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Mapping properties of fundamental operators in
harmonic analysis related to Bessel operators
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Jorge J. Betancor (La Laguna), Eleonor Harboure (Santa Fe),
Adam Nowak (Wrocław) and Beatriz Viviani (Santa Fe)

Abstract. We obtain sharp power-weighted Lp, weak type and restricted weak type
inequalities for the heat and Poisson integral maximal operators, Riesz transform and
a Littlewood–Paley type square function, emerging naturally in the harmonic analysis
related to Bessel operators.

1. Introduction. In his monograph [16] Stein suggested the study of
analogues of the fundamental operators in the classical harmonic analysis,
such as Riesz transforms, conjugate Poisson integrals, multipliers, fractional
integrals, maximal functions, square functions, in a context of discrete or
continuous expansions with respect to eigenfunctions of self-adjoint and pos-
itive differential operators. During the last years, this program, or some of its
aspects, has been successfully developed by many authors in various settings.

The study in the framework of Bessel (and also ultraspherical) operators
was initiated even before [16] by the seminal paper [13] of Muckenhoupt
and Stein. They introduced the notion of conjugation in the Bessel setting,
and their starting point was the formulation of suitable Cauchy–Riemann
type equations leading to a definition of conjugate Poisson integrals. Then
the Riesz transform, or rather the conjugate function mapping according
to the terminology used in [13], emerges as the corresponding boundary
value. After [13] the Bessel context was investigated by several authors. In
particular, recently Betancor and Stempak [6] and Betancor, Buraczewski,
Fariña, Martínez and Torrea [3, 4] obtained some boundedness results for a
Riesz transform and g-functions in Bessel settings.

The aim of the present paper is to advance the study of Lp mapping prop-
erties of several basic operators related to the harmonic analysis of Bessel
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operators. We analyze the behavior of the maximal operators for the heat
and Poisson integrals, Riesz transform and a g-function (see Section 2 for
rigorous definitions of these objects) associated with the Bessel operator
appearing in [13],

∆λ = − d2

dx2
− 2λ

x

d

dx
, λ > −1/2,

which is formally self-adjoint in L2(R+, dµλ) with R+ = (0,∞) and

dµλ(x) = x2λdx, x > 0.

Our main interest is focused on characterizing the power weights xδ for which
the above-mentioned operators are of strong type, weak type or restricted
weak type (p, p) with respect to the measure xδdx. We shall give a complete
description of such power weights, and in all cases prove the outcomes to be
sharp.

Our results are achieved by the nowadays standard method of splitting
the integral kernels into local and global parts, where local is related to a
symmetric cone containing the diagonal of (0,∞)× (0,∞). Following Muck-
enhoupt and Stein [13], we show that in the local region the operators behave
like those derived from the usual Laplacian, while in the global region they
are essentially controlled by Hardy-type operators. In order to get sharp re-
sults for the range of the power weights, it is necessary to obtain a precise
knowledge of the behavior of the kernels involved. We use several tools in
performing this task, one of them being the local Calderón–Zygmund theory
established in [14].

We point out that in the literature there are some recent related results
regarding the harmonic analysis derived from the Bessel operator

∆̃λ = − d2

dx2
− λ(1− λ)

x2
,

which is formally self-adjoint in L2((0,∞), dx). In particular, in [3, 4, 6]
Riesz transforms and g-functions were studied in this setting. The results
contained in the present paper have counterparts in the framework of ∆̃λ.
Moreover, for proving those twin results there is no need to carry out parallel
computations since we may directly take advantage of the estimates and
properties already shown in the ∆λ context. Comments sketching how the
corresponding results in the ∆̃λ setting can be deduced will be given along
the paper.

Finally, let us give a short account of the previous results concerning the
operators we investigate. For the Poisson and heat-diffusion integrals, the
unweighted case, with the restriction λ > 0, was studied in [13] and [7], re-
spectively. A g-function based on the Poisson kernel was investigated in [17],
where strong type (p, p) for p > 1, with respect to the measure µλ, λ > 0,
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was obtained. Considering the Riesz transform, in [1] a characterization of
the weights for strong type (p, p), 1 < p < ∞, and weak type (1, 1) was
given. The approach to this operator was analogous to that in [13], through
conjugate Poisson integrals. Here we adopt the point of view taken in [3, 4],
and show that for any λ > −1/2 the Riesz transform is a principal value in-
tegral with a kernel that satisfies similar estimates to those in [1]. Although
the scope of [1] for the strong and weak type inequalities is more general
than ours, we also analyze restricted weak type obtaining new weighted in-
equalities.

The paper is organized as follows. In Section 2 we introduce the main
objects of our study and state the main results, Theorems 2.1–2.5. There
we also gather some general facts and lemmas that will be used throughout
the paper. The remaining Sections 3–6 are separately devoted to the heat
integral maximal operator, Riesz transform, g-function and Poisson integral
maximal operator, respectively, and the proofs of the main theorems. In
Section 6 we also take into account a square function related to the Poisson
integral.

2. Preliminaries and statement of results. Recall that the standard
set of eigenfuctions of the Bessel operator ∆λ consists of

ϕλz (x) = (zx)−λ+1/2Jλ−1/2(zx), x, z > 0,

where Jν is the Bessel function of the first kind and order ν > −1. Indeed, a
straightforward computation (cf. [12, Section 5.2]) shows that, for λ > −1/2,

(2.1) ∆λϕ
λ
z = z2 ϕλz , z > 0.

Thus the heat kernel associated to ∆λ is

W λ
t (x, y) =

∞�

0

e−z
2tϕλz (x)ϕ

λ
z (y) dµλ(z), t, x, y > 0.

Computing the last integral (see [18, p. 395]) leads to

(2.2) W λ
t (x, y) =

(xy)−λ+1/2

2t
e−(x2+y2)/4tIλ−1/2

(
xy

2t

)
, t, x, y > 0,

with Iν being the modified Bessel function of the first kind and order ν > −1.
Then the heat-diffusion integral of a function f is defined by

W λ
t f(x) =

∞�

0

W λ
t (x, y)f(y) dµλ(y), t, x > 0.

Denote by W λ
∗ the corresponding maximal operator,

W λ
∗ f = sup

t>0
|W λ

t f |.
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Our result concerning W λ
∗ is the following (see also Figure 1 below).

Theorem 2.1. Let λ > −1/2, 1 ≤ p < ∞, δ ∈ R. Then the maximal
operator W λ

∗ , considered on the measure space (R+, x
δdx), has the following

mapping properties:

(a) W λ
∗ is of strong type (p, p) iff p > 1 and − 1 < δ < (2λ+ 1)p− 1;

(b) W λ
∗ is of weak type (p, p) iff −1 < δ < (2λ+ 1)p− 1 or δ = 2λ;

(c) W λ
∗ is of restricted weak type (p, p) iff −1 < δ ≤ (2λ+ 1)p− 1.

Moreover, W λ
∗ is of strong type (∞,∞).

Fig. 1. Mapping properties of Wλ
∗ (fixed λ = 1)

According to (2.1), the Poisson kernel is given by

P λt (x, y) =
∞�

0

e−ztϕλz (x)ϕ
λ
z (y) dµλ(z), t, x, y > 0,

and the Poisson integral of a function f is defined as

P λt f(x) =
∞�

0

P λt (x, y)f(y) dµλ(y), t, x > 0.

It is noteworthy that also the Poisson kernel can be computed explicitly, and
the resulting expression contains the Gauss hypergeometric function 2F1 (see
Section 6 for details).

Exactly the same mapping properties as for W λ
∗ turn out to be in force

for the Poisson integral maximal operator P λ∗ f = supt>0 |P λt f |.

Theorem 2.2. Let λ > −1/2, 1 ≤ p < ∞, δ ∈ R. Then the maximal
operator P λ∗ , considered on the measure space (R+, x

δdx), has the following
mapping properties:

(a) P λ∗ is of strong type (p, p) iff p > 1 and − 1 < δ < (2λ+ 1)p− 1;
(b) P λ∗ is of weak type (p, p) iff −1 < δ < (2λ+ 1)p− 1 or δ = 2λ;
(c) P λ∗ is of restricted weak type (p, p) iff −1 < δ ≤ (2λ+ 1)p− 1.

Moreover, P λ∗ is of strong type (∞,∞).
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We now pass to the Riesz transform. The Bessel operator can be repre-
sented as

∆λ = D∗D,

where D = d/dx is the usual derivative and D∗ = −x−2λ(d/dx)x2λ is the
formal adjoint of D in L2(R+, dµλ). This factorization suggests the following
system of Cauchy–Riemann type equations:

∂

∂t
P λt f(x) = −D∗xQλt f(x),

∂

∂t
Qλt f(x) = −DxP

λ
t f(x),

with Qλt f being a suitably defined conjugate Poisson integral,

Qλt f(x) =
∞�

0

Qλt (x, y)f(y) dµλ(y), t, x > 0.

For λ > 0 the conjugate Poisson kernel consistent with the Cauchy–Riemann
type equations has the form

Qλt (x, y) = −2λ
π

π�

0

(x− y cos θ)(sin θ)2λ−1

(x2 + y2 + t2 − 2xy cos θ)λ+1
dθ, t, x, y > 0.

Then the Riesz transform Rλf emerges in a natural way as the boundary
value of Qλt f ,

Rλf(x) = lim
t→0+

Qλt f(x).

This is the classical way of defining Rλ used by Muckenhoupt and Stein [13].
It is known that for each f ∈ Lp(R+, dµλ), 1 ≤ p <∞, the above limit exists
for almost every x > 0.

Nevertheless, our approach to the Riesz transform is more direct, and
the definition is based on a singular integral representation. By the results
of [3], both definitions are consistent when λ > 0.

In agreement with a general philosophy, formally the Riesz transform Rλ
related to ∆λ has the form

(2.3) Rλf = D∆
−1/2
λ f.

This becomes rigorous provided that f ∈ C∞c (R+) and λ > 0, with the
potential operator ∆−1/2

λ expressed in terms of the Poisson integral,

∆
−1/2
λ f(x) =

∞�

0

P λt f(x) dt, x > 0

(see [3]). In the present paper, in contrast with [13, 3, 4], we consider the
Riesz transform Rλ for the full range λ > −1/2. Moreover, to define precisely
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the operator ∆−1/2
λ we use the heat integral rather than the Poisson one,

∆
−1/2
λ f(x) =

1√
π

∞�

0

(W λ
t f(x)− χ{λ≤0}W

λ
t f(0))

dt√
t
, x > 0.

It will be shown in Section 4 that the limit W λ
t f(0) = limx→0+ W λ

t f(x)
exists for each t > 0 and ∆−1/2

λ f(x) is well defined for x > 0, provided that
f ∈ C∞c (R+). Note that for −1/2 < λ ≤ 0 we have to consider compensated
potentials in order to ensure convergence of the defining integral. Then the
Riesz transform Rλ of f ∈ C∞c (R+) is defined by (2.3). Moreover, for f ∈
C∞c (R+),

Rλf(x) = p.v.
∞�

0

Rλ(x, y)f(y) dµλ(y), x > 0,

with the Riesz transform kernel

Rλ(x, y) =
1√
π

∞�

0

∂

∂x
W λ
t (x, y)

dt√
t
, x, y > 0, x 6= y.

