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Operators whose adjoints are quasi p-nuclear
by

J. M. DELGADO, C. PINEIRO and E. SERRANO (Huelva)

Abstract. For p > 1, aset K in a Banach space X is said to be relatively p-compact
if there exists a p-summable sequence (zn) in X with K C {}°, an®n : (an) € By, }. We
prove that an operator T: X — Y is p-compact (i.e., T maps bounded sets to relatively
p-compact sets) iff T is quasi p-nuclear. Further, we characterize p-summing operators as
those operators whose adjoints map relatively compact sets to relatively p-compact sets.

1. Introduction. In [4], Grothendieck characterized the compact sub-
sets of a Banach space as those sets lying in the closed convex hull of a null
sequence. This result aroused interest in the study of sets sitting inside the
convex hull of certain classes of null sequences.

In [I3], Sinha and Karn introduced the notion of p-compact set (p > 1).
A set K of a Banach space X is relatively p-compact if it is contained in the
p-convex hull of a p-summable sequence (z,,) in X, i.e. K C {)_, anzn: ()
€ ng,}. This notion opens a new approach to the p-approximation prop-
erty. The authors of [13] investigate when the identity map on X can
be approximated by finite rank operators on p-compact subsets of X and
they connect their results with the p-approximation properties defined by
Saphar [12] and Reinov [10] (which were conceived via the tensor prod-
uct route). To this end, there is a previous analysis of the ideal X, of
p-compact operators (the operators mapping bounded sets to relatively p-
compact sets) and it is proved that the adjoint of a p-compact operator
admits a factorization through a subspace of /,. Using this factorization,
a complete norm r, is defined on the ideal X,. It is shown that X, is
contained in the ideal Hg of operators with p-summing adjoint [I3, Proposi-
tion 5.3] and that X,(X,Y") contains the space Ng(X, Y') of operators with
p-nuclear adjoint whenever Y is reflexive (see the remark after [I3, Propo-
sition 5.3]).
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The aim of this paper is to deepen the study of X, and its possible ap-
plications. In Section 3, we show the close relationship between p-compact
operators and quasi p-nuclear operators. Quasi p-nuclear operators, intro-
duced by Persson and Pietsch in [6], are an important tool to obtain re-
sults and counterexamples related to the approximation property of order
p (see [8]). We prove that an operator is quasi p-nuclear iff its adjoint is
p-compact (Proposition ; in fact, the dual result is also true, which im-
proves Proposition 5.3 in [I3]. Another important result of that section is
the characterization of p-summing operators as those operators whose ad-
joints map relatively compact sets to relatively p-compact sets. In the last
section, we deal with the Banach ideal V, of p-completely continuous op-
erators (operators mapping relatively weakly p-compact sets to relatively
p-compact sets) and we show that, though I, C 'V, [13, Proposition 5.4],
the inclusion is strict in general for every p > 1.

2. Preliminaries and notations. Throughout this paper, X and Y
will be Banach spaces. As usual, we denote the closed unit ball of X by By,
the dual of X by X*, and the space of all bounded (linear) operators from X
into Y by L(X,Y). The subspace of L(X,Y) consisting of all compact (re-
spectively, weakly compact) operators from X into Y is denoted by K(X,Y)
(respectively, W(X,Y)).

Given areal number p € [1,00) and an arbitrary set I, £,(I) (respectively,
{5 (I)) stands for the Banach space of all scalar functions ¢ defined on I
satisfying 3 . ;&P < oo (respectively, sup;c;|§| < 0o) endowed with its
natural norm. As usual, we write £, instead of ¢,(N).

Let £;7(X) be the space of all weakly p-summable sequences (z,,) in X.
It is a Banach space with the norm

el = s (Sl atyp) " = R patt |

r*eBx* EBZ o

The subspace of £;/(X) consisting of the (strongly) p-summable sequences
is denoted by ¢,(X), which is also a Banach space endowed with the norm

Il = (S teal) "

We write {o(X) for the Banach space of all bounded sequences (z,,) in X
with the norm

[(@n)[loo = sup [lza]-
n

We denote by cp(X) the space of all norm null sequences in X, which is a
closed subspace of ¢ (X) with the above norm.



