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Weak∗ properties of weighted convolution algebras II

by

Sandy Grabiner (Claremont, CA)

Abstract. We show that if φ is a continuous homomorphism between weighted con-
volution algebras on R+, then its extension to the corresponding measure algebras is
always weak∗ continuous. A key step in the proof is showing that our earlier result that
normalized powers of functions in a convolution algebra on R+ go to zero weak∗ is also
true for most measures in the corresponding measure algebra. For some algebras, we can
determine precisely which measures have normalized powers converging to zero weak∗. We
also include a variety of applications of weak∗ results, mostly to norm results on ideals
and on convergence.

1. Introduction. We study weak∗ properties of weighted convolution
algebras on R+=[0,∞). Our main result, Theorem 1.1, says that every con-
tinuous homomorphism between such algebras is also continuous in the (rel-
ative) weak∗ topologies. A positive Borel function ω on R+ is a weight if
both ω and 1/ω are locally bounded on [0,∞). Then L1(ω) is the Banach
space of (equivalence classes of) locally integrable functions f for which fω
is integrable. We give L1(ω) the inherited norm

‖f‖ = ‖f‖ω =
∞�

0

|f(t)|ω(t) dt.

In a similar way, M(ω) is the space of locally finite complex measures on
[0,∞) which are finite in the norm

‖µ‖ = ‖µ‖ω =
�

R+

ω(t) d|µ|(t).

We identify L1(ω) as a subspace of M(ω) in the usual way.
We are particularly interested in the case where L1(ω) is an algebra

under convolution. Hence, we usually assume that ω is an algebra weight
in the sense that ω is submultiplicative (that is, ω(x + y) ≤ ω(x)ω(y)),
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is everywhere right continuous, and has ω(0) = 1. Requiring ω to be an
algebra weight is just a normalization. Whenever L1(ω) is an algebra, we
can always replace the given weight by an algebra weight without changing
the space L1(ω) or its norm topology [10, Theorem 2.1, p. 591]. We will
usually implicitly assume that the weights we are considering are algebra
weights.

Since an algebra weight is submultiplicative, both M(ω) and L1(ω) are
algebras, and L1(ω) is a closed ideal in M(ω). The other conditions on
an algebra weight guarantee that M(ω) is isometrically isomorphic to the
multiplier algebra of L1(ω) and the dual space of C0(1/ω) [10, Theorem
2.2, p. 592]. Here C0(1/ω) is the Banach space of continuous functions h
on R+ for which h/ω is bounded and vanishes at infinity. We give C0(1/ω)
the inherited norm ‖h‖ = ‖h/w‖∞. We often identify the measure µ in
M(ω) with the multiplier f 7→ µ∗f on L1(ω) and with the linear functional
〈µ, h〉 =

	
R+ h(t) dµ(t) on C0(1/ω). Thus, we can speak of the weak∗ and

strong-operator topologies onM(ω) and on its subspace L1(ω). In particular,
we identify the semigroup of point masses {δt}t≥0 in M(ω) with the strongly
continuous semigroup of right translations on L1(ω).

Much of what we have learned about weighted convolution algebras
on R+ in the last 30 years is proved, in part, by using weak∗ methods,
but the first systematic study of weak∗ results seems to be in [6]. Not only
are weak∗ results usually simpler and more universal than norm results, but
weak∗ results can often be used to prove norm results and nontopological
results.

Suppose that φ : L1(ω1) → L1(ω2) is a continuous nonzero homomor-
phism; then φ has a unique extension to a homomorphism between the
corresponding measure algebras, and this extension has the same norm as
the original map [10, Theorem 3.4, p. 596]. (The extension is constructed by
using the fact that the image under φ of a bounded approximate identity in
L1(ω1) is a weak∗ approximate identity.) Because of the uniqueness, we let
φ designate both the original map and its extension. We can now state our
main result more precisely.

Theorem 1.1. If φ : L1(ω1) → L1(ω2) is a continuous nonzero homo-
morphism, then its extension to the corresponding measure algebras is weak∗

continuous.

Our proof will include verifying the necessary and sufficient condition
for weak∗ continuity in our earlier paper [11, Theorem 4.7, p. 1681].

The main result of our earlier paper [11, Theorem 3.1, p. 1678] is that if
L1(ω1) ∗ f is dense in L1(ω1), then L1(ω2) ∗ φ(f) is weak∗ dense in L1(ω2).
This result is motivated by the standard homomorphism problem first stud-
ied in [9]. A consequence of this result [11, Theorem 3.3 p. 1679] is that
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when φ is weak∗ continuous it is enough to assume that L1(ω1) ∗ f is weak∗

dense. Thus we have the following consequence of Theorem 1.1.

Corollary 1.2. Suppose that φ : L1(ω1) → L1(ω2) is a continuous
nonzero homomorphism. If L1(ω1)∗f is weak∗ dense in L1(ω1), then L1(ω2)∗
φ(f) is weak∗ dense in L1(ω2).