All the details will be given in Section 4. Now we state the boundedness
properties of Rλ (see also Figure 2 below). Notice that Rλ behaves better
than the maximal operators.

Theorem 2.3. Let λ > −1/2, 1 ≤ p < ∞, δ ∈ R. Then the Riesz
transform Rλ, considered on the measure space (R+, x

δdx), has the following
mapping properties:

(a) Rλ is of strong type (p, p) iff p > 1 and − 1− p < δ < (2λ+ 1)p− 1;
(b) Rλ is weak type (p, p) iff −1−p < δ < (2λ+1)p−1 or δ ∈ {−2, 2λ};
(c) Rλ is of restricted weak type (p, p) iff −1− p ≤ δ ≤ (2λ+ 1)p− 1.

Fig. 2. Mapping properties of Rλ (fixed λ = 1)

We now briefly comment on the adjoint Riesz transform R∗λ. This op-
erator is intimately connected with Rλ (see for instance the identity (2.5)
below). In [13, (16.8)] it was shown that for λ > 0,

(2.4) Rλf = −xhλ+1/2(y
−1hλ−1/2(f)), f ∈ L2(R+, dµλ),
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where hν , ν > −1, denotes the modified Hankel transform,

hν(f)(x) =
∞�

0

ϕν+1/2
x (y)f(y) dµν+1/2(y)

=
∞�

0

(xy)−νJν(xy)f(y)y2ν+1 dy, x > 0.

It can be proved that (2.4) holds in fact for all λ > −1/2. Since hν is an
isometry in L2(R+, dµλ) and the Parseval type identity

∞�

0

hν(f)(x)g(x)x2ν+1 dx =
∞�

0

f(x)hν(g)(x)x2ν+1 dx,

f, g ∈ L2(R+, dµλ), holds for every ν > −1 (cf. [5]), the adjoint of Rλ is
given by

R∗λf = −hλ−1/2(yhλ+1/2(x
−1f)), f ∈ L2(R+, dµλ).

Further, since h−1
ν = hν in L2(R+, dµλ) for all ν > −1, it becomes clear that

(2.5) R∗λRλf = RλR
∗
λf = f, f ∈ L2(R+, dµλ), λ > −1/2.

On the other hand, it is remarkable that R∗λ emerges as the Riesz transform
naturally associated with the Bessel type operator

DD∗ = ∆λ +
2λ
x2

= − d2

dx2
− 2λ

x

d

dx
+

2λ
x2
.

Namely, formally we have R∗λ = D∗(DD∗)−1/2. This identity can be given
a precise meaning, but we shall not go into details here to avoid confusion
with the line of thought of the paper.

The results concerning R∗λ can be summarized as follows.

Proposition 2.4. Let λ > −1/2, 1 ≤ p < ∞, δ ∈ R. Then the adjoint
Riesz transform R∗λ, considered on the measure space (R+, x

δdx), has the
following mapping properties:

(a) R∗λ is of strong type (p, p) iff p > 1 and − 1 < δ < 2(λ+ 1)p− 1;
(b) R∗λ is of weak type (p, p) iff −1 < δ < 2(λ+ 1)p− 1 or δ = 2λ+ 1;
(c) R∗λ is of restricted weak type (p, p) iff −1 < δ ≤ 2(λ+ 1)p− 1.

Moreover,
R∗λRλf = RλR

∗
λf = f, f ∈ Lp(R+, x

δdx),

provided that p > 1 and −1 < δ < (2λ+ 1)p− 1.

Observe that (a) above can be directly deduced from the strong type
result for the Riesz transform. For the other items we may apply the same
arguments as for Rλ because, as we shall see, they rely on pointwise estimates
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of the kernel Rλ(x, y). Since the kernel of R∗λ is Rλ(y, x), we easily obtain
the same kind of estimates for the adjoint Riesz transform.

Finally, consider the Littlewood–Paley type square function

gλ(f)(x) =
(∞�

0

t

∣∣∣∣ ∂∂tW λ
t f(x)

∣∣∣∣2 dt)1/2

.

We prove the following boundedness properties of gλ.

Theorem 2.5. Let λ > −1/2, 1 ≤ p < ∞, δ ∈ R. Then the square
function gλ, considered on the measure space (R+, x

δdx), has the following
mapping properties:

(a) gλ is of strong type (p, p) iff p > 1 and − 1 < δ < (2λ+ 1)p− 1;
(b) gλ is of weak type (p, p) iff −1 < δ < (2λ+ 1)p− 1 or δ = 2λ;
(c) gλ is of restricted weak type (p, p) iff −1 < δ ≤ (2λ+ 1)p− 1.

Notice that the behavior of gλ is exactly the same as that of the maximal
operatorsW λ

∗ and P λ∗ (see Figure 1). Note also that the Riesz transform and
its adjoint, taken into account individually, behave better than the maximal
operators. However, if considered simultaneously, they lead back to precisely
the same mapping properties as those of W λ

∗ and P λ∗ . In addition, it is
worth mentioning that the maximal operators are bounded on Lp(R+, x

δdµλ)
for given 1 < p < ∞ and λ > −1/2 if and only if xδ ∈ Aλp ; here Aλp =
Ap(R+, dµλ) denotes the Muckenhoupt class of Ap weights associated with
the homogeneous space (R+, | · |, dµλ).

As was already indicated in the Introduction, several harmonic analysis
operators associated with the Bessel operator

∆̃λ = xλ∆λx
−λ = −x−λDx2λDx−λ = D̃∗D̃, D̃ = xλDx−λ,

were studied earlier, usually with the assumption λ > 0. We now explain how
our present results are related to those in [3, 4]. Recall that ∆̃λ is associated
with the Lebesgue measure space (R+, dx). Consider the multiplication oper-
ator Vλf(x) = x−λf(x), which is obviously an isometry between L2(R+, dx)
and L2(R+, dµλ). An essential observation is that Vλ intertwines all relevant
operators in both settings in question and also establishes an L2 equivalence
between them. More precisely, distinguishing with tildes appropriately de-
fined objects in the ∆̃λ setting, we have ∆̃λ = V−λ∆λVλ, D̃ = V−λDVλ,
W̃ λ
∗ = V−λW

λ
∗ Vλ, P̃ λ∗ = V−λP

λ
∗ Vλ, R̃λ = V−λRλVλ, g̃λ = V−λgλVλ. Con-

sequently, we can deduce from Theorems 2.1–2.5 the strong boundedness
results in Lp(R+, x

δdx) for the corresponding operators in the ∆̃λ context.
Furthermore, by applying the same procedures as in the proofs of the theo-
rems just mentioned, one can also obtain the desired weak type and restricted
weak type mapping properties, as well as their sharpness. These results, ap-
propriately stated and justified, complement those from [3, 4]. After proving
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Theorems 2.1, 2.3 and 2.5 we provide remarks concerning the boundedness
properties of the operators associated with ∆̃λ.

An important ingredient of the proofs contained in the following sec-
tions are basic differential and asymptotic properties of the modified Bessel
function Iν . Those listed below can be found for instance in [18] or [12].

One of possible definitions of Iν(z) for, say, ν > −1 and z > 0 is

(2.6) Iν(z) =
∞∑
n=0

(z/2)2n+ν

Γ (n+ 1)Γ (n+ ν + 1)
.

A straightforward analysis of the above series shows that

(2.7)
d

dz
(z−νIν(z)) = z−νIν+1(z), z > 0, ν > −1,

and

(2.8) lim
z→0+

z−νIν(z) =
1

2νΓ (ν + 1)
, ν > −1.

Furthermore, for z > 0 and ν > −1, we have the following asymptotic
representation: given n = 0, 1, 2, . . . ,

(2.9) Iν(z) =
ez√
2πz

( n∑
k=0

(−1)k[ν, k](2z)−k +O(z−n−1)
)
,

the coefficients being specified by [ν, 0] = 1 and

[ν, k] =
(4ν2 − 1)(4ν2 − 32) · . . . · (4ν2 − (2k − 1)2)

22kΓ (k + 1)
, k = 1, 2, . . . .

Objects that will frequently appear in our estimates are the Hardy type
operators

Hη
0 f(x) = x−η−1

x�

0

f(y)yη dy, x > 0,

Hη
∞f(x) = xη

∞�

x

f(y)y−η−1 dy, x> 0,

considered for η > −1. The relevant mapping properties of Hη
0 and Hη

∞ are
gathered in [8, Lemmas 3.1 and 3.2] or [9, Lemmas 3 and 4] (see also refer-
ences given there). For the sake of completeness and reader’s convenience,
we reproduce them below.

Lemma 2.6. Let η > −1 and consider Hη
0 on the measure space

(R+, x
δdx).

(a) Hη
0 is of strong type (p, p) when 1 < p ≤ ∞ and δ < p(η + 1)− 1;

(b) Hη
0 is of weak type (1, 1) if δ ≤ η;

(c) Hη
0 is of restricted weak type (p, p) if 1 < p <∞ and δ = p(η+1)−1.
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Lemma 2.7. Let η > −1 and consider Hη
∞ on the measure space

(R+, x
δdx).

(a) Hη
∞ is of strong type (p, p) when 1 < p <∞ and −ηp− 1 < δ;

(b) Hη
∞ is of strong type (∞,∞) for any δ ∈ R if only η > 0;

(c) Hη
∞ is of weak type (1, 1) when −η − 1 ≤ δ (< if η = 0);

(d) Hη
∞, η 6= 0, is of restricted weak type (p, p) when 1 < p < ∞ and

δ = −ηp− 1.

Another object that will be used throughout is the Gauss–Weierstrass
kernel

Wt(x, y) =
1√
4πt

e−(x−y)2/4t, t > 0, x, y ∈ R.

The associated heat integral,

Wtf(x) =
�

R
Wt(x, y)f(y) dy, x ∈ R,

represents the classical heat semigroup {Wt}t>0 on the real line. A crucial
argument used repeatedly below relies on a comparison of various operators
in the Bessel setting with the corresponding well-known operators related
to Wt.

To establish weighted Lp mapping properties of certain auxiliary oper-
ators appearing in the proofs of Theorems 2.3 and 2.5, we shall use the
following result that can be proved by applying the local version of the
Calderón–Zygmund operator theory on the real line (or rather its vector-
valued variant), developed recently by Nowak and Stempak [14, Section 4].
It is remarkable that the results from [14] remain valid in a vector-valued
setting.

Lemma 2.8. Let (B, ‖·‖) be a separable Banach space. Assume that T is a
local vector-valued Calderón–Zygmund operator, i.e. T is a bounded operator
from L2(R+, dx) into the Lebesgue–Bochner space L2

B(R+, dx) such that

Tf(x) =
2x�

x/2

K(x, y)f(y) dy, a.e. x /∈ supp f, f ∈ C∞c (R+),

where the B-valued kernel is weakly measurable and satisfies the standard
estimates

‖K(x, y)‖ ≤ C

|x− y|
, ‖∇x,yK(x, y)‖ ≤ C

|x− y|2
,

in the “local” region 0 < x/2 < y < 2x, x 6= y. Then, for each λ ∈ R, the
operator Sλ defined by

Sλf(x) = x−λT (yλf)(x), f ∈ C∞c (R+),
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is also a local vector-valued Calderón–Zygmund operator and consequently,
given any δ ∈ R, it extends to a bounded operator from Lp(R+, x

δdx) into
LpB(R+, x

δdx), 1 < p <∞, and from L1(R+, x
δdx) into L1,∞

B (R+, x
δdx).