Operators whose adjoints are quasi p-nuclear 293

In addition to the classical Banach ideals [L, ||-]|], [X,||-]|] and [W,]-|],
we deal with the ideals [IT,, )] of all p-summing operators and [Ny, v, of
all p-nuclear operators. We also consider the injective hull of [N, 13|, which
has been treated in the literature under the name of the Banach ideal of
quasi p-nuclear operators [6]. We denote this Banach ideal by QN,. So, an
operator T: X — Y is quasi p-nuclear iff j, o T € Np(X, loo(By~)), where
Jy is the natural isometric embedding from Y into /o (By+). It is well known
that T € QN,(X,Y) iff there exists a sequence (z},) € £,(X*) such that

) 7o) < (Sl ap)

for all x € X. The quasi p-nuclear norm is

V}?(T) = inf{||(z})]lp: holds for all z € X'}

for all T € QN,(X,Y). If A is a Banach ideal, then A? denotes its dual
ideal, that is, AY(X,Y) = {T € L(X,Y): T* € A(Y*, X*)}.

If p>1andp =p(p—1)"", the map &,: (z,,) € L¥(X) — Py(x,) €
Ly, X), where @p(z,)(an) = ), Qnp, is an isometric isomorphism which
allows us to identify the spaces £;/(X) and L(fy, X). For p = 1, {{(X) is
isometrically isomorphic to L(cp, X) under the corresponding map @;.

The following notions were introduced by Sinha and Karn in [13] trying
to extend the characterization of compact sets in Banach spaces as those
sets lying inside of the closed convex hull of a norm null sequence [4]. If
p € [1,00), the p-convex hull of a sequence () € £;/(X) is

p-co (xy,) = §Pp(9:n)(ng,) = {Zanxn: (an) € ng,}

(co instead of £y if p = 1). It is clear that the p-convex hull of a sequence is
an absolutely convex set; if p > 1, it is also weakly compact so, in particular,
norm closed.

A set K C X is relatively p-compact if there exists a sequence (x,) €
¢,(X) such that K C p-co(xy). Since p-co (zy) is a relatively compact set
when (z,,) € £,(X), relatively p-compact sets in X are relatively compact.
If compact sets are viewed as co-compact sets, then it is easy to show that
p-compact sets are g-compact for 1 < p < ¢ < oco. Notice that the convex
hull of a relatively p-compact set is relatively p-compact too.

A set K C X is relatively weakly p-compact if there exists a sequence
(zn) € £;(X) such that K C p-co (x,). If p > 1, relatively weakly p-compact
sets in X are relatively weakly compact. However, p = 1 is a pathological
case: B, is weakly 1-compact since B, = p-co (ey), where (e,) € £V (cp) is
the unit vector basis in cg. Again, it is a standard argument to prove that
weakly p-compact sets are weakly g-compact for 1 < p < g < o0.
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Finally, we recall that an operator T' € L(X,Y) is said to be p-compact
(respectively, weakly p-compact) if T(Bx) is relatively p-compact (respec-
tively, weakly p-compact) in Y. The set of p-compact (respectively, weakly
p-compact) operators from X into Y is denoted by K, (X,Y") (respectively,
W,(X,Y)).

3. Main results. The next propositions are the keys to connect p-
compactness and quasi p-nuclearity.

PROPOSITION 3.1. Let p € [1,00), T € L(X,Y) and (yn) € £;(Y). The
following statements are equivalent:

@) 1Tyl < (ol {yn: y*)P)VP for all y* € Y*.
(b) T(Bx) C p-co (yn)-

Proof. (a)=(b). By contradiction, assume that there exists xy € Bx so
that Txg & p-co (yn). As p-co (yy) is absolutely convex, we can separate Tz
and p-co (y,) strictly by a closed hyperplane; that is to say, there exist a > 0
and y* € Y™ such that [(Tzo, y*)| > a and |(y, y*)| < « for all y € p-co (yy).
Then

a < [(Tzo,y")| < Ty

< (Sl ) "= s (S gy <

(CYn)GB[p/

a contradiction.

(b)=(a). Given € > 0 and y* € By, choose z € Bx such that | T*y*| <
[(z, T*y")| + /2. Now, take (am) € By, so that [Tz — 3, anyn| < £/2.
Then

IT*y" || < (2, T"y")| +¢/2

< ]<Tx—2anymy*>‘+’<Zanymy*>’+€/2
< Z|a”|‘ Yy ) +e < ll(am) - (Z‘ (myy ) +e
< (Z!<yn,y*>|”) te

and letting € — 0 we obtain the conclusion. =
Arguing in a similar way, we obtain the dual version of the above result:

PROPOSITION 3.2. Letp € [1,00), T € L(X,Y) and (z7,) € £, (X*). The
following statements are equivalent:
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(a) | Tz]| < (32, [z, a5)P)!/P for allz € X.

