/p−1.

Therefore,

‖f‖R(Lp,q) = v−1
n

∞�

0

λf (t)‖ϕv−1
n λf (t)‖p,q dt

=
p1/q

v
1−1/p
n

∞�

0

λf (t)
(
Γ
( (p−1)q

p

)
Γ
(p+q

p

)
Γ (q + 1)

)1/q(λf (t)
vn

)1/p−1
dt

= p−1/q′
(
Γ
( (p−1)q

p

)
Γ
(p+q

p

)
Γ (q + 1)

)1/q

‖f‖p,1.

As a consequence of this result, we can find the best constant for the
boundedness of Sn − Id, for radially decreasing functions on Lp,1(Rn).

Proposition 9. If 1 < p < ∞, 1 ≤ q ≤ p, and Lp,q(Rn) is endowed
with the norm ‖ · ‖p,q, then for a radially decreasing function f ∈ Lp,1(Rn),

(7) ‖Snf − f‖p,q ≤ p−1/q′
(
Γ
( (p−1)q

p

)
Γ
(p+q

p

)
Γ (q + 1)

)1/q

‖f‖p,1,

and the inequality is sharp. In particular:
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(i) if q = p and f ∈ Lp,1rd (Rn), then

‖Snf − f‖p ≤
1

p(p− 1)1/p
‖f‖p,1;

(ii) if q = 1 and f ∈ Lp,1rd (Rn), then

‖Snf − f‖p,1 ≤
π

p sin(π/p)
‖f‖p,1,

and the inequalities are sharp.

Proof. This follows easily using Theorem 5, Remark 7(iv) and Proposi-
tion 8, and estimating the constant in (7) for the particular cases.

Remark 10. (i) It is important to observe that (7) does not follow from
the case q = 1 and the embedding Lp,1 ⊂ Lp,q. In fact, it is known (see, e.g.,
[8]) that ‖f‖p,q ≤ 1

p

(p
q

)1/q‖f‖p,1 (with optimal bound). But, if 1 < q ≤ p,
then

p−1/q′
(
Γ
( (p−1)q

p

)
Γ
(p+q

p

)
Γ (q + 1)

)1/q

<
1
p

(
p

q

)1/q π

p sin(π/p)
.

(ii) If f ∈ Lp(R+) is a decreasing function (this is denoted as f ∈ Cp in
[10]) and f̃(x) = f(|x|), then ‖Sf − f‖Lp(R+) = 2−1/p‖S1f̃ − f̃‖Lp(R) and
‖f‖Lp(R+) = 2−1/p‖f̃‖Lp(R). Using now Proposition 9(i), we can prove the
optimal restricted type estimate (for f ∈ Cp and p > 1)

‖Sf − f‖Lp(R+) ≤
1

p(p− 1)1/p
‖f‖Lp,1(R+).

As before, using Proposition 9(ii), we find that for a decreasing function
f ∈ Lp,1(R+) and p > 1,

‖Sf − f‖Lp,1(R+) ≤
π

p sin(π/p)
‖f‖Lp,1(R+).

These results should be compared with the strong type inequality proved in
[10], under the hypothesis that f ∈ Cp and p ∈ {2, 3, . . .},

‖Sf − f‖Lp(R+) ≤
1

(p− 1)1/p
‖f‖Lp(R+).

(iii) For the case 1 < p < q ≤ ∞ we can also obtain a result like (7),
although this time we cannot guarantee its sharpness. The main observation
is that, for this range of indices, ‖ · ‖p,q is a quasinorm for which the best
constant in Minkowski’s integral inequality is (see [2])∥∥∥ �F (·, y) dy

∥∥∥
p,q
≤
(
p

q

)1/q(p′
q′

)1/q′ �
‖F (·, y)‖p,q dy.
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Therefore, as in Theorem 5 and observing that the proof of Proposition 8 also
works if 1 < p < q ≤ ∞ (the case q =∞ with the constant 1/(pp′(p−1)1/p)),
we get, for f ∈ Lp,1rd (Rn),

‖Snf − f‖p,q ≤
(
p

q

)1/q(p′
q′

)1/q′

p−1/q′
(
Γ
( (p−1)q

p

)
Γ
(p+q

p

)
Γ (q + 1)

)1/q

‖f‖p,1

if 1 < p < q <∞, and

‖Snf − f‖p,∞ ≤
1

p(p− 1)1/p
‖f‖p,1.