This lemma can be justified, in a straightforward manner, by applying a
vector-valued variant of [14, Theorem 4.3] and using the fact that each Aploc
class (considered in [14]), 1 ≤ p <∞, contains all power weights xδ, δ ∈ R.

Throughout the paper we use the convention that constants may change
their value (but not the dependence) from one occurrence to the next. The
notation cp means that the constant depends only on p. Constants are al-
ways strictly positive and finite. Moreover, we distinguish “large” and “small”
constants by using capital and small letters, respectively.

Finally, we shall implicitly use the simple fact that supt>0 t
β exp(−γt) =

Cβ,γ <∞ for arbitrary β, γ > 0.

3. The heat integral maximal operator. In this section we prove
Theorem 2.1. Recall that for λ > −1/2,

W λ
∗ f(x) = sup

t>0

∣∣∣∞�
0

W λ
t (x, y)f(y) dµλ(y)

∣∣∣, x > 0,

with the heat kernel given by (2.2). We shall use the following estimates of
W λ
t (x, y).

Lemma 3.1. Let λ > −1/2. Then for all t, x, y > 0,

W λ
t (x, y) ≤ Cλ


x−2λ−1, y ≤ x/2,
x−2λ−1 + t−1/2(xy)−λe−(x−y)2/4t, x/2 < y < 2x,
y−2λ−1(y2/t)λ+1/2e−cy

2/t, 2x ≤ y.
Proof. First observe that if xy ≤ t then (2.8) implies

(3.1) W λ
t (x, y) ≤ Cλ

1
tλ+1/2

e−(x2+y2)/4t ≤ Cλ
1

y2λ+1

(
y2

t

)λ+1/2

e−y
2/4t.

On the other hand, if xy > t then (2.9) leads to

(3.2) W λ
t (x, y) ≤ Cλ

1
(xy)λ

√
t
e−(x−y)2/4t.

Assume now that 2x ≤ y. Then, in view of (3.1), it is enough to consider
xy > t and by (3.2) we get

W λ
t (x, y) ≤ Cλ

(xy)λ+1/2

(
xy

t

)1/2

e−y
2/16t

≤ Cλ
tλ+1/2

(
y2

t

)1/2

e−y
2/16t =

Cλ
y2λ+1

(
y2

t

)λ+1

e−y
2/16t.

This implies the desired bound for W λ
t (x, y).
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The case y ≤ x/2, by the symmetry W λ
t (x, y) = W λ

t (y, x), is easily
covered by a direct weakening of the already justified estimate for 2x ≤ y.
Finally, the remaining estimate for comparable x and y follows by combining
(3.1) and (3.2).

Consider the auxiliary maximal operator

Tf(x) = sup
t>0

∣∣∣∣∞�
x

(
y2

t

)λ+1/2

exp
(
−c y

2

t

)
f(y)
y

dy

∣∣∣∣, x > 0.

Observe that T can be controlled, up to a multiplicative constant, by the
Hardy operatorH0

∞. Thus T has all the mapping properties stated in Lemma
2.7 with η = 0. Moreover, a straightforward computation shows that T is
bounded on L∞(R+). Further results concerning this and the more general
operator

T ηψf(x) = sup
s>0

∣∣∣xη ∞�
x

f(y)ψ(s, y)y−η−1 dy
∣∣∣, x > 0,

can be found in [8, Lemma 3.3], but they will not be used here except for
Remark 3.2 below.

We also invoke the local maximal function Mk
loc defined by

Mk
locf(x) = sup

0<u<x<v<ku

1
v − u

v�

u

|f(y)| dy, x > 0,

for a given k > 1. This operator, for any δ ∈ R, is bounded on Lp(R+, x
δdx),

1 < p ≤ ∞, and from L1(R+, x
δdx) to L1,∞(R+, x

δdx) (see [14, Section 6]).

Proof of Theorem 2.1. In order to show sufficiency parts in Theorem
2.1 we split the kernel W λ

t (x, y) according to the regions 0 < y ≤ x/2,
x/2 < y < 2x, 2x ≤ y, and denote the resulting maximal operators by Nλ

1 ,
Nλ

2 and Nλ
3 , respectively. Then

W λ
∗ f(x) ≤ Nλ

1 |f |(x) +Nλ
2 |f |(x) +Nλ

3 |f |(x), x > 0.

Using Lemma 3.1 we get

Nλ
1 |f |(x) ≤ CλH2λ

0 |f |(x), x > 0.

Another application of Lemma 3.1 gives

Nλ
3 |f |(x) ≤ CλT |f |(x), x > 0.

Considering Nλ
2 , again by Lemma 3.1 we have, for x > 0,

Nλ
2 |f |(x) ≤ Cλ

( 2x�

x/2

|f(y)| dy
y

+ sup
t>0

2x�

x/2

1√
t
e−(x−y)2/4t|f(y)| dy

)
≤ CλM4

locf(x).
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Now, taking into account the above estimates and facts, and appealing
to Lemmas 2.6 and 2.7, we conclude the following mapping properties of the
operator W λ

∗ , considered on the space (R+, x
δdx). For 1 < p <∞, W λ

∗ is of
strong type (p, p) provided that −1 < δ < (2λ + 1)p − 1. Moreover, W λ

∗ is
of strong type (∞,∞) for each δ ∈ R. If −1 < δ ≤ 2λ then W λ

∗ is of weak
type (1, 1). Finally, if 1 < p < ∞ and −1 < δ ≤ (2λ + 1)p − 1 then W λ

∗ is
of restricted weak type (p, p). These facts, altogether, justify the sufficiency
parts in Theorem 2.1.

We pass to the proof of the necessity parts, that is, showing the sharpness
of the above results. Our task will be done once we establish the following
three statements (as before, we assume that λ > −1/2, 1 ≤ p <∞ and the
underlying space is (R+, x

δdx)).

(A) If W λ
∗ is of restricted weak type (p, p) then −1 < δ ≤ (2λ+ 1)p− 1.

(B) W λ
∗ is not of weak type (p, p) when p > 1 and δ = (2λ+ 1)p− 1.

(C) W λ
∗ is not of strong type (1, 1) if −1 < δ ≤ 2λ.

To this end, let f be a nonnegative function on (0,∞). Since by (2.8),

W λ
t (x, y) ≥ cλ

tλ+1/2
e−(x2+y2)/4t, xy < t,

we see that

W λ
t f(x) ≥ cλ

tλ+1/2

t/x�

0

e−(x2+y2)/4tf(y) dµλ(y), t, x > 0.

Consequently, since W λ
∗ f(x) ≥W λ

x2f(x), x > 0, we get

(3.3) W λ
∗ f(x) ≥ cλ

x2λ+1

x�

0

e−(x2+y2)/4x2
f(y) dµλ(y) ≥

cλ
x2λ+1

x�

0

f(y) dµλ(y).

Similarly, by (2.9) we have

(3.4) W λ
t f(x) ≥ cλ√

t

∞�

t/x

1
(xy)λ

e−(x−y)2/4tf(y) dµλ(y), t, x > 0,

and therefore

(3.5) W λ
∗ f(x) ≥ cλ

x

∞�

x

1
(xy)λ

e−(x−y)2/4x2
f(y) dµλ(y), x > 0.

Suppose now that 1 ≤ p <∞ andW λ
∗ can be extended from L2(R+, dµλ)

to a restricted weak type (p, p) operator on (R+, x
δdx). Considering f =

χ(1,2), by (3.3) we obtain

W λ
∗ f(x) ≥ cλx−2λ−1, x ≥ 2.
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Then, by the weak type (p, p) inequality satisfied by f ,

γ−1/(2λ+1)�

2

yδ dy ≤ Cp,λ γ−p

for γ > 0 sufficiently small. It follows that the function γ 7→ γp−(δ+1)/(2λ+1)

must be bounded for γ near 0 and we conclude that δ ≤ (2λ+ 1)p− 1. On
the other hand, in view of (3.5), for f = χ(1,2) as above and x ∈ (0, 1),

W λ
∗ f(x) ≥ cλ

xλ+1

2�

1

yλe−(x−y)2/4x2
dy ≥ cλ

xλ+1
,

which together with the weak type (p, p) inequality for f implies
	1
0 x

δ dx<∞.
The conclusion δ > −1 follows and this completes proving statement (A).

Next, fix 1 < p <∞, let δ = (2λ+ 1)p− 1 and suppose, on the contrary,
that W λ

∗ can be extended to a weak type (p, p) operator on (R+, x
δdx). It

is straightforward that with p′ being the conjugate of p, 1/p + 1/p′ = 1,
the integral

	1
0 x

(2λ−δ)p′+δ dx is infinite. Therefore, for each n ≥ 1 there ex-
ists a nonnegative function fn ∈ L2((0, 1), dµλ) ∩ Lp((0, 1), xδdx) such that
‖fn‖Lp((0,1),xδdx) ≤ 1 and

	1
0 fn(x) dµλ(x) ≥ n. Extending fn to R+ by letting

fn(x) = 0 for x ≥ 1 and making use of (3.3) we can write

W λ
∗ fn(x) ≥ cλnx−2λ−1, x ≥ 1, n = 1, 2, . . . .

Now, in view of the weak type (p, p) boundedness of W λ
∗ , we get

(n/(n−1))1/(2λ+1)�

1

yδ dy ≤ Cλ
(‖fn‖Lp((0,1),xδdx)

n− 1

)p
≤ Cλ

1
(n− 1)p

for n = 2, 3, . . . . This in turn implies the boundedness of the sequence
{np − (n− 1)p : n ≥ 2}, a contradiction because p > 1. Thus statement
(B) is justified.

It remains to prove thatW λ
∗ is not strong type (1, 1) on (R+, x

δdx) when
−1 < δ ≤ 2λ. Assuming that x ≥ 1 and t ≤ 1/2 and restricting the interval
of integration in (3.4) we get

W λ
t f(x) ≥ cλ

2x�

x/2

1√
t(xy)λ

e−(x−y)2/4tf(y) dµλ(y)

≥ cλ
1√
t

2x�

x/2

e−(x−y)2/4tf(y) dy, x ≥ 1, t ≤ 1/2.

For 0 < ε < 1/2 consider 1 < y < 1 + ε and 1 + 2ε < x < 2. Then obviously
x/2 < y < 2x and, moreover, if t = (x − 1)2/2 (notice that this quantity is
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less than 1/2) we have

(3.6)
(x− y)2

4t
≤ 1

2

(
x− 1 + y − 1

x− 1

)2

≤ 1
2

(
1 +

ε

2ε

)2

=
9
8
.

Therefore, choosing fε = χ(1,1+ε), we arrive at

W λ
∗ fε(x) ≥ cλ

ε

x− 1
, 1 + 2ε < x < 2.

Consequently,
∞�

0

|W λ
∗ fε(x)|xδ dx ≥ cλ ε

2�

1+2ε

xδ

x− 1
dx ≥ cλ,δ ε

2�

1+2ε

dx

x− 1
= cλ,δ ε log

1
2ε
.

On the other hand, clearly ‖fε‖L1(R+,xδdx) ≤ Cδ ε. Letting ε → 0+ we see
that W λ

∗ is not bounded on L1(R+, x
δdx). Statement (C) follows.