In [11, Section 5] we showed that if f is a nonzero element of L1(ω), then
the sequence of normalized powers fn/‖fn‖ converges to 0 in the weak∗

topology. In Theorem 3.3 below, we show that the same result is true for
“most” measures µ in M(ω). In [11] the result was unrelated to the results
on homomorphisms and was used to show that, for a class of L1(ω), the
sequence fn+1/‖fn‖ converged to 0 in norm [11, Cor. 5.2, p. 1683]. (For a
discussion of the problem of when xn+1/‖xn‖ converges to zero in a Banach
algebra, see [11, Section 5] and the references cited there, particularly [13].)
In the present paper, the normalized power result is needed to prove our
weak∗ continuity result. Actually, it is not precisely the normalized power
result we use, but rather the following variant for semigroups.

Theorem 1.3. Suppose that µt is a weak∗ continuous semigroup in
M(ω). If all µt for t > 0 have no point mass at 0, then

weak∗- lim
t→∞

µt

‖µt‖
= 0.

In Section 2 we prove Theorem 1.1, assuming Theorem 1.3. The main
ingredient in the proof, Lemma 2.1, shows that the semigroup µt = φ(δt) sat-
isfies the hypothesis of Theorem 1.3 above. More generally we show, in The-
orem 2.2, that if λ in M(ω1) has no point mass at 0, then neither does φ(λ).

In Section 3 we prove Theorem 1.3 above and its analogue for normal-
ized powers, both under slightly weaker hypotheses than given above. In
Section 4 we examine necessary conditions for µn/‖µn‖ to converge to 0
weak∗ in M(ω). We are only able to find necessary and sufficient conditions
in some cases. For the finite-interval convolution algebras M [0, a), the suffi-
cient conditions we found are also necessary. At the other extreme, for L1(ω)
which admit nonzero derivations we show that, except for multiples of the
identity δ0, all µ have µn/‖µn‖ converging to zero weak∗.

In Section 5, we give norm topology applications of weak∗ results, mostly
to ideals and convergence. One application, Theorem 5.3, shows that if the
principal ideal L1(ω) ∗ f is weak∗ dense, then all L1(ω) ∗ (e−atf(t)) are
norm dense for Re(a) > 0. Recently Charles Read [14] solved the main
open problem about ideals in radical L1(ω) by constructing an L1(ω) with a
function f with α(f) = inf(support f) = 0 and L1(ω)∗f not norm dense. He
also showed [14, Section 10] that one can arrange for L1(ω) ∗ f to not even
be weak∗ dense. He then conjectured [14, Section 11] that every radical
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L1(ω) with nondense principal ideal generated by some f with α(f) = 0
also has a principal ideal which is not weak∗ dense. Results in the present
paper relating norm dense and weak∗ dense ideals, such as Theorem 5.3 and
Proposition 5.4, might help in studying this conjecture.

2. Weak∗ continuity. Throughout this section, we let ω1 and ω2 be
algebra weights and φ a continuous nonzero homomorphism from L1(ω1)
to L1(ω2). As always, φ is extended to the corresponding measure algebras
and {δt} is the semigroup of point masses. In this section we show that φ
is weak∗ continuous, proving Theorem 1.1. Our main tool is the following
lemma, which shows that µt = φ(δt) satisfies the hypotheses of Theorem 1.3.

Lemma 2.1. Suppose that φ : L1(ω1)→ L1(ω2) is a continuous nonzero
homomorphism. If µt = φ(δt), then {µt} is a weak∗ continuous semigroup
in M(ω2) for which µt{0} = 0 for all t > 0.

Proof. That µt is weak∗ continuous [10, Theorem 3.6, p. 599] is an easy
consequence of the cancellation property for weak∗ convergence [10, Lemma
3.2, p. 595].

For each n we define the piecewise linear function hn as 0 on [1/n,∞)
and linear from the point (0,1) to the point (1/n, 0) on [0, 1/n]. Then hn(x)
converges pointwise to the characteristic function of {0}, which we denote
by χ0. If λ is any locally finite measure on R+ = [0,∞), it follows from the
Lebesgue dominated convergence theorem that 〈λ, hn〉 converges to 〈λ, χ0〉 =
λ({0}).

Since µt is weak∗ continuous at 0, ‖µt‖ is bounded in a neighborhood
of 0, so that µt{0} is also bounded near 0. It follows from the formulas for
convolutions of measures that µs+t{0} = µs ∗ µt{0} = (µs{0})(µt{0}). So if
µt{0} is not 0 for some, and hence all, t > 0, there is a complex number c
for which µt{0} = e−ct (see [10, p. 605] or [5, p. 348]). We will show that
this leads to a contradiction, so that we must have all µt{0} = 0 for t > 0.

One can represent φ in terms of a weak∗ integral [10, p. 599] so that for
all f in L1(ω1) and all h in C0(1/ω2) we have

〈φ(f), h〉 =
�

R+

f(t)〈µt, h〉 dt.