(b) T*(By~) € p-co (7).

REMARK 3.3. In Propositionwe can use p-co (yy ) instead of p-co (yn)
in case p > 1. On the other hand, if p = 1 and (y,) € £1(Y), we have
{3, anyn : (o) € By} = {32, anyn : (o) € By} and this set is 1-
compact too. In fact, for §, — oo such that ) [0,]|lyn|| < oo, we have
the obvious inclusion

{Zanyn Do) € Béoo} C {Zan(ényn) Do) € BCO}.

COROLLARY 3.4. Let T € L(X,Y). Then the following properties hold:

(I) If T € Kp(X,Y), then T* € QN (YV*, X*).
(II) T € ON,(X,Y) iff T* € K,p(YV*, X*).

In other words, X, C QNg and QN, = ng.

The converse of Corollary I) cannot be deduced directly from Propo-
sition [3.1} Indeed, if T* € QN,,(Y*, X*), then there exists a sequence (y*) €
£,(Y*) such that ||T*y*| < (3, [{ws, y*)P)V/P for all y* € Y*, and con-
sequently T'(Bx) C p-co(y;*). In other words, T' € K, (X,Y™*) (although
T(X) C Y). In addition, we will need to deal with the ideal of so-called
NP-operators. We recall that T € NP(X,Y) if there exist sequences (z)) €

n

£(X*) and (yn) € £p(Y) such that T admits the representation T =

Y on T @ yn (note that NP(X,Y) C K,(X,Y)). The norm in this ideal will
be denoted by P and is defined by

vP(T) = inf || (yn)llp - [1(27)[],
where the infimum is taken over all representations of T as above (see [10]).
We will make use of the following theorem:

THEOREM ([10, Theorem 1]). Let p € [1,00], T € L(X,Y) and suppose
that either X* or Y*** has the approximation property. If T € NP(X,Y™*),
then T € NP(X,Y'). In other words, under these conditions, the p-nuclearity
of T* implies that T € NP(X,Y).

Let K be a bounded subset of X. We define the following bounded
operators:

ug: 1(K) = X, (§)zer — Z at,
reK
jK: X*_>€OO(K)7 " (<.Z‘,.%'*>>$€K
Notice that u; =j, . We write u, and j, instead of up, and jp,, respectively.
PRrROPOSITION 3.5. Let K be a bounded subset of X. The following state-
ments are equivalent:
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(a) K is relatively p-compact.
(b) u, is p-compact.
(¢) jx is p-nuclear.

Proof. (a)«(b). This follows from the inclusions K C w, (B, (x)) C
co(K).

(b)e(c). Let u, be p-compact. By Corollary Jx is quasi p-nuclear,
and since {« (K) is an injective space, jx is p-nuclear [6, Theorem 38]. For
the converse, suppose j, is p-nuclear. According to [I0, Theorem 1], the
operator u, belongs to NP(¢1(K), X) and, a fortiori, it is p-compact. =

COROLLARY 3.6. Le K be a subset of X. If K 1is relatively p-compact
in X**, then K is p-compact in X. In particular, an operator T € L(X,Y)
s p-compact iff T** is p-compact.

Proof. By Proposition 3.5 Ji: 2% € X** i ((z,2™*))zek € loo(K)
is p-nuclear, hence so is j, = Jr|x+: 2" € X* — ((,2"))zer € loo(K).
Again a call to Proposition tells us that K is p-compact in X. u

REMARK 3.7. Let A be a bounded subset of X*. As in the proof of
Proposition A is relatively p-compact iff the operator j,: z € X —
({(x,2*))prca € loo(A) is p-nuclear.

In Corollary it is shown that X, C QNg. Now if T' € L(X,Y) is such
that 7% € QN,(Y™, X*) then T** € X,(X**,Y*) (Corollary [3.4). From
the above result, it follows that 7' € K,(X,Y’). This leads to the following
proposition which improves Proposition 5.3 in [13].