The proof of Theorem 2.1 is now complete.

Remark 3.2. The boundedness properties of the maximal operator W̃ λ
∗

can be obtained by following the proof of Theorem 2.1, taking into account
that W̃ λ

t (x, y) = (xy)λW λ
t (x, y). In fact, Lemma 3.1 implies that W̃ λ

∗ f can be
controlled byHλ

0 f+M4
locf+T λψf , with ψ(s, y) = (y2/s)λ+1/2e−cy

2/s. Invoking
the mapping properties of T λψ from [8, Lemma 3.3], and making use of (3.3)
and (3.5), leads to similar results for W̃ λ

∗ to those stated in Theorem 2.1, just
replacing the interval (−1, (2λ+1)p−1) by (−λp−1, (λ+1)p−1). However,
in contrast with the ∆λ setting, these parallel results are not uniform in λ.
A singularity occurs at λ = 0, exactly as described by the statements of [8,
Theorem 2.2] with α replaced by λ− 1/2.

4. Riesz transform. In this section we prove Theorem 2.3. Recall that
the Riesz transform associated with the Bessel operator ∆λ is formally de-
fined by

Rλ = D∆
−1/2
λ , λ > −1/2.

We begin with a rigorous definition of the operator ∆−1/2
λ . Then we obtain

a representation of Rλ in terms of a principal value integral.
The negative power of ∆λ can be defined, at least for smooth functions

with compact support, by

∆
−1/2
λ f(x) =

1√
π

∞�

0

(W λ
t f(x)− χ{λ≤0}W

λ
t f(0))

dt√
t
,

with W λ
t f(0) understood as limx→0+ W λ

t f(x). Note that the compensating
term is necessary to make the integral convergent when −1/2 < λ ≤ 0, as
can be seen below.
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Proposition 4.1. Let λ > −1/2 and f ∈ C∞c (R+). Then the limit
W λ
t f(0) exists for each fixed t > 0, and the function ∆

−1/2
λ f(x), x > 0, is

well defined.

Proof. Suppose that supp f ⊂ (a, b), 0 < a < b < ∞. To see that the
limit exists it is sufficient to notice that, in view of (2.8), we have

W λ
t (0, y) := lim

x→0+
W λ
t (x, y) =

1
22λΓ (λ+ 1/2)

1
tλ+1/2

e−y
2/4t,

the convergence being uniform in y < b.
Now fix x > 0. By using (2.6) we get

∞�

1

|W λ
t f(x)− χ{λ≤0}W

λ
t f(0)| dt√

t

≤
∞�

1

b�

a

∣∣∣∣(xy)−λ+1/2

2t
Iλ−1/2

(
xy

2t

)
e−(x2+y2)/4t

−
χ{λ≤0}e

−y2/4t

tλ+1/222λΓ (λ+ 1/2)

∣∣∣∣|f(y)| dµλ(y)
dt√
t

≤ Cλ,b,x
∞�

1

b�

a

(
|e−(x2+y2)/4t − χ{λ≤0}e

−y2/4t|+ (xy)2

t2

)
|f(y)| dµλ(y)

dt

tλ+1

≤ Cλ,b,x
b�

a

∞�

1

(
χ{λ≤0}x

2

tλ+2
+
χ{λ>0}

tλ+1
+

(xy)2

tλ+3

)
dt |f(y)| dµλ(y)

and the last double integral converges. Further, an application of (2.9) gives

1�

0

|W λ
t f(x)− χ{λ≤0}W

λ
t f(0)| dt√

t

≤ Cλ,a,x
1�

0

b�

a

(
(xy)−λ√

t
e−(x−y)2/4t +

χ{λ≤0}

tλ+1/2
e−y

2/4t

)
|f(y)| dµλ(y)

dt√
t

≤ Cλ,a,b,x
b�

a

{
1

|x− y|1/2
1�

0

(
(x− y)2

t

)1/4

e−(x−y)2/4t dt

t3/4

+ χ{λ≤0}
1
y1/2

1�

0

(
y2

t

)1/4

e−y
2/4t dt

tλ+3/4

}
|f(y)| dy.

The last expression is controlled, up to a multiplicative constant, by the
convergent integral

	b
a(|x − y|−1/2 + χ{λ≤0}y

−1/2)|f(y)| dy. Combining the
above facts we conclude that the integral defining ∆−1/2

λ f(x) converges ab-
solutely.
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Proposition 4.2. Let λ > −1/2. For f ∈ C∞c (R+) the function ∆−1/2
λ f

is differentiable and

Rλf(x) := D∆
−1/2
λ f(x) = p.v.

∞�

0

Rλ(x, y)f(y) dµλ(y), x > 0,

with the kernel given by

Rλ(x, y) =
1√
π

∞�

0

∂

∂x
W λ
t (x, y)

dt√
t
, x, y > 0, x 6= y.

Proof. Our reasoning is based on a comparison with the classical setting,
which allows us to control the essential singularity. Let H denote the Hilbert
transform and let f ∈ C∞c (R). It is well known that

Hf(x) =
1
π

p.v.
�

R

f(y)
y − x

dy(4.1)

= p.v.
�

R

(
1√
π

∞�

0

∂

∂x
Wt(x, y)

dt√
t

)
f(y) dy

=
1√
π

∂

∂x

∞�

0

(Wtf(x)−Wtf(0))
dt√
t
, x ∈ R.

Thus we decompose

D∆
−1/2
λ f(x) =

1√
π
x−λ

∂

∂x

∞�

0

(Wt(yλf)(x)−Wt(yλf)(0))
dt√
t

− λ√
π
x−λ−1

∞�

0

(Wt(yλf)(x)−Wt(yλf)(0))
dt√
t

+
1√
π

∂

∂x

∞�

0

(W λ
t f(x)− χ{λ≤0}W

λ
t f(0)

− x−λWt(yλf)(x) + x−λWt(yλf)(0))
dt√
t

≡ I1 − I2 + I3.
In view of (4.1) it follows that

I1 = p.v.
∞�

0

(
1√
π

∞�

0

∂

∂x
Wt(x, y)

dt√
t

)
(xy)−λf(y) dµλ(y);

this term contains the crucial singularity and, as we shall see, no singular
integrals emerge from I2 and I3.

Next, we prove that it is legitimate to pass with ∂/∂x under the integral
sign in I3. This task, however, is directly reduced to showing that, for any
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fixed 0 < a < b <∞, the quantities

J1(t) = sup
x∈[a,b]

|Wt(yλf)(x)−Wt(yλf)(0)|,

J2(t) = sup
x∈[a,b]

∣∣∣∣ ∂∂xW λ
t f(x)− x−λ ∂

∂x
Wt(yλf)(x)

∣∣∣∣,
can be majorized by functions of t belonging to L1(R+, t

−1/2dt). In addition,
without any loss of generality, it may be assumed that supp f ⊂ [a, b], with
0 < a < b <∞, and ‖yλf‖∞ ≤ 1, ‖f‖∞ ≤ 1.

Observe that

J1(t) ≤
1
t1/2

sup
x∈[a,b]

b�

a

|e−(x−y)2/4t − e−y2/4t| dy.

For t ≥ 1 and x, y ∈ [a, b] we have

|e−(x−y)2/4t − e−y2/4t| =
∣∣∣∣y2

4t
− (x− y)2

4t
+O

(
(x− y)4

t2

)
−O

(
y4

t2

)∣∣∣∣ ≤ Cb
t
.

Also, since for all t > 0 and x, y ∈ [a, b],∣∣e−(x−y)2/4t − e−y2/4t
∣∣ ≤ e−(x−y)2/4t + e−a

2/4t,

we get

1
t1/2

b�

a

|e−(x−y)2/4t − e−y2/4t| dy ≤ 2
t1/2

∞�

−∞
e−u

2/4t du = 4
√
π.

Then
J1(t) ≤ Cb min(t−3/2, 1) ∈ L1(R+, t

−1/2dt).

The treatment of J2 is not as straightforward. We consider two cases.

Case 1: t ≤ b2. By (2.7) we get

∂

∂x
W λ
t (x, y)

=
1

(2t)λ
e−xy/2t

∂

∂x

(
1√
2t
e−(x−y)2/4t

)(
xy

2t

)−λ+1/2

Iλ−1/2

(
xy

2t

)
− y

(2t)λ+3/2

(
xy

2t

)−λ+1/2(
Iλ−1/2

(
xy

2t

)
− Iλ+1/2

(
xy

2t

))
e−(x2+y2)/4t

≡ Hλ,1(t, x, y)−Hλ,2(t, x, y), t, x, y > 0.

Next observe that (2.9) implies
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Hλ,1(t, x, y)

=
1√
2π

∂

∂x

(
1√
2t
e−(x−y)2/4t

)
(xy)−λ

(
1 +O

(
t

xy

))
= (xy)−λ

∂

∂x
Wt(x, y)−

(xy)−λ

t3/2
(x− y)e−(x−y)2/4tO

(
t

xy

)
, x, y ∈ [a, b].

In order to analyze Hλ,2(t, x, y) we use again (2.9) and obtain

|Hλ,2(t, x, y)| =
y

tλ+3/2
e−(x−y)2/4t

(
xy

2t

)−λ
O
(
t

xy

)
, x, y ∈ [a, b].

Thus Hλ,1 and Hλ,2 satisfy∣∣∣∣Hλ,1(t, x, y)− (xy)−λ
∂

∂x
Wt(x, y)

∣∣∣∣ ≤ Cλ,a,b 1
t1/2

e−(x−y)2/4t, x, y ∈ [a, b],

|Hλ,2(t, x, y)| ≤ Cλ,a,b
1
t1/2

e−(x−y)2/4t, x, y ∈ [a, b].

Consequently,

b�

a

∣∣∣∣Hλ,1(t, x, y)− (xy)−λ
∂

∂x
Wt(x, y)

∣∣∣∣ |f(y)| dµλ(y)

≤ Cλ,a,b
1
t1/2

∞�

−∞
e−(x−y)2/4t dy = Cλ,a,b,

and
b�

a

|Hλ,2(t, x, y)| |f(y)| dµλ(y) = Cλ,a,b.

Hence J2(t) ≤ Cλ,a,b when t ≤ b2.
Case 2: t > a2. We deduce from (2.7) that

∂

∂x
W λ
t (x, y) =

1
(2t)λ+1/2

e−(x2+y2)/4t

(
x

(
y

2t

)2(xy
2t

)−λ−1/2

Iλ+1/2

(
xy

2t

)
− x

2t

(
xy

2t

)−λ+1/2

Iλ−1/2

(
xy

2t

))
.

Then (2.8) implies∣∣∣∣ ∂∂xW λ
t (x, y)

∣∣∣∣ ≤ Cλ,a,b x

tλ+3/2
e−(x2+y2)/4t

(
y2

t
+1
)
≤
Cλ,a,b

tλ+3/2
, x, y ∈ [a, b].

Therefore
b�

a

∣∣∣∣ ∂∂xW λ
t (x, y)f(y)

∣∣∣∣ dµλ(y) ≤ Cλ,a,b

tλ+3/2
, x ∈ [a, b].
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On the other hand, for every x ∈ [a, b],

b�

a

(xy)−λ
∣∣∣∣ ∂∂xWt(x, y)f(y)

∣∣∣∣ dµλ(y)
≤

b�

a

(xy)−λ
|x− y|
t3/2

e−(x−y)2/4t|f(y)| dµλ(y) ≤
Cλ,a,b

t3/2
.