Since 〈µt, hn〉 → µt(0) = e−ct, the limit of 〈φ(f), hn〉 is f̂(c), where f̂ is
the Laplace transform of f. On the other hand, as an element of M(ω2) the
function φ(f) has no point mass at 0, so 〈φ(f), hn〉 has limit 0.

So we know that if our lemma were false, then we could find a complex
number c for which, for all f in L1(ω1), the Laplace transform f̂(t) is defined
and equals 0 at z = c. But one can always find an r > 0 for which f = e−rt

belongs to L1(ω1). For this f, f̂(c) = 1/(r + c) cannot be 0.



Weak∗ properties of algebras II 57

Thus we have proved the lemma and can now use it to prove Theorem
1.1. Our proof will rely on Theorem 1.3, which we will prove in the next
section.

Proof of Theorem 1.1. By [11, Theorem 4.7, p. 1681] we just need to
show that, for the semigroup µt = φ(δt), the quotient µt/ω1(t) goes to 0
weak∗ in M(ω2) as t goes to infinity. We write

µt

ω1(t)
=

µt

‖µt‖
‖µt‖
ω1(t)

.

By Lemma 2.1 and Theorem 1.3, µt/‖µt‖ does go to 0 weak∗ in M(ω2). Also,
‖µt‖ = ‖φ(δt)‖ω2 ≤ ‖φ‖ ‖δt‖ω1 = ‖φ‖ω1(t). Thus ‖µt‖/ω1(t) is bounded, so
that µt/ω1(t) does converge to 0 weak∗ inM(ω2). This completes the proof.

We can use Lemma 2.1 to prove the stronger result that whenever
λ{0} = 0, then φ(λ){0} = 0. The following theorem formulates this property
in a slightly different, but equivalent, way.

Theorem 2.2. Suppose that φ : L1(ω1) → L1(ω2) is a continuous
nonzero homomorphism. Then for all λ in M(ω1), we have φ(λ){0} = λ{0}.

Proof. We use the same functions hn and χ0 as in the proof of Lemma
2.1 and the fact that all 〈µ, hn〉 converge to µ{0}. Thus 〈λ, hn〉 → λ{0} and
〈φ(λ), hn〉 → φ(λ){0}. So we need to show that 〈φ(λ), hn〉 → λ{0}.

Since µ0 is just the point mass δ0, we can rephrase the conclusion of
Lemma 2.1 as saying µt{0} = χ0(t) for t ≥ 0. Using the weak∗ integral
formula for φ(λ), we see that 〈φ(λ), hn〉 =

	
〈µt, hn〉 dλ. By the Lebesgue

dominated convergence theorem, this converges to
	
µt{0} dλ =

	
χ0 dλ =

λ{0} as required.

3. Powers and semigroups: sufficient conditions. In this section
we prove Theorem 1.3 and its analogue for powers of an element. We will
actually prove slightly stronger results. In Section 4 we will examine neces-
sary conditions for these results to hold. For a measure µ in Mloc(R+) we
use the standard notation [3, Definition 4.7.18, p. 528] α(µ) for the inf of the
support of µ, with α(0) =∞. We will also need the Titchmarsh convolution
theorem, which says α(µ∗ν) = α(µ)+α(ν) (see [3, Theorem 4.7.22, p. 529]).

We will prove µn/‖µn‖ converges to 0 weak∗ in M(ω) if either α(µ) > 0
or α(µ − µ{0}δ0) = 0 (we can also write µ − µ{0}δ0 as the restriction of
µ to (0,∞)). In other words, µ does not satisfy our hypotheses precisely
when it is of the form cδ0 + ν with c 6= 0 and α(ν) > 0. As with our proof
for functions [11, Section 5], we start with the result in M [0, a) and obtain
the result for M(ω) from the result for finite intervals. When dealing with
functions, we were able to use Solovej’s [15] result in the finite-interval case,
but his proof does not generalize to measures. We still borrow Solovej’s
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insights that derivations and compactness are needed in the finite interval
case, but we need to construct a new proof.

In the algebra M [0, a), µ is nilpotent for α(µ) > 0, so in this case we
only consider µn/‖µn‖ when α(µ) = 0. We now state our results for powers
and for semigroups inM [0, a).

Theorem 3.1. Suppose that µ is a measure in M [0, a) with α(µ) = 0.
If α(µ − µ{0}δ0) = 0, then µn/‖µn‖ converges to 0 weak∗ in M [0, a) =
C0[0, a)∗.

Theorem 3.2. Suppose that µt is a weak∗ continuous semigroup in
M [0, a) with α(µt) = 0 for some (and hence all) t > 0. If α(µt−µt{0}δ0) = 0
for some t > 0, then µt/‖µt‖ approaches 0 weak∗ in M [0, a) as t goes to in-
finity.