PROPOSITION 3.8. K, = QN

In a recent paper [I4], Sinha and Karn have dealt with the Banach
operator ideals .“Kg and fKZd. The above results simplify the understanding

of that paper, since IKZ = QN,, and Kgd = XK.

COROLLARY 3.9. An operator T € L(X,Y) is such that T* € AN, (Y™*, X*)
if and only if there exists (yn) € £,(Y) such that | T*y*|| < (32, [{yn, y*)[P)"/P
for ally* e Y*.

As we have mentioned in the introduction, p-compact operators have
been characterized as those operators whose adjoints factor through a sub-
space of ¢, [13, Theorem 3.1]. This factorization yields a complete norm
defined on X, (X,Y’). Having in mind the preceding results, we have ob-
tained the same factorization for the adjoints of p-compact operators in a
much simpler way. In fact, Theorem 3.1 in [I3] can be stated in the following
manner:

PROPOSITION 3.10. Let X andY be Banach spaces and p € [1,00). The
following statements are equivalent:
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(a) T € Kp(X,Y).
(b) There ezists a closed subspace H of £, and operators R€ QN,(Y™*, H)
and S € L(H, X*) such that T* = S o R.

Proof. (a)e(b). If T € K,(X,Y), there exists a sequence (y,) € £,(Y)
such that | T*y*|| < (32, |(yn, y*)[P)}/? for all y* € Y* (Proposition. Put

H={0ymy)) 7 €Y7

and define the operators R: y* € Y* — ((yn,y*)) € H and S: ((yn,y*)) €
H — T*y* € Y*. It is easy to check that H, R and S satisfy the required
conditions. The converse is trivial via Proposition .

IfT e X,(X,Y), we define
kp(T) = nf |[(ya)lp

where the infimum is taken over all sequences (y,) € £,(Y") satisfying

T(Bx) C {Zanyn Do) € ng,}.

The inequality k,(T") > 1/,52 (T™) (respectively, the equality k,(T™) = 1/152 (T))
is a direct consequence of Proposition (respectively, Proposition .
Now, [K,, kp] becomes a Banach ideal and the proof is similar to that in [6]
p. 31] showing that [QNP,Z/;?] is a Banach ideal (both proofs can be con-
nected via Proposition [3.1)). According to [7, Theorem 6.1.8], the norm k, is
equivalent to the norm k), defined by Sinha and Karn in [I3]. Moreover, at
the end of this section we prove that these norms coincide (Proposition.

PROPOSITION 3.11. [K,, kp| is the surjective hull of (NP, vP] for all p €
[1,00).

Proof. T € £(X,Y) and Tou, (Bx) [(1(Bx) = X 5 Y] is relatively
p-compact, then so is T(Bx). In other words, X, is surjective, and since
NP C K, we have (NP)* C K.

On the other hand, if T € K,(X,Y), then T* € QN,(Y™*, X*) (Corol-
lary 3.4)). Thus, j, o T* € QN,(Y*, lo(Bx)) = Np(Y*,£o(Bx)), and since
Jx oT* = (T ou,)* and - (Bx) has the approximation property, it follows
that T ou,, € NP({1(Bx),Y) ([10, Theorem 1]). So, we have obtained the
equality (NP)* = K.

Now, a standard argument shows that

(NPl (1), Y),vP) = (Kp(41(),Y), kp) (isometrically)

for all nonempty sets I. In particular, this proves that k, = (v7)°. =
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Now, we can state our main result. We will need the following theorem:

THEOREM ([11, Proposition 6.14]). Let 1 < p < oo and let X and Y be
Banach spaces. An operator T: X — Y is p-summing if and only if there
exists a positive constant C' such that for every finite-dimensional subspace E
of X and every finite-codimensional subspace F' of Y, the finite-dimensional
operator

gpoToi,: E—-X—->Y —=>Y/F

satisfies mp(q, o T o i,) < C. Furthermore, we have m,(T) = inf C, where
the infimum is taken over all such pairs E, F.

THEOREM 3.12. Let T € L(X,Y) and p € [1,00). The following state-
ments are equivalent:

(a) T is p-summing.

(b) T* maps relatively compact subsets of Y* to relatively p-compact
subsets of X*.