In this way we conclude that J2(t) ≤ Cλ,a,bt−1 for t > a2.
A combination of Cases 1 and 2 reveals that

J2(t) ≤ Cλ,a,b min(1, t−1) ∈ L1(R+, t
−1/2dt).

Now passing with ∂/∂x under the integral in I3 is justified and we get

D∆
−1/2
λ f(x) = p.v.

∞�

0

(
1√
π

∞�

0

∂

∂x
Wt(x, y)

dt√
t

)
(xy)−λf(y) dµλ(y)

+
1√
π

∞�

0

(
∂

∂x
W λ
t f(x)− x−λ ∂

∂x
Wt(yλf)(x)

)
dt√
t

≡ I4 + I5.

Having in mind the estimates obtained so far in this proof, it is straightfor-
ward to check that

I5 =
1√
π

∞�

0

∞�

0

(
∂

∂x
W λ
t (x, y)− (xy)−λ

∂

∂x
Wt(x, y)

)
f(y) dµλ(y)

dt√
t

and that the double integral above converges absolutely for any fixed x > 0.
Thus the order of integration may be switched and then the cancellations
occurring between I4 and I5 lead to the desired principal value integral
representation of D∆−1/2

λ f(x). Notice that the differentiability of ∆−1/2
λ f is

implicitly contained in the whole reasoning.

It is perhaps worth mentioning that the kernel Rλ(x, y) can be expressed
explicitly in terms of the Gauss hypergeometric function 2F1 (for the defini-
tion see for instance [12, Chapter 9]). More precisely, by means of (2.7) and
the integral formula (cf. [15, 2.15.3 (2)])

(4.2)
∞�

0

z1/2e−αzIν(βz) dz

= α−ν−3/2

(
β

2

)ν Γ (ν + 3/2)
Γ (ν + 1) 2F1

(
ν + 3/2

2
,
ν + 5/2

2
; ν + 1;

β2

α2

)
,

valid for ν > −3/2 and α > β > 0, one computes that for x 6= y,
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Rλ(x, y)

=
2√
π

Γ (λ+ 2)
Γ (λ+ 3/2)

(xy)−λ−1

{
yΦλ+2

x,y 2F1

(
λ+ 2

2
,
λ+ 3

2
;
2λ+ 3

2
; 4Φ2

x,y

)
− λ+ 1/2

λ+ 1
xΦλ+1

x,y 2F1

(
λ+ 1

2
,
λ+ 2

2
;
2λ+ 1

2
; 4Φ2

x,y

)}
,

with Φx,y = xy/(x2+y2). This representation, even though explicit, does not
seem to be convenient for performing necessary kernel estimates since there
are essential cancellations between the two terms containing 2F1 functions
with different parameters. For λ = 0 the above expression can be simplified
(the relevant property of 2F1 can be found in [12, Section 9.8]) and we have

(4.3) R0(x, y) =
1
π

(
1

y − x
− 1
y + x

)
, x 6= y.

Note that the same result can be obtained more directly since W 0
t (x, y) =

Wt(x, y) +Wt(x,−y) (this identity follows from the fact that I−1/2(z) =√
2/πz cosh z, cf. [12, (5.8.5)]) and the conclusion is obtained by a compar-

ison with the Hilbert transform kernel. Finally, by (4.3) we see that R0f
coincides with the Hilbert transform of the even extension of f , restricted to
the positive half-line.

The following estimates for the kernel Rλ(x, y) will be crucial in proving
Theorem 2.3. They can also be obtained as consequences of [1, (1.6)], but
our procedure, via the heat kernel, is different from that contained in [10,
Lemma 2.1], [11, Theorem 2.1] and proving the estimate in [1].

Lemma 4.3. Let λ > −1/2. Then for all x, y > 0, x 6= y, the integral
defining Rλ(x, y) converges absolutely and we have

Rλ(x, y) =
1
π

(xy)−λ

y − x
+O

(
y−2λ−1

(
1 + log

xy

(y − x)2

))
, x/2 < y < 2x.

Moreover, in the off-diagonal region,

|Rλ(x, y)| ≤ Cλ
{
x−2λ−1, y ≤ x/2,
xy−2λ−2, 2x ≤ y.

Proof. Observe first that by (2.7),

(4.4)
∂

∂x
W λ
t (x, y)

=
1

(2t)λ+1/2

(
x

(
y

2t

)2(xy
2t

)−λ−1/2

Iλ+1/2

(
xy

2t

)
− x

2t

(
xy

2t

)−λ+1/2

Iλ−1/2

(
xy

2t

))
e−(x2+y2)/4t, t, x, y > 0.
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Now assume that 0 < x/2 < y < 2x and x 6= y. We write

√
π Rλ(x, y) =

xy�

0

∂

∂x
W λ
t (x, y)

dt√
t

+
∞�

xy

∂

∂x
W λ
t (x, y)

dt√
t

≡ R1
λ(x, y) +R2

λ(x, y).

By (4.4) and (2.8) it follows that

|R2
λ(x, y)|

≤ Cλ
∞�

xy

(
xy2

t2
+
x

t

)
dt

tλ+1
≤ Cλ

(
xy2

(xy)λ+2
+

x

(xy)λ+1

)
≤ Cλy−2λ−1.

Next, by (4.4) and (2.9) we get

R1
λ(x, y) =

xy�

0

2−λ−1/2

tλ+1

(
xy

2t

)−λ( y

2t

(
xy

2t

)1/2

Iλ+1/2

(
xy

2t

)

− x

2t

(
xy

2t

)1/2

Iλ−1/2

(
xy

2t

))
e−(x2+y2)/4t dt

=
1

2
√

2

xy�

0

(xy)−λ

t2

(
y − x√

2π
+O

(
t

y

))
e−(x−y)2/4t dt

=
1

4
√
π

(xy)−λ(y − x)
∞�

0

1
t2
e−(x−y)2/4t dt

− 1
4
√
π

(xy)−λ(y − x)
∞�

xy

1
t2
e−(x−y)2/4t dt

+ (xy)−λ
xy�

0

1
t2
O
(
t

y

)
e−(x−y)2/4t dt

≡ Kλ
1 (x, y) +Kλ

2 (x, y) +Kλ
3 (x, y).

We analyze each Kλ
i (x, y), i = 1, 2, 3, separately. By a direct computation

Kλ
1 (x, y) =

1√
π

(xy)−λ

y − x
.

To estimate Kλ
2 (x, y) we write

|Kλ
2 (x, y)|

≤ (xy)−λ|y − x|
∞�

xy

e−(x−y)2/4t dt

t2
≤ (xy)−λx

∞�

xy

dt

t2
≤ Cλy−2λ−1.
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In the case of Kλ
3 (x, y) one has

|Kλ
3 (x, y)|

≤ Cλ(xy)−λ
1
y

xy�

0

1
t
e−(x−y)2/4t dt ≤ Cλy−2λ−1

∞�

(x−y)2/4xy

1
u
e−u du,

and splitting the last integral according to u < 1 and u ≥ 1 makes it clear
that

|Kλ
3 (x, y)| ≤ Cλy−2λ−1

(
1 + log

xy

(x− y)2

)
.

This completes the proof of the diagonal estimate of the lemma.
In order to justify the remaining estimates it suffices to bound suitably

Riλ(x, y), i = 1, 2, in the off-diagonal region. Notice that (2.8), together with
(4.4), implies

|R2
λ(x, y)| ≤ Cλx

∞�

xy

1
tλ+2

(
y2

t
+ 1
)
e−(x2+y2)/4t dt

≤ Cλx
(

y2

(x2 + y2)λ+2

(x2+y2)/4xy�

0

uλ+1e−u du

+
1

(x2 + y2)λ+1

(x2+y2)/4xy�

0

uλe−u du

)
≤ Cλ

x

(x2 + y2)λ+1
.

From this we easily obtain the desired estimates, with Rλ(x, y) replaced by
R2
λ(x, y). Finally, by applying (2.9) together with (4.4),

|R1
λ(x, y)| ≤ Cλ(xy)−λ(x+ y)

xy�

0

e−(x−y)2/4t dt

t2

≤ Cλ
(xy)−λ

|x− y|2λ+3

xy�

0

tλ dt ≤ Cλ
xy

|x− y|2λ+3

and the off-diagonal estimates follow again, this time for R1
λ(x, y). The proof

of Lemma 4.3 is finished.

We now show that the off-diagonal estimates of Lemma 4.3 are sharp in
certain regions.

Lemma 4.4. Let λ > −1/2. There exist b > 1 and a (positive) constant
cλ such that
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Rλ(x, y) ≤ −cλx−2λ−1, 0 < y ≤ x/b,
Rλ(x, y) ≥ cλxy−2λ−2, 0 < bx ≤ y.

Proof. Using (4.4) and then performing the change of variable u = 2t/x2

we obtain

Rλ(x, y) =
1

2λ+1/2

∞�

0

(
x

(
y

2t

)2(xy
2t

)−λ−1/2

Iλ+1/2

(
xy

2t

)

− x

2t

(
xy

2t

)−λ+1/2

Iλ−1/2

(
xy

2t

))
e−(x2+y2)/4t dt

tλ+1

=
1√

2x2λ+1

∞�

0

1
uλ+1

((
z

u

)2( z
u

)−λ−1/2

Iλ+1/2

(
z

u

)

− 1
u

(
z

u

)−λ+1/2

Iλ−1/2

(
z

u

))
e−(1+z2)/2u du, x, y > 0,

where z = y/x. Then, with the aid of (2.8) and the dominated convergence
theorem (a suitable integrable majorant can be derived by means of (2.8)
and (2.9)), we see that

lim
z→0+

x2λ+1Rλ(x, y) = − 1
2λΓ (λ+ 1/2)

∞�

0

1
uλ+2

e−1/2u du = − 2Γ (λ+ 1)
Γ (λ+ 1/2)

,

and the desired bound for y < x/b follows. Similarly, changing the variable
u = 2t/y2, we can write

Rλ(x, y) =
x√

2 y2λ+2

∞�

0

1
uλ+1

(
1
u2

(
z

u

)−λ−1/2

Iλ+1/2

(
z

u

)

− 1
u

(
z

u

)−λ+1/2

Iλ−1/2

(
z

u

))
e−(1+z2)/2u du, x, y > 0,

where now z = x/y, thus, again in view of (2.8) and the dominated conver-
gence theorem,

lim
z→0+

y2λ+2

x
Rλ(x, y)

=
1

2λ+1Γ (λ+ 1/2)

∞�

0

1
uλ+2

(
1

(λ+ 1/2)u
− 2
)
e−1/2u du =

Γ (λ+ 1)
Γ (λ+ 3/2)

.

This gives the remaining bound for bx < y.

Consider the auxiliary operator

Hλ,locf(x) =
1
π

p.v.
2x�

x/2

(xy)−λ

y − x
f(y) dµλ(y), x > 0,
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defined for, say, f ∈ C∞c (R+). Note that the principal value integral con-
verges for a.e. x > 0 if only f is locally integrable; this follows by the relation
with the Hilbert transform.

