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Vector integration and the Grothendieck inequality

by

Adam Bowers (Columbia, MO)

Abstract. We relate the Grothendieck inequality to the theory of vector measures
and show that the integral of an inner product with respect to a bimeasure can be com-
puted in an iterative way. We then show an application to the theory of bounded linear
operators.

1. Introduction. In 1956 Alexandre Grothendieck published his cel-
ebrated théorème fondamental de la théorie métrique des produits tenso-
riels [9], which Lindenstrauss and Pełczyński reformulated as a matrix in-
equality:

Theorem 1.1 (Theorem 2.1 in [10, p. 279]). Let (aij)∞i,j=1 be a scalar
array such that

(1.1)
∣∣∣ n∑
i,j=1

aijtisj

∣∣∣ ≤M
for all n ∈ N, whenever |ti| ≤ 1, |sj | ≤ 1. Then for every set of vectors (xi)
and (yj) in a Hilbert space,

(1.2)
∣∣∣ n∑
i,j=1

aij〈xi, yj〉
∣∣∣ ≤ KGM(sup

i∈N
‖xi‖H)(sup

j∈N
‖yj‖H)

for all n ∈ N, where KG is a universal constant and 〈·, ·〉 denotes the inner
product in the Hilbert space.

In an earlier work [3], the author derived a measure-theoretic analog of
this theorem:

Theorem 1.2. Let (X,A) and (Y,B) be two measurable spaces and H
a separable Hilbert space with inner product 〈·, ·〉. If f and g are bounded
measurable functions taking values in H, then the scalar-valued function
〈f, g〉 : X × Y → R,

〈f, g〉(x, y) = 〈f(x), g(y)〉, (x, y) ∈ X × Y,
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can be integrated with respect to any µ ∈ F2(A,B), and

(1.3)
∣∣∣ � 〈f, g〉 dµ∣∣∣ ≤ KG‖f‖∞‖g‖∞‖µ‖F2 ,

where KG is the Grothendieck constant.

We recall that F2(A,B) is the collection of bimeasures on A×B, that is,
the space of set functions µ : A × B → R which are countably additive in
each argument separately. The norm on F2 is given by

‖µ‖F2 = sup
{∣∣∣ ∑

A∈E,B∈F
µ(A,B)εAδB

∣∣∣ : E ∈ πX , F ∈ πY , εA =±1, δB =±1
}
,

where πE denotes the collection of all finite measurable partitions of the
set E.

When X and Y are discrete, the bimeasures correspond to the scalar
arrays in Theorem 1.1, and ‖a‖F2 represents the smallest M satisfying (1.1).
In this case, we denote the set of bimeasures on X × Y by F2(X,Y ).

The integral in (1.3) was given by the following:

(1.4)
�
〈f, g〉 dµ = lim

N→∞

�( N∑
j=1

fj ⊗ gj
)
dµ,

where (fj)∞j=1 and (gj)∞j=1 are the coordinate functions with respect to the
orthonormal basis (ej)∞j=1 of H.

In this paper, we show that the integral in (1.4) can also be computed in
the following way:

Theorem 1.3. Let (X,A) and (Y,B) be measurable spaces and H a sepa-
rable Hilbert space with inner product 〈·, ·〉. If f and g are bounded measurable
functions taking values in H, then the integral

	
〈f, g〉 dµ can be realized as

an integral of an H-valued function with respect to an H-valued measure:�

X×Y
〈f(x), g(y)〉µ(dx, dy) =

�

X

〈f(x), νg(dx)〉(1.5)

=
�

Y

〈g(y), νf (dy)〉,(1.6)

where

(1.7) νg =
�

Y

g(y)µ(·, dy) and νf =
�

X

f(x)µ(dx, ·)

are H-valued measures on A and B, respectively, with the property that

‖νg‖M ≤ KG‖µ‖F2‖g‖∞ and ‖νf‖M ≤ KG‖µ‖F2‖f‖∞.
This theorem mirrors the situation in the scalar case: If f ∈ L∞(X) and

g ∈ L∞(Y ) (i.e., they are bounded scalar-valued measurable functions on X
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and Y , respectively), then

(1.8)
�
f ⊗ g dµ =

�

X

f(x)µg(dx) =
�

Y

g(y)µf (dy),

where

(1.9) µg =
�

Y

g(y)µ(·, dy) and µf =
�

X

f(x)µ(dx, ·)

are measures of finite total variation. Furthermore,

(1.10) ‖µg‖M ≤ ‖g‖∞‖µ‖F2 and ‖µf‖M ≤ ‖f‖∞‖µ‖F2 ,

and so

(1.11)
∣∣∣ � f ⊗ g dµ∣∣∣ ≤ ‖f‖∞‖g‖∞‖µ‖F2 .

(There exist unbounded functions f and g such that the iterated integrals on
either side of (1.8) exist but are not equal; see [14, Example 5.3 on p. 123].)
For a detailed treatment of the scalar case, see Chapter VI of [2].