Similarly to what we have done for the norm ‖ · ‖p,q, 1 < p < ∞, 1 ≤
q ≤ p, we now consider the usual renorming of the Lp,q(Rn) spaces, for the
whole range of indices 1 < p < ∞, 1 ≤ q ≤ ∞, in terms of the maximal
norm (see [13]):

‖f‖∗p,q =
(∞�

0

(t1/pf∗∗(t))q
dt

t

)1/q

,

where f∗∗(t) is the maximal function of f (see Remark 2). We will denote
by Lp,q∗ (Rn) the space Lp,q(Rn) endowed with the norm ‖ · ‖∗p,q.

Proposition 11. If 1 < p <∞, 1 ≤ q ≤ ∞, and f ∈ Lp,q∗ (Rn), then

‖f‖R(Lp,q
∗ ) =

1
pp′

(∞�
0

logq(1 + s)s−q/p
′−1 ds

)1/q
‖f‖∗p,1

if 1 ≤ q <∞, and

‖f‖R(Lp,∞
∗ ) =

(p− 1)1/p′

pp′
log(p′) ‖f‖∗p,1.

Proof. As in Proposition 8, fix a > 0 and consider ϕa(x) = 1/(a+ |x|n).
Then

ϕ∗∗a (t) =
vn
t

log
(

1 +
t

vna

)
.

If 1 ≤ q <∞,

‖ϕa‖∗p,q = a−1/p′v1/p
n

(∞�
0

logq(1 + s)s−q/p
′−1 ds

)1/q
,

and hence, using that p′‖f‖p,1 = ‖f‖∗p,1 (see, e.g., [2]),

‖f‖R(Lp,q
∗ ) =

∞�

0

λf (t)1/p
(∞�

0

logq(1 + s)s−q/p
′−1 ds

)1/q
dt

=
1
pp′

(∞�
0

logq(1 + s)s−q/p
′−1 ds

)1/q
‖f‖∗p,1.
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If q =∞, then

‖ϕa‖∗p,∞ = vn(p− 1)1/p′ log(p′) (vna)−1/p′ ,

and

‖f‖R(Lp,∞
∗ ) = v−1

n

∞�

0

λf (t)vn(p− 1)1/p′ log(p′)
(
vn
λf (t)
vn

)−1/p′

dt

=
(p− 1)1/p′

p
log p′ ‖f‖p,1 =

(p− 1)1/p′

pp′
log(p′) ‖f‖∗p,1.

Proposition 12. Let 1 < p < ∞, 1 ≤ q ≤ ∞, and f ∈ Lp,q∗ (Rn) be a
radially decreasing function. Then

(8) ‖Snf − f‖∗p,q ≤
1
pp′

(∞�
0

logq(1 + s)s−q/p
′−1 ds

)1/q
‖f‖∗p,1

if 1 ≤ q <∞, and

(9) ‖Snf − f‖∗p,∞ ≤
(p− 1)1/p′

pp′
log(p′) ‖f‖∗p,1,

and both inequalities are sharp. In particular:

(i) if q = p′ and f ∈ Lp,p
′

∗,rd(Rn), then

‖Snf − f‖∗p,p′ ≤
(Γ (p′ + 1)ζ(p′))1/p′

pp′
‖f‖∗p,1;

(ii) if q = 1 and f ∈ Lp,1∗,rd(Rn), then

‖Snf − f‖∗p,1 ≤
π

p sin(π/p)
‖f‖∗p,1,

and the inequalities are sharp.

Proof. This follows easily using Theorem 5, Remark 7(iv) and Proposi-
tion 11, and estimating the constant in (8) for the particular cases.

Even though we have shown that R(L1) = {0}, we see that, in many
other cases, R(X) is isometric, up to a multiplicative constant, to the min-
imal Lorentz space Λ(X). This is the case for X = Lp,q and X = Lp,q∗ (see
Propositions 8 and 11) for which the minimal space corresponds to the in-
dex q = 1 (see [3]). We will now study this observation for a general X, and
show that, under some weak assumptions, R(X) and Λ(X) coincide. Recall
that

Λ(X) =
{
f ∈M(Rn) :

∞�

0

f∗(t) dϕX(t) <∞
}
,

where ϕX(t) = ‖χE‖X (|E| = t) is the fundamental function of X. To
simplify the calculations we are going to assume that limt→0+ ϕX(t) = 0 (see
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[3, Chapter 2, Theorem 5.5] for a characterization of this property), which
is always true for the Lp,q spaces (observe that we exclude the nonseparable
case of L∞). Then we can write

‖f‖Λ(X) =
∞�

0

f∗(t)ϕ′X(t) dt =
∞�

0

ϕX(λf (t)) dt.