According to [2, Lemma 1], the local Hilbert transform H0,loc is bounded
on L2(R+, dx) (this fact can also be proved directly by combining the L2-
boundedness of the Hilbert transform with the classical Hardy inequalities).
Consequently, applying Lemma 2.8 to the scalar-valued operator T = H0,loc
we get the following.

Lemma 4.5. Let λ ∈ R. Then Hλ,loc is a local Calderón–Zygmund oper-
ator, hence, for each δ ∈ R, it is bounded on Lp(R+, x

δdx), 1 < p <∞, and
from L1(R+, x

δdx) into L1,∞(R+, x
δdx).

We are now prepared to give the main proof.

Proof of Theorem 2.3. We shall justify the sufficiency parts first. To this
end assume that f ∈ C∞c (R+). Similarly to the proof of Theorem 2.1, we
split the Riesz operator

Rλf(x) =
{ x/2�

0

+ p.v.
2x�

x/2

+
∞�

2x

}
Rλ(x, y)f(y) dµλ(y)(4.5)

≡ Rλ,1f(x) +Rλ,2f(x) +Rλ,3f(x).

The operators Rλ,1, Rλ,2 and Rλ,3 will be analyzed separately. Note that
only the diagonal part Rλ,2 is given by a singular integral.

Applying Lemma 4.3 we obtain, for all x > 0,

|Rλ,1f(x)| ≤ Cλ
1

x2λ+1

x/2�

0

|f(y)|y2λ dy ≤ CλH2λ
0 |f |(x),

|Rλ,3f(x)| ≤ Cλx
∞�

2x

|f(y)| dy
y2
≤ CλH1

∞|f |(x),

and also∣∣Rλ,2f(x)−Hλ,locf(x)
∣∣ ≤ Cλ 2x�

x/2

1
y

(
1 + log

xy

(x− y)2

)
|f(y)| dy.

Note that the operator N defined by

Nf(x) =
2x�

x/2

1
y

(
1 + log

xy

(x− y)2

)
f(y) dy, x > 0,

and occurring above, is bounded on Lp(R+, x
δdx) for each δ ∈ R and each

1 ≤ p < ∞. Indeed, observe first that the integral defining N1(x) is finite
and in fact does not depend on x > 0. Then, using Jensen’s inequality and
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changing the order of integration, we get

∞�

0

|Nf(x)|pxδ dx ≤ Cp
∞�

0

xδ
2x�

x/2

1
y

(
1 + log

xy

(x− y)2

)
|f(y)|p dy dx

≤ Cp
∞�

0

|f(y)|p
2y�

y/2

1
x

(
1 + log

xy

(x− y)2

)
xδ dx dy

≤ Cp,δ
∞�

0

|f(y)|pyδ dy.

Taking into account Lemmas 2.6 and 2.7, the above facts and Lemma 4.5,
we deduce the following mapping properties of Rλ considered on the space
(R+, x

δdx). For 1 < p < ∞, Rλ is of strong type (p, p) if −1 − p < δ <
(2λ + 1)p − 1. If −2 ≤ δ ≤ 2λ then Rλ is of weak type (1, 1). Finally,
Rλ is of restricted weak type (p, p) when 1 < p < ∞ and −p − 1 ≤ δ ≤
(2λ + 1)p − 1. These properties combined justify the sufficiency parts of
Theorem 2.3.

The necessity parts will be justified once we show the following state-
ments (we assume that 1 ≤ p <∞ and the underlying space is (R+, x

δdx)).

(A) If Rλ is of restricted weak type (p, p) then−p−1 ≤ δ ≤ (2λ+1)p−1.
(B1) Rλ is not of weak type (p, p) when p > 1 and δ = −p− 1.
(B2) Rλ is not of weak type (p, p) when p > 1 and δ = (2λ+ 1)p− 1.
(C) Rλ is not of strong type (1, 1) for −2 ≤ δ ≤ 2λ.

Item (A) can be deduced immediately by a standard interpolation argument,
once we prove the other items. For item (B1) observe that, in view of the
above considerations and (4.5), Rλ is of weak type (p, p) for δ = −p − 1,
p > 1, if and only if Rλ,3 has the same property. Moreover, by Lemma 4.4, if
Rλ,3 has this property then the operator H1

∞ also has it. But it is known (see
[2, Theorem 5]) that H1

∞ fails to be of weak type (p, p) for δ = −p−1, p > 1.
Therefore the same negative result holds for Rλ; this gives (B1). Treatment
of (B2) is similar: Rλ is of weak type (p, p) for δ = (2λ + 1)p − 1, p > 1,
if and only if Rλ,1 has this property. Then, using Lemma 4.4, we infer that
the property for Rλ,1 implies the same for H2λ

0 . However, it is known (see
[1, Theorem 1]) that H2λ

0 does not have the property in question, thus (B2)
follows.

It remains to show (C). For 0 < ε < 1/4 consider the function fε(x) =
x−λχ(1,1+ε)(x), x > 0. By the estimate in the diagonal region from Lemma
4.3 we have
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∞�

0

|Rλfε(x)|xδ dx ≥
2�

1+2ε

∣∣∣ 2x�

x/2

Rλ(x, y)fε(y) dµλ(y)
∣∣∣xδ dx

≥ 1
π

2�

1+2ε

xδ−λ
∣∣∣∣ 1+ε�

1

dy

y − x

∣∣∣∣ dx− Cλ 2�

1+2ε

Nfε(x)xδ dx.

Then, if Rλ were bounded on L1(R+, x
δdx) we would have

2�

1+2ε

xδ−λ
∣∣∣∣ 1+ε�

1

1
y − x

dy

∣∣∣∣ dx ≤ Cλ(‖Rλfε‖L1(R+,xδdx) + ‖Nfε‖L1(R+,xδdx))

≤ Cλ,δ‖fε‖L1(R+,xδdx)

and hence it would follow that

ε ≥ cλ,δ‖fε‖L1(R+,xδdx)

≥ cλ,δ
2�

1+2ε

log
x− 1

x− 1− ε
dx = cλ,δ

(
ε log

1
4ε

+ (1− ε) log
1

1− ε

)
.

But the inequality between the outer expressions cannot hold with cδ,λ inde-
pendent of ε ∈ (0, 1/4), as can be seen immediately by letting ε→ 0+. Thus
Rλ is not bounded on L1(R+, x

δdx) and (C) is justified.
The proof of Theorem 2.3 is now complete.

Remark 4.6. The boundedness properties of the operator R̃λ related to
∆̃λ can be proved by a careful analysis of the proof of Theorem 2.3. Split
R̃λ into three parts,

R̃λf(x) =
{ x/2�

0

+ p.v.
2x�

x/2

+
∞�

2x

}
R̃λ(x, y)f(y) dy

≡ R̃λ,1f(x) + R̃λ,2f(x) + R̃λ,3f(x).

Since R̃λ(x, y) = (xy)λRλ(x, y), with the aid of Lemmas 4.3 and 4.4 the
operators R̃λ,1 and R̃λ,3 can be controlled above and below by Hλ

0 and
Hλ+1
∞ , respectively. Moreover, R̃λ,2 is a local Calderón–Zygmund operator

with respect to Lebesgue measure; this follows from the corresponding prop-
erty for Rλ,2 (see Lemmas 4.3 and 4.5). Thus we obtain similar results for
R̃λ to those stated in Theorem 2.3, just replacing the role of the interval
(−p− 1, (2λ+ 1)p− 1) by (−(λ+ 1)p− 1, (λ+ 1)p− 1).

5. The heat integral square function. This section is devoted to the
proof of Theorem 2.5. Recall that the square function we take into account
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is given by

gλ(f)(x) =
(∞�

0

t

∣∣∣∣ ∂∂t
∞�

0

W λ
t (x, y)f(y) dµλ(y)

∣∣∣∣2 dt)1/2

, x > 0.

We will need several technical results, one of them being the following im-
portant estimate.

Lemma 5.1. Let λ > −1/2. There exists a constant Cλ such that for all
x, y > 0,(∞�

0

t

∣∣∣∣ ∂∂tW λ
t (x, y)− χ{0<x/2<y<2x}(xy)

−λ ∂

∂t
Wt(x, y)

∣∣∣∣2dt)1/2

≤ Cλ(max{x, y})−2λ−1.

Proof. We first show that the estimate holds in the diagonal region 0 <
x/2 ≤ y ≤ 2x. We shall consider two cases determined by the asymptotics
at 0+ and ∞ of the Bessel function involved.

Case 1: xy ≥ t. Observe that

∂

∂t
W λ
t (x, y) =

∂

∂t

(
1√
2t
e−(x−y)2/4t

)
(xy)−λe−xy/2t

(
xy

2t

)1/2

Iλ−1/2

(
xy

2t

)
+ (xy)−λ

∂

∂t

(
e−xy/2t

(
xy

2t

)1/2

Iλ−1/2

(
xy

2t

))
1√
2t
e−(x−y)2/4t

≡ Eλ,1(t, x, y) + Eλ,2(t, x, y).

Then, according to (2.9), we get

Eλ,1(t, x, y) =
(xy)−λ√

2π
∂

∂t

(
1√
2t
e−(x−y)2/4t

)(
1 +O

(
t

xy

))
= (xy)−λ

∂

∂t
Wt(x, y)

− (xy)−λO
(
t

xy

)(
1

(2t)3/2
− 1

(2t)5/2
(x− y)2

)
e−(x−y)2/4t

≡ (xy)−λ
∂

∂t
Wt(x, y) + E1

λ,1(t, x, y) + E2
λ,1(t, x, y).

Integrating the last two terms in t ≤ xy we obtain( xy�
0

t|E1
λ,1(t, x, y)|2 dt

)1/2
≤ Cλ(xy)−λ−1

( xy�
0

e−(x−y)2/2t dt
)1/2

≤ Cλ(xy)−λ−1/2,
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( xy�
0

t|E2
λ,1(t, x, y)|2 dt

)1/2

≤ Cλ(xy)−λ−1

( xy�

0

(
(x− y)2

t

)2

e−(x−y)2/2t dt

)1/2

≤ Cλ(xy)−λ−1/2.

Next, we analyze Eλ,2(t, x, y). By using (2.7) it follows that

Eλ,2(t, x, y)

= (xy)−λ
∂

∂t

(
e−xy/2t

(
xy

2t

)1/2

Iλ−1/2

(
xy

2t

))
1√
2t
e−(x−y)2/4t

=
(xy)−λ+1

2
√

2 t5/2
e−(x−y)2/4t

(
e−xy/2t

(
xy

2t

)1/2

Iλ−1/2

(
xy

2t

)
− e−xy/2t 2λt

xy

(
xy

2t

)1/2

Iλ−1/2

(
xy

2t

)
− e−xy/2t

(
xy

2t

)1/2

Iλ+1/2

(
xy

2t

))
.

Then applying (2.9) we see that

Eλ,2(t, x, y)

=
(xy)−λ+1

4
√
π t5/2

e−(x−y)2/4t
{(

1− c(λ)
t

xy
+O

(
t2

(xy)2

))
− 2λt
xy

(
1− c(λ)

t

xy
+O

(
t2

(xy)2

))
−
(

1− c(λ+ 1)
t

xy
+O

(
t2

(xy)2

))}
,

where c(ν) = [ν − 1/2, 1] = (ν − 1/2)2 − 1/4. Hence, due to the occurring
cancellations,

|Eλ,2(t, x, y)| =
(xy)−λ+1

t5/2
e−(x−y)2/4tO

(
t2

(xy)2

)
.