It is not hard to prove that if the hypothesis of Theorem 3.2 holds for
some t > 0, then it holds for all t > 0; but it is simpler to prove the
theorem as stated. Also, note that in M [0, a), weak∗ and strong continuity
of a semigroup are equivalent.

The proofs of the power theorem and the semigroup theorem are essen-
tially the same, but the semigroup theorem has some added technicalities.
We will therefore give the full proof in the semigroup case and then indicate
the modifications for the case of powers of an element.

Proof of Theorem 3.2. To simplify the notation in the proof we will write
µ(t) for µt. By rescaling if necessary, we can assume that the hypothesis
holds for t = 1; that is, α(µ(1) − µ(1){0}δ0) = 0. Closed bounded sets in
M [0, a) are metrizable and sequentially compact in the weak∗ topology, so
to prove that µ(t)/‖µ(t)‖ goes to 0 weak∗, it will be enough to show that if a
sequence {tk} of positive numbers goes to infinity and if µ(tk)/‖µ(tk)‖ → λ
weak∗, then λ = 0. We assume, without loss of generality, that tk+1 > tk +1.

On M [0, a), we define the derivation D(ν) = xν (see [12]). Since D is
weak∗ continuous, as is convolution with a fixed measure, we deduce that
the sequence µ(1) ∗ D(µ(tn)/‖µ(tn)‖) is weak∗ convergent and therefore is
norm bounded.

For each k we let tk = nk + rk, with nk an integer and 0 ≤ rk < 1.
Using the fact that D is a derivation, together with the semigroup property
of µ(t), we rewrite

µ(1) ∗D
(

µ(tk)
‖µ(tk)‖

)
= µ(1) ∗D

(
µ(1)nk ∗ µ(rk)
‖µ(tk)‖

)
,

which equals

(3.1)
(
µ(1) ∗ D(µ(1)nk)

‖µ(tk)‖
∗ µ(rk)

)
+

(
µ(1) ∗ µ(1)nk

‖µ(tk)‖
∗D(µ(rk))

)
.
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We now prove that the second term in (3.1) is bounded, which will show
that the first term is bounded as well. We rewrite the second term in (3.1)
as

µ(nk + 1)
‖µ(tk)‖

∗D(µ(rk)) =
µ(tk)
‖µ(tk)‖

∗ µ(1− rk) ∗D(µ(rk)).

Now both rk and 1− rk belong to the interval [0, 1], on which both µ(t) and
Dµ(t) are bounded. Thus the right side of (3.1) can be written as a product
of three bounded sequences. Hence both terms in (3.1) are bounded.

Using the semigroup and derivation properties we can rewrite the first
term in (3.1) as

nk(µ(1))nk ∗D(µ(1)) ∗ µ(rk)
‖µ(tk)‖

= nk

(
µ(tk)
‖µ(tk)‖

∗D(µ(1))
)
.

Since the first term in (3.1) is bounded, this implies that the sequence
(µ(tk)/‖µ(tk)‖) ∗ Dµ(1) converges to 0 in norm. But we already have this
sequence converging weak∗ to λ∗D(µ(1)). Hence λ∗D(µ(1)) = λ∗(xµ) = 0.
But our assumption on µ(1) is equivalent to α(xµ) = 0. Hence, by the Titch-
marsh convolution theorem, xµ is not a divisor of 0 in M [0, a). Thus λ = 0,
and the proof of Theorem 3.2 is complete.

Proof of Theorem 3.1. If we replace µ(1) by µ and µ(n) by µn when n
is an integer, the proof of Theorem 3.1 is the same as that of Theorem 3.2
in the case of tk = nk and rk = 0. The proof in this case is much simpler,
since µ(rk) = δ0 and D(µ(rk)) = 0. Hence the second term in (3.1) is zero
and the first term simplifies to µ ∗ (D(µnk)/‖(µnk)‖).

We now give the versions of Theorems 3.1 and 3.2 which hold for M(ω)
where ω is an algebra weight.

Theorem 3.3. Suppose that µ is a nonzero measure in M(ω). If either
α(µ) > 0 or α(µ−µ{0}δ0) = 0, then µn/‖µn‖ converges to 0 weak∗ in M(ω).

Theorem 3.4. Suppose that µt is a weak∗ continuous semigroup in
M(ω). If there is a t > 0 with α(µt) > 0 or α(µt − µt{0}δ0) = 0, then
µt/‖µt‖ converges to 0 weak∗ as t goes to infinity.

Proof. The proofs in the semigroup and power cases are nearly identical,
so we just give the slightly more complicated proof for the semigroup case.

When some α(µt) > 0, there is an A > 0 for which α(µt) = At [5,
Lemma 1, p. 344], [10, Theorem 4.3, p. 605]. Hence limt→∞ α(µt/‖µt‖) = 0.
Just as for sequences (see [11, Lemma 4.3, p. 1680]), it then follows that
µt/‖µt‖ goes to 0 weak∗.