Using [3, Chapter 2, Proposition 5.11] we can assume, without loss of gen-
erality, that ϕX is a (nonnegative and nondecreasing) concave function, so
that ‖ · ‖Λ(X) is a norm. We will also make use of the fact that

(10) DX ≡ sup
t>0

ϕX(2t)
ϕX(t)

∈ [1, 2]

(this is known as the ∆2-condition): fix t > 0 and choose two disjoint sets
with |A| = |B| = t. Then

ϕX(2t) = ‖χA∪B‖X = ‖χA + χB‖X ≤ ‖χA‖X + ‖χB‖X = 2ϕX(t).

For example, ifX=(Lp,q(Rn), ‖·‖p,q) (1≤q≤p<∞) orX=(Lp,q(Rn), ‖·‖∗p,q)
(1 < p <∞, 1 ≤ q ≤ ∞ or p = q = 1), then DX = 21/p.

Theorem 13. Let X be an r.i. space.

(i) For every f ∈ R(X),

‖f‖Λ(X) ≤ 2‖f‖R(X).

(ii) If DX ∈ [1, 2) (see (10)), then for every f ∈ Λ(X),

‖f‖R(X) ≤
2

2−DX
‖f‖Λ(X).

In particular, if DX ∈ [1, 2) then R(X) = Λ(X).

Proof. To prove (i), we consider the ball Bt = B(0, (v−1
n t)1/n), so that

|Bt| = t. Then χBt(x) ≤ 2t/(t+ vn|x|n) and hence

ϕX(t) ≤ 2v−1
n t

∥∥∥∥ 1
v−1
n t+ | · |n

∥∥∥∥
X

.

Therefore,

‖f‖Λ(X) =
∞�

0

ϕX(λf (t)) dt

≤ 2v−1
n

∞�

0

λf (t)
∥∥∥∥ 1
v−1
n λf (t) + | · |n

∥∥∥∥
X

dt = 2‖f‖R(X).
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(ii) If we now assume that DX ∈ [1, 2), set Sr = B2r \Br. Then

t

t+ vn|x|n
=
∞∑
k=1

t

t+ vn|x|n
χS

2kt
(x) +

t

t+ vn|x|n
χBt(x)

≤
∞∑
k=1

1
1 + 2k

χS
2kt

(x) + χBt(x).

Thus, ∥∥∥∥ t

t+ vn| · |n

∥∥∥∥
X

≤
∞∑
k=1

1
1 + 2k

‖χS
2kt
‖X + ‖χBt‖X

=
∞∑
k=1

1
1 + 2k

ϕX(2kt) + ϕX(t)

≤
∞∑
k=0

Dk
X

2k
ϕX(t) =

2
2−DX

ϕX(t).

Hence,

‖f‖R(X) ≤
2

2−DX
‖f‖Λ(X).

Remark 14.

(i) As already observed in Remark 7, R(L1) = {0} 6= Λ(L1) = L1, and
hence the embedding Λ(X) ⊂ R(X) of Theorem 13(ii) is not true,
in general, for the case DX = 2.

(ii) We have seen in Propositions 8 and 11 that, for the Lp,q spaces,
‖ · ‖R(X) is a multiple of ‖ · ‖Λ(X). However, this is not true in
general. We recall the definition of the weighted Lorentz space:

(11) Λp(w) =
{
f : ‖f‖Λp(w) =

(∞�
0

(f∗(t))pw(t) dt
)1/p

<∞
}
,

and consider X = Λ2(w), w = χ(0,1), and f∗r (t) = χ(0,r)(t). Then

‖fr‖Λ(X) =

{√
r if r < 1,

1 if r > 1,

but

‖fr‖R(X) =
√

r

1 + r
.

(iii) If w is a decreasing weight (so that ‖ · ‖Λp(w) is a norm [11]), then
DΛp(w) ≤ 21/p, and hence DΛp(w) < 2, whenever p > 1. There-
fore, Theorem 13 applies. More general results can be obtained for
weights in the Bp class (see [1, 7]).
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