Consequently,( xy�
0

t|Eλ,2(t, x, y)|2 dt
)1/2

≤ Cλ(xy)−λ−1
( xy�

0

e−(x−y)2/2t dt
)1/2

≤ Cλ(xy)−λ−1/2.

In view of this and the previous estimates we conclude that for x, y > 0,( xy�

0

t

∣∣∣∣ ∂∂tW λ
t (x, y)− (xy)−λ

∂

∂t
Wt(x, y)

∣∣∣∣2 dt)1/2

≤ Cλ(xy)−λ−1/2,

which finishes Case 1.
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Case 2: xy < t. Observe that (2.7) leads to

(5.1)
∂

∂t
W λ
t (x, y)

= 2−λ−1/2e−(x2+y2)/4t

(
− λ+ 1/2

tλ+3/2

(
xy

2t

)−λ+1/2

Iλ−1/2

(
xy

2t

)
− xy

2tλ+5/2

(
xy

2t

)−λ+1/2

Iλ+1/2

(
xy

2t

)
+
x2 + y2

4tλ+5/2

(
xy

2t

)−λ+1/2

Iλ−1/2

(
xy

2t

))
.

Then (2.8) implies∣∣∣∣ ∂∂tW λ
t (x, y)

∣∣∣∣ ≤ Cλ
tλ+3/2

(
1 +

(xy)2

t2
+
x2 + y2

t

)
e−(x2+y2)/4t

≤ Cλ
tλ+3/2

e−(x2+y2)/8t,

hence we can write

(∞�
xy

t

∣∣∣∣ ∂∂tW λ
t (x, y)

∣∣∣∣2 dt)1/2

≤ Cλ
(∞�
xy

1
t2λ+2

e−(x2+y2)/4t dt

)1/2

(5.2)

≤ Cλ
(x2 + y2)λ+1/2

( (x2+y2)/4xy�

0

u2λe−u du
)1/2

≤ Cλ(xy)−λ−1/2.

Moreover, by a straightforward computation,∣∣∣∣ ∂∂tWt(x, y)
∣∣∣∣ ≤ C

t3/2
e−(x−y)2/4t

(
1 +

(x− y)2

t

)
≤ C

t3/2
e−(x−y)2/8t

and therefore(∞�
xy

t

∣∣∣∣(xy)−λ ∂

∂t
Wt(x, y)

∣∣∣∣2 dt)1/2

≤ C(xy)−λ
(∞�
xy

1
t2
e−(x−y)2/4t dt

)1/2

≤ C(xy)−λ−1/2.

Now, combining the estimates of Cases 1 and 2, we conclude that for
0 < x/2 ≤ y ≤ 2x,(∞�

0

t

∣∣∣∣ ∂∂tW λ
t (x, y)− (xy)−λ

∂

∂t
Wt(x, y)

∣∣∣∣2 dt)1/2

≤ Cλ(xy)−λ−1/2

≤ Cλ(max{x, y})−2λ−1.
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It remains to prove the relevant bound in the off-diagonal region. By
symmetry of the kernel W λ

t (x, y) it is enough to focus on the cone 0 < y <
x/2. As above, we consider two cases.

Case 1: xy ≥ t. According to (5.1) and (2.9),

∂

∂t
W λ
t (x, y)

=
2−λ−1/2

√
2π

e−(x−y)2/4t
{
−λ+ 1/2

2−λt3/2
(xy)−λ

(
1 +O

(
t

xy

))
− (xy)−λ+1

2−λ+1t5/2

(
1 +O

(
t

xy

))
+

(xy)−λ(x2 + y2)
2−λ+2t5/2

(
1 +O

(
t

xy

))}
.

This implies∣∣∣∣ ∂∂tW λ
t (x, y)

∣∣∣∣ ≤ Cλ (xy)−λ

t1/2
e−x

2/16t

(
1
t

+
1
xy

+
xy

t2
+
x2 + y2

t2
+
x2 + y2

xyt

)
≤ Cλ

(xy)−λx2

t5/2
e−x

2/16t,

since by the present assumptions on x, y and t we have
1
xy
≤ 1
t
≤ x2 + y2

txy
≤ x2 + y2

t2
≤ 2

x2

t2
.

Using again the assumptions xy ≥ t and y < x/2 it follows that( xy�

0

t

∣∣∣∣ ∂∂t W λ
t (x, y)

∣∣∣∣2 dt)1/2

≤ Cλ
( xy�

0

t

∣∣∣∣(xy)−λ x2

t5/2
e−x

2/16t

∣∣∣∣2 dt)1/2

≤ Cλ
1

x2λ+3

(
xy

xy�

0

(
x2

t

)2λ+5

e−x
2/8t dt

)1/2

≤ Cλ
xy

x2λ+3
,

and the last quantity can be easily estimated from above by Cλx−2λ−1.

Case 2: xy < t. Notice that by (5.2) we have(∞�
xy

t

∣∣∣∣ ∂∂tW λ
t (x, y)

∣∣∣∣2 dt)1/2

≤ Cλ
(x2 + y2)λ+1/2

≤ Cλx−2λ−1.

Putting the two cases together produces(∞�
0

t

∣∣∣∣ ∂∂tW λ
t (x, y)

∣∣∣∣2 dt)1/2

≤ Cλx−2λ−1, 0 < y < x/2,

which is precisely what we needed.
The proof of Lemma 5.1 is finished.



132 J. J. Betancor et al.

Lemma 5.2. Let λ > −1/2. There exist (positive) constants a = aλ and
c = cλ such that

∂

∂t
W λ
t (x, y) ≤ − c

tλ+3/2

if either 0 < x, y < a and t ≥ 1, or 0 < y < x and x2/t ≤ a.

Proof. The conclusion follows in a straightforward manner by combining
(5.1) and (2.8).

Define the auxiliary square function

(5.3) gλ,loc(f)(x)

=
(∞�

0

t

∣∣∣∣ 2x�

x/2

(xy)−λ
∂

∂t
Wt(x, y)f(y) dµλ(y)

∣∣∣∣2 dt)1/2

, x > 0,

which is the local part of a modification of the classical vertical square func-
tion.

Lemma 5.3. Let λ ∈ R. Then, for each δ ∈ R, gλ,loc is bounded on
Lp(R+, x

δdx), 1 < p <∞, and from L1(R+, x
δdx) into L1,∞(R+, x

δdx).

Proof. Observe that the mapping g0,loc is bounded on L2(R+, dx). This
can be easily verified by invoking the well-known fact that the classical ver-
tical g-function g (restricted to R+ and given by a formula analogous to that
defining g0,loc, but with the integration in y from 0 to ∞) is bounded on
L2(R+, dx), and then using classical Hardy inequalities.

From the L2-boundedness of g0,loc we infer that the operator G assigning
to an f ∈ L2(R+, dx) the function

R+ 3 x 7→ Gf(x) =
{ 2x�

x/2

∂

∂t
Wt(x, y)f(y) dy

}
t>0

is bounded from L2(R+, dx) to the Bochner–Lebesgue space L2
L2(tdt)(R+, dx).

Moreover, G is associated, in the sense of Lemma 2.8, with the vector-valued
kernel

K(x, y) =
{
∂

∂t
Wt(x, y)

}
t>0

.

This follows essentially by the known fact that g, viewed as a vector-valued
Calderón–Zygmund operator, is associated with the same kernel. In addition,
K satisfies the standard estimates from Lemma 2.8 (even for all x, y ∈ R),
as is known and not hard to check.

Taking into account the above facts and applying Lemma 2.8 with T = G
we see that the mapping f(x) 7→ x−λG(yλf)(x) is a local vector-valued
Calderón–Zygmund operator, hence, for every δ ∈ R, it extends to a bounded
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operator from Lp(R+, x
δdx) to Lp

L2(tdt)
(R+, x

δdx) for any 1 < p < ∞, and

to a bounded operator from L1(R+, x
δdx) to L1,∞

L2(tdt)
(R+, x

δdx).
Finally, notice that these boundedness results imply precisely the desired

mapping properties of gλ,loc (the fact that the vector-valued bounded ex-
tensions correspond to gλ,loc given by (5.3) follows by a standard density
argument).

Having the above results we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. Making use of the triangle inequality for the norm
‖ · ‖L2(tdt) and then applying Minkowski’s integral inequality we get

gλ(f)(x)

≤
{ x/2�

0

+
∞�

2x

}(∞�
0

t

∣∣∣∣ ∂∂tW λ
t (x, y)

∣∣∣∣2 dt)1/2

|f(y)| dµλ(y)

+
2x�

x/2

(∞�
0

t

∣∣∣∣ ∂∂tW λ
t (x, y)− (xy)−λ

∂

∂t
Wt(x, y)

∣∣∣∣2 dt)1/2

|f(y)| dµλ(y)

+
(∞�

0

t

∣∣∣∣ 2x�

x/2

(xy)−λ
∂

∂t
Wt(x, y)f(y)dµλ(y)

∣∣∣∣2 dt)1/2

.

Then by Lemma 5.1 it follows that, for x > 0,

gλ(f)(x) ≤ Cλ
(
H2λ

0 |f |(x) +H0
∞|f |(x) +N|f |(x) + gλ,loc(f)(x)

)
,

where N denotes the operator

N f(x) =
2x�

x/2

f(y)
y

dy, x > 0.

Note that N is bounded on Lp(R+, x
δdx) for each 1 ≤ p ≤ ∞ and each δ ∈ R

(this can be easily verified by means of Jensen’s inequality and Fubini’s theo-
rem, as in the case of the operator N emerging in the proof of Theorem 2.3).
Furthermore, by Lemma 5.3, gλ,loc is bounded on Lp(R+, x

δdx), 1 < p <∞,
and from L1(R+, x

δdx) into L1,∞(R+, x
δdx), for each δ ∈ R.

Then, as in the proof of Theorem 2.3, by means of Lemmas 2.6 and
2.7 we conclude that gλ is bounded on Lp(R+, x

δdx) when 1 < p < ∞ and
−1 < δ < (2λ+1)p−1, it is bounded from L1(R+, x

δdx) into L1,∞(R+, x
δdx)

when −1 < δ ≤ 2λ, and finally it is of restricted weak type (p, p) with respect
to (R+, x

δdx) when 1 ≤ p < ∞ and −1 < δ ≤ (2λ + 1)p − 1. These facts
justify the sufficiency parts in Theorem 2.5.

We now prove the necessity parts. It suffices to show the following state-
ments (we assume that λ > −1/2, 1 ≤ p < ∞ and the underlying space is
(R+, x

δdx)).
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(A) If gλ is of restricted weak type (p, p) then −1 < δ ≤ (2λ+ 1)p− 1.
(B) gλ is not of weak type (p, p) when p > 1 and δ = (2λ+ 1)p− 1.
(C) gλ is not of strong type (1, 1) if −1 < δ ≤ 2λ.

Let f = χ(a/2,a), where a is the constant from Lemma 5.2. Then, accord-
ing to that lemma,

gλ(f)(x) ≥
(∞�

1

t

∣∣∣∣ a�

a/2

∂

∂t
W λ
t (x, y) dµλ(y)

∣∣∣∣2 dt)1/2

≥ cλ
(∞�

1

1
t2λ+2

∣∣∣ a�

a/2

y2λ dy
∣∣∣2 dt)1/2

= cλ, 0 < x < a.