We now consider the case where all α(µt) = 0. For a measure λ in M(ω)
we let ‖λ‖ω be the norm in M(ω); and for each positive a we let ‖λ‖a be
|λ|([0, a)), the norm in M [0, a) of λ (when restricted to [0, a)). To show that
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µt/‖µt‖ω goes to 0 weak∗, it is enough to show that 〈µt/‖µt‖ω, h〉 goes to 0
weak∗ whenever h is a continuous function with compact support [7, p. 52],
which is the same thing as showing that, for all a, its restriction to [0, a)
goes to 0 weak∗ in M [0, a).

Fix a > 0. Then there is a K > 0 for which ω(x) ≥ K on [0, a), so that
‖λ‖ω ≥ K‖λ‖a. Now write

µt

‖µt‖ω
=
‖µt‖a
‖µt‖ω

µt

‖µt‖a
.

By Theorem 3.2, we know that µt/‖µt‖a goes to 0 weak∗ in M [0, a). Since
‖µt‖a/‖µt‖ω ≤ 1/K for all t, we therefore have µt/‖µt‖ω going to 0 weak∗ in
all M [0, a), so it also goes to 0 weak∗ in M(ω). This completes the proof.

4. Powers and semigroups: necessary conditions. In this section,
we investigate necessary conditions on µ for µn/‖µn‖ to converge to 0 weak∗

in M [0, a) or in some M(ω). We will emphasize the results for powers, and
just sketch the analogous results for semigroups. First, there is a trivial case
for which µ works in no M [0, a) or M(ω).

Proposition 4.1. If µ is a nonzero multiple of the identity δ0, then
µn/‖µn‖ cannot converge weak∗ to zero in any algebra M [0, a) or M(ω)
containing µ. The analogous result holds for semigroups.

Proof. Suppose that µ = cδ0 for some c 6= 0. Choose a continuous func-
tion h in the predual with h(0) = 1. Then 〈µn/‖µn‖, h〉 = cn/|cn| cannot
converge to 0. If µt is a weak∗ continuous semigroup with some µa a multiple
of δ0, then the result on powers shows that µan/‖µan‖ cannot converge to 0
weak∗. This completes the proof of the proposition.

We are not able to determine in all cases exactly which µ have µn/‖µn‖
converging to 0 weak∗, but we can get definitive answers in two cases. For
the finite-interval case, the sufficient condition we obtained in Theorem 3.1
above is also necessary. At the other extreme, if the algebra L1(ω) has a
nonzero derivation, then, except for the trivial case in Proposition 4.1, all
µn/‖µn‖ go to 0 weak∗. We start with the finite-interval case.

Theorem 4.2. Suppose that µ is a measure in M [0, a) with α(µ) = 0.
Then µn/‖µn‖ converges to 0 weak∗ in M [0, a) if and only if α(µ− µ{0}δ0)
= 0.

Proof. In Theorem 3.1 we showed that if the condition in the current
theorem on µ holds, then the normalized powers go to 0 weak∗. We complete
the proof by assuming that the condition on µ does not hold and then
showing that one cannot have µn/‖µn‖ going to 0 weak∗. We know that
µ is of the form cδ0 + ν with c 6= 0 and α(ν) > 0. Since 0 convergence is
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unchanged by multiplication by a nonzero constant, we let c = 1. Also, the
case where ν is 0 in M [0, a), that is, α(ν) ≥ a, is covered by Proposition 4.1.

So we suppose that µ = δ0 + ν with 0 < α(ν) < a, and show that
µn/‖µn‖ cannot converge to 0 weak∗. Let K be the positive integer for
which Kα(ν) < a ≤ (K + 1)α(ν). It then follows from the Titchmarsh
convolution theorem that ν is a nilpotent element of order K+1 in M [0, a).
Then for all n, we have µn = (δ0 +ν)n = δ0 +nν+

(
n
2

)
ν2 + · · ·+

(
n
K

)
νK . Also,

‖µn‖ ≤ cn, where cn = 1+n‖ν‖+
(
n
2

)
‖ν2‖+· · ·+

(
n
K

)
‖νK‖. Choose a function

h in the predual C0[0, a) with 〈νK , h〉 strictly positive. For all n, we have
|〈µn, h〉|/‖µn‖ ≥ |〈µn, h〉|/cn, so it will be enough to show that |〈µn, h〉|/cn
does not converge to 0. Our formulas for µn and cn show that 〈µn, h〉 is
asymptotic to (nK/K!)〈νK , h〉 as n goes to infinity and cn is asymptotic to
(nK/K!)‖νK‖. Thus |〈µn, h〉|/cn is asymptotic to 〈νK , h〉/‖νK‖ and hence
cannot converge to 0. This completes the proof.

Necessary conditions on µn/‖µn‖ always imply the analogous conditions
on semigroups. For if some (µa)n/‖(µa)n‖ = µna/‖µna‖ does not go to 0
weak∗, then neither does µt/‖µt‖ as t goes to infinity. Hence we have the
following consequence of Theorem 4.2.