Proof. (a)=(b). Let (y}) be a null sequence in Y* and define S: y €
Y — ((y,y})) € co. Obviously, S is co-nuclear; therefore, S o T is p-nuclear
and

vp(S 0 T) < Voo S)mp(T) < mp(T) sup |y

[16, Theorem 9.13]. Then (S oT)*: e, € {1 — T*y: € X* belongs to
NP(¢1, X*) and vP((S o T)*) < vp(S oT). As mentioned before, K, (41, X*)
and NP ({1, X*) are isometric, so

Fp((S o T)") < vp(S o T) < mp(T) sup [l

This proves that the linear map

U: co(Y*) = Kp(lr, X¥), (yp) = Y en 0Ty,
n

is well defined and ||U|| < 7,(7T") (this inequality will be used in the next
proposition). Notice that, in particular, we have proved that the set {T™y :
n € N} is relatively p-compact.

(b)=(a). To prove (a) we will use [II, Proposition 6.14]. Let E be a
finite-dimensional subspace of X and F' a subspace of Y whose codimension
is finite. Given the sequence

EEZx Ly 5By
we obtain

FrEy T xx B xo gt
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For simplicity, we identify the operator Q: e, € {1 — y; € Y* with the
sequence (y;). Now, consider the map

¢ K(6,Y™) = Ky, X7),  (yn) = (T7yp)-
The map ¢ is linear and has closed graph, so it is continuous. Thus, there
exists a positive constant C' such that k,(T*y)) < C for every relatively
compact sequence (y) in By=.

Choose (y;;) dense in Bp.i. Since k,(T™*y;;) < C, there exists a sequence
() in £,(X*) such that [ (3)]l, < C and {T*y;} C p-co (w5). By density.
we also have T*(Bp.) C p-co (z},). This yields k,(T* o q}) < |[(z;)|p, < C
and therefore kj(i¥, o T* o ¢} ) < C. Now, we can conclude that k(i oT™
oqt) = v (g, 0T oi,) < C (see the comment after the definition of ky, on
page . Finally, recall that m, < 1/152 . m

PROPOSITION 3.13. Let X, Y and Z be Banach spaces and p > 1. If the
operator T: X — Y is p-summing and S: Z — Y™ is compact, then T o S
is p-compact and ky(T* o S) < m,(T)||S]].

Proof. Given S € X(Z,Y*) and € > 0 there exists a null sequence (y;;)
such that S(Bz) C co (y;;) and

sup [[y, || < sup [[Sz]| +e=[|S] +e.
n [EJ[S

Now, we define the operator A: (a,,) € €1 — >, o, T*y); € X*. In the above
theorem we have proved that
kp(A) < mp(T) sup [y,
n

Thus, given § > 0, there exists (z,) in £,(X*) such that co (T%y;,)

n g
p-co(x}) and [[(x})|l, < m(T)||(yp)|loo + 6. Consequently, T*(S(Bz)) C
co (T*y) C p-co(x}) and these inclusions yield

kp(T™ 0.8) < |[(@3)llp < mp(T) [ (y)lloo + 6.
Letting 6 — 0, we obtain k(70 S) < 7,(T)||(y;)||oo- Finally, since ||(y};) /oo
< ||S]| + € we deduce
kp(T" 0 §) < mp(T)(||S]] + €)-
The proof concludes by letting € — 0. =
The dual version of the main theorem is also valid.

THEOREM 3.14. Let T € L(X,Y) and p € [1,00). The following state-
ments are equivalent:
(a) T is p-summing.
(b) T maps relatively compact subsets of X to relatively p-compact sub-
sets of Y.
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Proof. (a)=(b). This is an easy consequence of Theorem and Corol-
lary

(b)=(a). By Proposition we can consider the linear map
Vieg(X) = Np(Y* lso), () HZT%@%
n

((ey,) is the canonical basis of ¢p). The operator V' is continuous because its
graph is closed. Let J be the restriction of V* to Il ({s,Y™). A straight-
forward argument shows that J: ITy({oo, Y™) — £1(X™) is the continuous
linear map defined by J(A) = (T% o A(en)). As my(A) < vy (A) for all
A e Npy(ls,Y™), it follows that the map
Jo: Ny (log, Y*) = 01(X™), A (T 0 Alen)),
is continuous. Now we consider J§ : £oo (X ™) — I, (Y™, £55) and ¢ = Jg | o (x++)-
If (x77) € co(X™), y* € Y* and p € 05, then
(Jo (z7) (") ) = Jo (@) (@ y*) = ((@7,7), Jo(k @ y"))
= (@), (T @y (ea)))) = Y (&3 T ({p, en)y"))

n

Z T** **’ ,U’a en) — <Z<T**$;*,y*>€n,,u>

n
This proves that ¢ maps co(X**) into I1,(Y™*,ls) and ¢(z3*) = >, T x}*
® ep. Finally, we will show that qb(cO(X**)) C Np(Y*, ls). First, for each
n € N, we define

(2) P L5 (X™7) — (Y, 05, Jk=1 ZT**% & €.