Suppose that gλ can be extended from L2(R+, dµλ) to a restricted weak type
(p, p) operator on (R+, x

δdx). For sufficiently small γ > 0 we then have
a�

0

xδ dx ≤ Cp,λγ−p‖f‖pLp(R+,xδdx)
≤ Cp,λγ−p,

which implies δ > −1.
On the other hand, using again Lemma 5.2, we get

gλ(f)(x) ≥ cλ
( ∞�

x2/a

1
t2λ+2

∣∣∣ 1�
0

f(y) dµλ(y)
∣∣∣2 dt)1/2

(5.4)

≥ cλx−2λ−1
1�

0

f(y) dµλ(y), x > 1,

for any nonnegative measurable function f on R+. Thus taking f = χ(1/2,1)

we have gλ(f)(x) ≥ cλx
−2λ−1, provided that x > 1. Consequently, if gλ can

be extended from L2(R+, dµλ) to a restricted weak type (p, p) operator on
(R+, x

δdx), then

γ−1/(2λ+1)�

1

xδ dx ≤ Cp,λγ−p‖f‖pLp(R+,xδdx)
≤ Cp,λγ−p

for γ > 0 small enough. This implies δ ≤ (2λ+ 1)p− 1 and (A) is justified.
In order to show (B) we use the estimate (5.4) and proceed as in the

proof of the corresponding result in Theorem 2.1.
Considering (C), we argue as in the proofs of the parallel properties

in Theorems 2.1 and 2.3. We shall first see that gλ,loc is not bounded on
L1(R+, x

δdx). Let 0 < ε < 1/2 and assume that 1 < y < 1+ε, 1+2ε < x < 2
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and t ≥ 2(x− 1)2. Then we have

∂

∂t
Wt(x, y) =

1
2
√
π t3/2

(
−1 +

(x− y)2

2t

)
e−(x−y)2/4t ≤ −ct−3/2

for some c > 0, because (x − y)2/2t ≤ 9/16 (see (3.6)). Hence, letting
fε = χ(1,1+ε), it follows that

gλ,loc(fε)(x) =
(∞�

0

t

∣∣∣∣ 2x�

x/2

∂

∂t
Wt(x, y)(xy)−λfε(y) dµλ(y)

∣∣∣∣2 dt)1/2

≥ cλ
( ∞�

2(x−1)2

dt

t2

)1/2( 1+ε�

1

dy
)

≥ cλ
ε

x− 1
, x ∈ (1 + 2ε, 2).

Consequently,
∞�

0

gλ,loc(fε)(x)xδ dx ≥
2�

1+2ε

gλ,loc(fε)(x)xδ dx ≥ cλε
2�

1+2ε

xδ dx

x− 1

≥ cλ,δε log
1
2ε
.

Now, if gλ,loc were bounded on L1(R+, x
δdx) we would have

(5.5) cλ,δε log
1
2ε
≤
∞�

0

gλ,loc(fε)(x)xδ dx ≤ C
∞�

0

fε(x)xδ dx ≤ Cδε,

which obviously cannot hold as ε → 0+. Thus gλ,loc is not bounded on
L1(R+, x

δdx). On the other hand, by Lemma 5.1 and Minkowski’s integral
inequality we see that, for x > 0,

gλ,loc(fε)(x)

≤
(∞�

0

t

∣∣∣∣ 2x�

x/2

(
∂

∂t
((xy)−λWt(x, y))−

∂

∂t
W λ
t (x, y)

)
fε(y) dµλ(y)

∣∣∣∣2 dt)1/2

+
(∞�

0

t

∣∣∣∣ 2x�

x/2

∂

∂t
W λ
t (x, y)fε(y) dµλ(y)

∣∣∣∣2 dt)1/2

≤ Cλ
{ 2x�

x/2

|fε(y)|
y

dy +
(∞�

0

t

∣∣∣∣ 2x�

x/2

∂

∂t
W λ
t (x, y)fε(y) dµλ(y)

∣∣∣∣2 dt)1/2}
.

This gives

gλ,loc(fε)(x) ≤ Cλ(N|fε|(x) + gλ(fε)(x)), x ∈ (1 + 2ε, 2).
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Hence, taking into account weighted L1-boundedness of the operator N , if
gλ were bounded on L1(R+, x

δdx) then (5.5) would hold, for all 0 < ε < 1/2,
a contradiction. Thus gλ is not bounded on L1(R+, x

δdx) and statement (C)
follows.

The proof of Theorem 2.5 is complete.

Remark 5.4. Similar facts to those from Remark 3.2 are true for the cor-
responding g-function in the ∆̃λ-setting. In particular, the relevant interval
for g̃λ is (−λp− 1, (λ+ 1)p− 1).

6. Operators related to the Poisson integral. Recall that the op-
erators analyzed in the previous sections were defined by means of the heat
kernel W λ

t (x, y). In this section we consider the maximal operator and a
square function related to the Poisson kernel P λt (x, y) associated with ∆λ,
λ > −1/2.

First of all, we shall compute P λt (x, y). By the principle of subordination,

(6.1) P λt (x, y) =
∞�

0

W λ
t2/4u(x, y)

e−u du√
πu

.

Then an application of the integral formula (4.2) leads to

P λt (x, y)

= C(λ)
t

(x2 + y2 + t2)λ+1 2F1

(
λ+ 1

2
,
λ+ 2

2
;
2λ+ 1

2
;
(

2xy
x2 + y2 + t2

)2)
,

with C(λ) = 2π−1/2Γ (λ+ 1)/Γ (λ+ 1/2). We now transform the above ex-
pression in order to see the exact behavior of the Poisson kernel. Using the
formula (cf. [12, (9.5.3)])

2F1(α, β; γ; z) = (1− z)γ−α−β 2F1(γ − α, γ − β; γ; z),

valid for z < 1, one gets

P λt (x, y) = C(λ)
t(x2 + y2 + t2)1−λ

[(x+ y)2 + t2][(x− y)2 + t2]

× 2F1

(
λ

2
,
λ− 1

2
;
2λ+ 1

2
;
(

2xy
x2 + y2 + t2

)2)
.

We observe that the values of the last 2F1 function are separated from 0
and ∞; this is because the function z 7→ 2F1(λ/2, (λ − 1)/2;λ + 1/2; z) is
continuous on [0, 1), has value 1 at z = 0 (see [12, (9.1.1)]), its limit as
z → 1− exists and is positive (cf. [12, Section 9.3]) and, finally, there are no
zeroes in (0, 1) since the Poisson kernel is strictly positive (this is of course
a consequence of the same property for the heat kernel). Thus we obtain the
following.
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Proposition 6.1. Let λ > −1/2. There exists a constant Cλ such that,
for all t, x, y > 0,

C−1
λ t

(x2 + y2 + t2)λ[(x− y)2 + t2]
≤ P λt (x, y) ≤ Cλt

(x2 + y2 + t2)λ[(x− y)2 + t2]
.

It should not be surprising that in the case λ = 0 the Poisson kernel has a
particularly simple form. Notice that the first parameter in the 2F1 express-
ing P 0

t (x, y) is zero, consequently the hypergeometric function is identically
equal to 1 and we get

P 0
t (x, y) =

1
π

(
t

(x− y)2 + t2
+

t

(x+ y)2 + t2

)
.

This shows that P 0
t (x, y) = Pt(x, y) +Pt(x,−y), with Pt being the classical

Poisson kernel. Clearly, the same identity could be deduced immediately
from the analogous, already discussed in Section 4, connection between W 0

t

and Wt.
Apart from the maximal operator P λ∗ we consider the Littlewood–Paley

type square function

ðλ(f)(x) =
(∞�

0

t

∣∣∣∣ ∂∂tP λt f(x)
∣∣∣∣2 dt)1/2

.

It turns out that various boundedness results for the two operators can be
deduced, in a straightforward manner, by means of Theorems 2.1 and 2.5.
A key fact here is that P λ∗ f and ðλ(f) can be controlled pointwise by W λ

∗ f
and gλ(f), respectively.

Proposition 6.2. Let λ > −1/2. Then, for sufficiently regular func-
tions f ,

P λ∗ f(x) ≤W λ
∗ f(x), ðλ(f)(x) ≤

√
2 gλ(f)(x), x > 0.

Proof. By subordination and Fubini’s theorem,

P λ∗ f(x) = sup
t>0

∣∣∣∣∞�
0

W λ
t2/4uf(x)

e−u du√
πu

∣∣∣∣
≤
∞�

0

sup
t>0
|W λ

t2/4uf(x)| e
−u du√
πu

= W λ
∗ f(x).

Next, again by subordination,

ðλ(f)(x) =
(∞�

0

t

∣∣∣∣ ∂∂t
∞�

0

W λ
t2/4uf(x)

e−u du√
πu

∣∣∣∣2 dt)1/2

=
∥∥∥∥∞�

0

(∂tW λ)t2/4uf(x)
t

2u
e−u du√
πu

∥∥∥∥
L2(tdt)

,
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where (∂tW λ)t2/4uf(x) is the derivative in s of W λ
s f(x), taken at the point

s = t2/4u. Then applying Minkowski’s integral inequality and changing the
variable we obtain

ðλ(f)(x) ≤
∞�

0

‖t(∂tW λ)t2/4uf(x)‖L2(tdt)
e−u du

2u
√
πu

=
√

2
∞�

0

e−u du√
πu

(∞�
0

s

∣∣∣∣ ∂∂sW λ
s f(x)

∣∣∣∣2ds)1/2

=
√

2 gλ(f)(x).

The proof is complete.

Thus, by Proposition 6.2 and Theorems 2.1 and 2.5, we obtain strong
type, weak type and restricted weak type mapping properties of the Poisson
integral based operators. However, since the subordination principle means
a kind of averaging, it is far from obvious whether these results are sharp
in respect of admissible powers δ. In the case of P λ∗ the precise behavior of
the corresponding kernel is known (Proposition 6.1) and is relatively simple.
Hence we can easily obtain the following estimates, similar to those from
Section 3 and now involving the Poisson kernel.

Proposition 6.3. Let λ > −1/2. There exists cλ > 0 such that

P λt (x, y) ≥ cλ
t

t2 + (x− y)2
, t ≤ 1/2, x, y ∈ (1, 2),

and such that, for every nonnegative measurable function f on (0,∞), we
have

P λ∗ f(x) ≥ cλ
∞�

0

f(y)
(1 + y2)λ+1

dµλ(y), x ∈ (0, 1),

and

P λ∗ f(x) ≥ cλx−2λ−1
x�

0

f(y) dµλ(y), x ∈ (0,∞).

Now, using the arguments from the proofs of Theorems 2.1 and 2.5 to jus-
tify necessity parts, we obtain sharp results for the Poisson integral maximal
operator stated in Theorem 2.2.

Proving similar results for ðλ requires a deeper and more subtle analysis,
which is beyond the scope of this paper. We only mention that in order
to obtain suitable kernel estimates one has to deal with terms involving
hypergeometric functions with different parameters and examine essential
cancellations occurring between those terms (for that purpose it seems to be
more convenient to use, instead of 2F1, the integral representation (6.1) of
P λt (x, y) in terms of W λ

t (x, y)).
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