Corollary 4.3. Suppose that µt is a weak∗ continuous semigroup in
M [0, a) with α(µt) = 0 for t > 0. Then µt/‖µt‖ goes to 0 weak∗ in M [0, a)
as t goes to infinity if and only if for all (equivalently, for some) t > 0, we
have α(µt − µt{0}δ0) = 0.

We now look at those L1(ω) which admit nonzero derivations. In [4,
Section 2], Ghahramani has a comprehensive study of such derivations and
their extensions to the corresponding M(ω). In particular, he gives a con-
crete condition on the algebra weight ω which is equivalent to the existence
of nonzero derivations. The theorem below is a summary of many of his
results.

Theorem 4.4 ([4]). The convolution algebra L1(ω) has a nonzero deri-
vation if and only if there is a positive number b for which

sup
t∈R+

tω(t+ b)
ω(t)

is finite. Moreover, there is a locally finite measure ν on R+ for which the
derivation, extended to M(ω), has the form D(µ) = (xµ) ∗ ν.

Ghahramani also gives a necessary and sufficient condition on ν for
D(µ) = (xµ) ∗ ν to be a derivation on M(ω) [4, Theorem 2.5, pp. 153–
154]. Since in our next theorem we will only use the existence of a single
derivation, we could use the simpler result in [4, p. 155] which shows that
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the above condition on ω is equivalent to D(µ) = (xµ)∗δb being a derivation
on M(ω).

For algebras L1(ω) with derivations, we now prove that all µn/‖µn‖ go
to 0 weak∗, except for the trivial case of Proposition 4.1.

Theorem 4.5. Suppose that the algebra L1(ω) has a nonzero derivation.
If the measure µ in M(ω) is not a multiple of the identity δ0, then µn/‖µn‖
converges to 0 weak∗ in M(ω).

Proof. As in Theorem 3.1, we just need to show that if the subsequence
µnk/‖µnk‖ converges weak∗ to λ in M(ω), then λ = 0. Choose a nonzero
locally finite measure ν for which D(m) = (xm) ∗ ν defines a derivation on
M(ω). As in the proofs of Theorems 3.1 and 3.2, we have λ ∗D(µ) = 0. For
our derivation, this means that λ∗((xµ)∗ν) = 0. Since µ does not vanish on
(0,∞), xµ is a nonzero measure. Since the convolution of nonzero measures
on R+ is never 0, this shows that λ = 0 as required.

One can make the same modifications of the proof of Theorem 3.2 to get
the following semigroup analogue. In this case, if some µt with t > 0 is a
multiple of δ0, then all µt are multiples of δ0, and µt is of the form e−atδ0.

Theorem 4.6. Suppose that the convolution algebra L1(ω) has nonzero
derivations and that µt is a weak∗ continuous semigroup in M(ω). If µt is
not a multiple of δ0, then

weak∗- lim
t→∞

µt

‖µt‖
= 0 in M(ω).

When L1(ω) does not have nonzero derivations, we do not know precisely
which µ in M(ω) have their normalized powers converging weak∗ to 0. We
do know that the sufficient condition of Theorem 3.3 is not necessary. For
instance, the measure µ = δ0 + δ1 has µn/‖µn‖ going to 0 weak∗ in all
algebras M(ω) with limt→0 ω(t) = 0. To show this, it is enough to show
that if h is a nonzero continuous function with compact support in [0,∞),
then 〈µn, h〉/‖µn‖ → 0 (see [7, p. 52]). If we let K be the largest nonneg-
ative integer with h(K) 6= 0, then calculations like those in the proof of
Theorem 4.2 show that 〈µn, h〉 is asymptotic to (nK/K!)h(K), while for
n > K, ‖µn‖ ≥

(
n
K

)
ω(K), which is asymptotic to (nK/K!)ω(K). Thus

〈µn, h〉/‖µn‖ does converge to 0 in M(ω). For arbitrary ω we can replace
ω(t) with e−atω(t) for a sufficiently large a > 0. This is equivalent to replac-
ing δ0 + δ1 with e−at(δ0 + δ1) = δ0 + e−aδ1 in M(ω).

On the other hand, we currently do not know of any µ, except multiples
of δ0, in any algebra M(ω), for which the normalized powers do not go to 0
weak∗. This suggests the following open question:
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Question 4.7. For which µ and M(ω) does µn/‖µn‖ converge to 0
weak∗?

In [11, Corollary 5.2, p. 1683] we used the weak∗ convergence of fn/‖fn‖
to prove the norm convergence to 0 of fn+1/‖fn‖ in L1(ω) when the weight
ω(t) is regulated in the sense of Bade and Dales [1]. The norm compactness
properties of L1(ω) for regulated weights do not hold in M(ω), so our argu-
ment does not generalize to measures. All we have is the elementary result
that µn/‖µn‖ converges to 0 weak∗ if and only if µn+1/‖µn‖ converges to 0
weak∗. So the following question seems natural.