By the ideal properties, we have ||¢,| < [|¢| for all n € N. In view of [16]
Corollary 9.5], mp(u) = vp(u) for all w € L(Y™*,£%). Thus, we can write (|2

in the form
(3) Gt L2 (X™) = Np(Y*, ), Ve — ZT**xk ® e

Let us prove that (¢(z7*,...,2:5,0,...)), isa Cauchy sequence in Nj,(Y™*, £)

for all (z}*) € co(X™*). According to and the ideal properties of N, we
have

Vp(¢($>{*7"‘ :1*70 ) ¢($T*7,$Zj,07))
= vp(@(- -, 0,2 g5 27, 0,00)) <@l - sup [l
m<k<n
for n > m. Thus, (¢(z7%,...,2}",0,...)), converges to an operator S €

Np (Y™, ls) and this operator is necessarily equal to ¢(z,*) =>", T**z}* Qe,,.
In particular, this implies that 7™* maps relatively compact sets in X*™* to
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relatively p-compact sets in Y**. Now, a call to Theorem tells us that
T* is p-summing. =

We finish this section by showing that our definition of k, coincides with
that in [I3]. An operator T € L(X,Y’) belongs to K, (X,Y) if and only if
there exists § = (yn) € £,(Y) such that T" = Sy o ¢7, where ¢} : y* €
Y* = ((Yn,y") € H := {({yn,y")) :y* € Y*} and S5 : ((yn,y")) € H —
T*y* € X* [13, Theorem 3.2]. Using this decomposition, we can endow
X,(X,Y) with the norm &, defined by

kp(T) = mf{ 1Syl - 19l : 7 = (yn) € 6(Y), T = Sy 0 ¢y}
PropoSITION 3.15. Let X and Y be Banach spaces and p > 1. Then
kp(T) = kp(T) for all T € K,(X,Y).

Proof. Given T € X,(X,Y) and § = (yn) € £,(Y), we know that
1Ty < ||({yn,y*))||p for all y* € Y* if and only if T(Bx) C p-co(yn)
(Proposition [3.1]). Since ||.Sy({yn,y*))Il = [IT*y*||, it follows that [|Sy|| < 1
and k,(T) < kp(T).

Now, given 0 < € < 1, consider § = (y,) € £,(Y) such that

kip(T) + > [|Sgl - |19]lp-

|l =

Moreover, g can be chosen so that [|Sy|| > 1 — . Otherwise, ||T™y
1S5 ((yn )N < [[(((1 = €)yn, y™)|lp for all y* € Y* and this means that

T(Bx) C p-co((1 —¢€)yy,) (Proposition [3.1)). But then
1Sa—e)gll = sup{[[T7y"[ : 1({(1 = &)y, y™Nlp < 1}
1 1
=sup < |[T" z* (1—¢e)yp, —— 2~ <1
1—-¢ 1—-¢ »
e
1—¢’

which implies #,(T) +¢& > [[S—oygll - [|[(1 = €)7llp- By induction, we have
T(Bx) C p-co((1 —e)™yy) for all m € N, which is impossible if 7" # 0. So
Fp(T) + &> (1 =e)lgllp > (1 = )kp(T),

and since € can be chosen arbitrarily, £,(T") > k,(T). =

4. The operator ideal V,. We will denote by V,(X,Y) the vector
space of all operators from X into Y that map relatively weakly p-compact
subsets of X to relatively p-compacts subsets of Y. In [13], the authors
proved that II,(X,Y) C V,(X,Y). First of all, we give sufficient condi-
tions for which the converse inclusion holds for p = 1,2. We will denote by
£, (X) the subspace of £;’(X) consisting of all unconditionally p-summable
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sequences in X, that is, those sequences (z;,) satisfying

lim(sup [{(@m, x* ><oo.
n=00 \ ge <1 Z "

PropOSITION 4.1. IfY is an Ll—space, then I (X,Y) = Vi(X,Y) for
every Banach space X.