Question 4.8. For which µ and M(ω) does µn+1/‖µn‖ converge to 0
in norm?

We do not even know the answer for functions if the weight ω(t) is not
regulated. H. G. Dales pointed out to me that if ω(t) is regulated so that

lim
t→∞

ω(t+ a)
ω(t)

= 0

for some a > 0, then δa has

‖(δa)n+1‖
‖δa‖

=
ω(na+ a)
ω(n)

converging to 0. One would therefore guess that the answer to Question 4.8
should be yes for “many” µ when ω(t) is a regulated weight.

5. Applications of weak∗ results. In this section we apply weak∗

results to obtain results about ideals and convergence. We make heavy use
of results from [8]. We start with a slightly modified definition of the key
concept given in [8, Definition 1.2, p. 305].

Definition 5.1. Let ω be an algebra weight and η a bounded Borel
function on R+=[0,∞) which is never 0. Then η is a convergence factor
for ω if whenever λn → λ weak∗ in M(ω) and f belongs to L1(ω), then
λn ∗ f → λ ∗ f in norm in L1(ω|η|). We call η a universal convergence factor
if it is a convergence factor for all algebra weights.

In [8] we added the additional restriction that η is positive, but this makes
no essential change in the theory. We also considered the case that the con-
vergence condition was only known to hold for f in L1(ω) with α(f) ≥ a.
We called such η convergence factors at a for ω. The classic case of regulated
weights (see [1]) is the case where η = 1 is a convergence factor, or conver-
gence factor at some a ≥ 0. In the current paper, η(t) = e−at for Re(a) > 0
will be most useful for us. Such e−at are universal convergence factors by
[6, Theorem (3.2), p. 512] or [8, Corollary 4.3, p. 313]. These universal con-
vergence factors are particularly useful because the map f(t) 7→ e−atf(t) is
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an isometric isomorphism from the algebra L1(ω(t)|e−at|) onto the algebra
L1(ω), and similarly for the corresponding measure algebras.

We now look at a relation between dense and weak∗ dense principal
ideals. It will be convenient to start with a simple consequence of a result
in [8].

Lemma 5.2. Suppose that ω is an algebra weight and that η is a con-
vergence factor for ω. If f is a function in L1(ω) for which L1(ω) ∗ f is
(relatively) weak∗ dense in L1(ω), then L1(ω)∗f is norm dense in L1(ω|η|).

Proof. Let J be the norm closure of L1(ω)∗f in L1(ω|η|). Then J∩L1(ω)
is closed in L1(ω) in the ω|η| norm and contains L1(ω) ∗ f. By [8, Theorem
5.3, p. 315], J∩L1(ω) must be weak∗ closed in L1(ω). Since L1(ω)∗f is weak∗

dense, this means that J contains L1(ω), which is a norm dense subspace of
L1(ω|η|). This completes the proof of the lemma.

We now give our major result relating norm dense and weak∗ dense
principal ideals.

Theorem 5.3. Suppose that L1(ω) ∗ f is a weak∗ dense principal ideal
in L1(ω). Then L1(ω) ∗ (e−atf(t)) is norm dense if Re(a) > 0.

Proof. To simplify the notation, we take a to be a positive number. This
is really no loss in generality since multiplication by e−ict for any real number
c is an isometric isomorphism of L1(ω). By Lemma 5.2, L1(ω) ∗ f is norm
dense in L1(ω(t)e−at) and so, therefore, is the larger subspace L1(ω(t)e−at)
∗ f. Multiplication by e−at is an isometric isomorphism from L1(ω(t)e−at)
onto L1(ω). Hence the space

e−at((L1(ω(t)e−at))∗f)=(e−atL1(ω(t)e−at))∗(e−atf(t)) = L1(ω)∗(e−atf(t))

is norm dense L1(ω), as required.

The proofs we gave of Lemma 5.2 and Theorem 5.3 give analogous results
when the weak∗ closure of L1(ω) ∗ f is L1(ω)d = {g ∈ L1(ω) : α(g) ≥ d}
for some d ≥ 0. For the lemma, it is in fact enough to have η a convergence
factor for ω at some t ≥ 0. (One just uses [8, Theorem 5.5, p. 315], which
generalizes [2, Proposition 1.9, p. 72], in place of [8, Theorem 5.3, p. 315]).
The generalization of Theorem 5.3 is:

Proposition 5.4. Suppose that the weak∗ closure of the ideal L1(ω)∗f is
L1(ω)d; then the norm closure of L1(ω)∗ (e−atf(t)) is also L1(ω)d whenever
a has positive real part.

It is natural to ask if the converse of Theorem 5.3 holds.