Proof. 1If (zy,) € ¢{(X) and T € V1(X,Y), then the set
{ ZanT(ajn) Cag) € BCO}

is relatively 1-compact in Y. So, the operator A : e, € ¢y — T(x,) € Y is
1-compact. By Corollary [3.4] its adjoint A* : Y* — /; is quasi 1-nuclear, and
therefore it is 1-summing. As Y* is an L.-space, A* is integral. Actually, A*
is nuclear because ¢; is a dual space and has the Radon—Nikodym property.
According to [3, Theorem VIIL7], A is nuclear. This yields ) ||7(zy)]|
<00. m

PROPOSITION 4.2. If Y is a Banach space isomorphic to a Hilbert space,
then II5(X,Y) = Vo(X,Y) for every Banach space X .

Proof. Let T € Vo(X,Y) and (x,,) € ¢§(X). By hypothesis, the operator
S : 4y — Y defined by S(e,) = T(z,) is 2-compact, and therefore its
adjoint S* : y* € Y* — ((T'(zn),y*)) € £2 is quasi 2-nuclear (Corollary [3.4)).
According to [2, Theorem 4.19], S* has a 2-summing adjoint because Y* is
isomorphic to a Hilbert space. In particular, S is 2-summing and this implies
that Y, || T(z)||* < oo. So, we have proved that T is 2-summing. m

However, in general, I1,(X,Y’) is strictly contained in V,(X,Y) for all
p € [1,00). The following relationships are obvious for all p > 1:

(4) (b, X) C Pp(£p(X)) C Kp(byr, X) = Vp(£y, X).

If p > 1, the first inclusion is strict whenever X is not a subspace of a
quotient of an Ly-space [15, Theorem 3.1]. So, only the case p = 1 needs to
be studied.

Let 1 < p < 2. Let C, be the ideal of all operators mapping weakly
p-summable sequences to unconditionally p-summable sequences. First of
all, we will prove that Hg o€, CV, for every p > 1. So, let T' = Ty o T,
where 17 belongs to C,(X,Y) and T, € Hg(Y, Z). If (z,,) is a weakly p-
summable sequence in X and A = {}_, anay : (an) € By, }, notice that
T1(A) is relatively compact in Y. Then T»(T1(A)) is relatively p-compact
(Theorem [3.12)).

Now we are going to show that the inclusion II, C V, is, in general,
strict for every 1 < p < 2. Denote by I the identity map from /s into cy.
According to [I, Lemma 6] the identity map from ¢ onto ¢ belongs to €, for
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every p < 2. On the other hand, (I20)* is p-summing, so I € Hgo Cp CVp
for all p < 2. Nevertheless, I3 is not p-summing.

Finally, we have obtained the following result about the biadjoint of an
operator T' € Va. Here, J, denotes the Banach ideal of p-integral operators.

ProproSITION 4.3. Let X be a Banach space such that Ix- € Co. If
T € Vyo(X,Y), then T € Vo( X, Y™).

Proof. Given T € Vy(X, Y) consider the linear map
U: (x,) € 4(X ZTxn@@eneQNg(Y 0s).

It is easy to prove that U has closed graph, and therefore it is continuous.
Its adjoint maps J2(f2, Y ™) into J1(fa, X*). Put V' = U*|n,(,,y+). Since
Ni(f2, X™) is isometric to a subspace of J1(f2, X*) it follows easily that V'
maps Na(l2, Y™) into N (42, X*). We also denote by V' the operator

Ze ®@yy € Na(l2,Y Ze ® T*yr € Ni(le, X™).

Taking adJomts again we obtain the operator

(5) (257) € L(X* 0o) 55 S T al @ e € (Y™, ).

n
As every 2-summing operator is 2-integral and the 2-summing norm coin-
cides with the 2-integral norm, can be written in the form

(a5) € L(X* ) 5 S e @ e, € To(Y™, o).
n
Now, as in the proof of (b)=-(a) in Theoren we can prove that V*
maps C4(X**) into No(Y™*, ¢2). This shows that the operator A : y* €
Y* — ((T*z},y*)) € lo is 2-nuclear whenever (x)*) is unconditionally

2-summable in X**, and therefore its adjoint A* : e, € lp — T z}* € Y**
belongs to N2. So, A* is 2-compact and this concludes the proof. m
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