Question 5.5. Suppose that f belongs to the algebra L1(ω) and that
α(f) = 0. If L1(ω) ∗ (e−atf(t)) is norm dense whenever a is positive, must
L1(ω) ∗ f be weak∗ dense?
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In the special case of L1(R+), if f generates a dense principal ideal,
then its Laplace transform f̂(z) could not equal 0 anywhere on the open
half-plane where Re(z) is positive. Thus one could obtain Theorem 5.3 in
this case from Nyman’s theorem [3, Theorem 4.7.64, p. 549]. In this special
case Question 5.5 reduces to a weak∗ analogue of Nyman’s theorem. More
precisely, we ask:

Question 5.6. Suppose that f is an integrable function on R+ with
α(f) = 0. If the Laplace transform f̂(z) is never 0 for Re(z) > 0, must
L1(R+) ∗ f be weak∗ dense in L1(R+)?

As an application of Theorem 5.3 we extend a result of Bade and Dales
for dense principal ideals to the weak∗ dense case.

Corollary 5.7. Suppose that f belongs to the radical algebra L1(ω)
and that δ is a positive number. If L1(ω) ∗ f is weak∗ dense, then

lim
n→∞

(
‖fn‖
ω(δn)

)1/n

=∞.

Proof. When L1(ω) ∗ f is norm dense, the result is essentially given
in [1, Theorem 3.10, p. 105] (see the final paragraph of their proof). We
can therefore apply the Bade–Dales result to g(t) = e−atf(t), which gen-
erates a norm dense principal ideal by Theorem 5.3 above. Multiplica-
tion by e−t is a norm one homomorphism of L1(ω), so for all n we have
‖g∗n‖ = ‖e−t(f∗n)‖ ≤ ‖fn‖. Hence the theorem follows from the analogous
formula for g.

We now apply some of our weak∗ results to obtain convergence results.
As with ideals, the strongest result involves exponentials.

Theorem 5.8. Suppose that the sequence (or bounded net) {λn} con-
verges weak∗ to λ in M(ω). Then, for all a with positive real part, e−atλn →
e−atλ in the strong operator topology of M(ω) on L1(ω).

Proof. As above, we use the fact that e−at is a universal convergence
factor and, for simplicity, we assume that a is a positive number. Then for
all g in L1(ω), we see that λn ∗g → λ∗g in the norm of L1(ω(t)e−at). Hence
e−at(λn∗g) converges to e−at(λ∗g) in the norm of L1(ω). Since multiplication
by e−at is a homomorphism, this says that e−atλn ∗ f converges in norm to
e−atλ ∗ f in L1(ω) for all f in e−atL1(ω). Since e−atL1(ω) is dense in L1(ω)
and the set of operators f 7→ e−atλn∗f on L1(ω) is norm bounded, we deduce
that e−atλn ∗ f → e−atλ ∗ f in norm for all f in L1(ω). This completes the
proof.

The next result says, essentially, that weak∗ convergence implies “abso-
lute” weak∗ convergence.
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Theorem 5.9. Suppose that the sequence, or bounded net, {λn} con-
verges weak∗ to λ in M(ω). Then, for all f in L1(ω), the sequence |λn∗f(t)−
λ ∗ f(t)| also converges weak∗ to zero.

Of course, it is a simple consequence of the weak∗ continuity of convolu-
tion by f that λn ∗ f − λ ∗ f converges weak∗ to 0. The new result is that
its absolute value also goes to 0 weak∗.

Proof of Theorem 5.9. Let h be an arbitrary function in the predual
C0(1/ω). This means that h/ω is bounded and vanishes at infinity. Therefore
h/ω is a universal convergence factor [8, Corollary 4.3, pp. 313–314]. Since
λn − λ goes to 0 weak∗ in M(ω) and h/ω is a convergence factor, we see
that λn ∗ f − λ ∗ f goes to 0 in the norm of L1(ω|h|/ω) = L1(|h|). That is,

lim
n→∞

∞�

0

|λn ∗ f(t)− λ ∗ f(t)|h(t) = 0

for all h in C0(1/ω). This completes the proof of the theorem.

Theorems 5.8 and 5.9 above start with weak∗ convergence and use con-
vergence factor arguments to improve the convergence. In our final result, we
use convergence factors to transfer a simple property of norm convergence
to weak∗ convergence (compare [11, Theorem 2.3, p. 1677]).

Theorem 5.10. Suppose that ω is an algebra weight and {λn} and {µn}
are sequences in M(ω). If λn → 0 weak∗ and {µn} is bounded, then λn ∗ µn

→ 0 weak∗ in M(ω).

Proof. Let f be a function, other than 0, in L1(ω), and define ω′(t) =
e−tω(t). Then λn ∗ f converges to 0 in the norm of M(ω′), and {µn} is
bounded in this norm. Hence (λn ∗ µn) ∗ f → 0 in the norm of L1(ω′).
We can thus conclude that λn ∗ µn → 0 weak∗ in M(ω) [11, Theorem 2.1,
p. 1676].

The proof above also works in the case that {λn} and {µn} are bounded
nets.
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