The integrals in (1.5)–(1.7) involve Hilbert space-valued integrands and
Hilbert space-valued measures. The integral of a Banach space-valued func-
tion with respect to a Banach space-valued measure is developed in Section 2.
This integral is valid for general Banach spaces, but Theorem 1.3 can hold in
general only when the Banach space is a Hilbert space. (See Theorem 3.12.)

In Section 4, we demonstrate an application to bounded linear operators
on Lp-spaces (Theorem 4.1).

Throughout this paper, R is the scalar field, but the results can be
adapted to C. Whenever 〈·, ·〉 and ‖ · ‖ appear without subscript, they are
understood to be the inner product and norm, respectively, on the Hilbert
space H, unless specifically stated otherwise.

2. Vector measure theory. The study of Banach space-valued mea-
sures and integration has been undertaken by various authors (e.g., Bartle [1],
Diestel and Uhl [4], Dinculeanu [5], Dobrakov [6], Pettis [12]). Generally, in-
tegration is considered by constructing L1-type spaces for a given measure of
finite variation or semivariation. Here, we consider integration with respect
to any measure of finite variation. (Cf. the integral of Dunford [7].) For our
integral, finite semivariation of the measure will suffice, but in the cases we
consider, the two notions coincide (e.g., Proposition I.4.4 in [5]).

In this section, X, Y , and Z denote Banach spaces, and (K,F) is a mea-
surable space. All Banach spaces are assumed to be separable. We recall that
the notions of strong measurability and weak measurability are equivalent in
a separable Banach space, and so functions will be referred to as measurable,
without ambiguity.
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The next theorem will be used frequently. Its proof is a consequence of
the Pettis measurability theorem (see [4, Corollary II.1.3]).

Theorem 2.1. Let (K,F) be a measurable space and X a separable Ba-
nach space. If f : K → X is a measurable function, then there exists a
sequence of countably valued measurable functions converging uniformly to f .

Denote by L∞(K;X) the set of all F-measurable bounded functions from
K into X. For every f ∈ L∞(K;X) let

‖f‖∞ = sup
x∈K
‖f(x)‖X .

If f ∈ L∞(K;X), then the uniformly convergent sequence fn in Theorem 2.1
may be chosen so that ‖fn‖∞ ≤ 2‖f‖∞ for all n ∈ N.

Definition 2.2. Let Y be a Banach space and (K,F) a measurable
space. A Y -valued measure on F (or Y -measure) is a countably additive
set function on F which takes values in the Banach space Y . The (total)
variation of the Y -valued measure ν is

|ν|(A) = sup
{ N∑
j=1

‖ν(Aj)‖Y : (Aj)Nj=1 ∈ πA
}
, A ∈ F .

That |ν| is a positive, countably additive measure on F follows from
standard arguments (e.g. [13, Theorem 6.2]). As is customary, we denote
|ν|(K) by ‖ν‖M .

Theorem 2.3 (Pettis). Let Y be a Banach space with dual space Y ∗.
A Y -valued measure ν is countably additive (in the norm topology) if y∗ν is
a countably additive scalar-valued measure for all y∗ ∈ Y ∗ (in which case ν
is said to be weakly countably additive).

This theorem had been proved first for normed spaces by Pettis in [12],
and was later extended to locally convex spaces by Grothendieck in [8].

Let X, Y , and Z be Banach spaces and suppose there exists a bilinear
map 〈·, ·〉 on X × Y taking values in Z such that

‖〈x, y〉‖Z ≤ ‖x‖X‖y‖Y
for all (x, y) ∈ X × Y . Suppose (K,F) is a measurable space. Let ν be a
countably additive Y -valued measure on F with finite total variation. Let
f ∈ L∞(K;X) be countably valued, say

(2.1) f =
∞∑
j=1

xj1Aj ,

where (Aj) is a sequence of pairwise disjoint measurable sets and (xj) is a
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bounded sequence in X. Define the integral of f with respect to ν by

(2.2)
�

X

〈f(x), ν(dx)〉 :=
∞∑
j=1

〈xj , ν(Aj)〉.

The sum defining the integral in (2.2) converges (in norm) absolutely because
f is bounded and ν has finite variation.

For f ∈ L∞(K;X), define the integral of f with respect to ν by

(2.3)
�

X

〈f(x), ν(dx)〉 := lim
n→∞

�

X

〈fn(x), ν(dx)〉,

where (fn) is a sequence of countably valued measurable functions such that
fn → f uniformly and ‖fn‖∞ ≤ 2‖f‖∞ for all n. Such a sequence exists by
Theorem 2.1, provided X is separable.

Theorem 2.4. Let X, Y , and Z be Banach spaces with X separable,
and suppose 〈·, ·〉 is a bounded bilinear map on X × Y taking values in Z.
Let (K,F) be a measurable space, and let ν be a countably additive Y -valued
measure on F with finite total variation. If f ∈ L∞(K;X), then the integral
of f with respect to ν given by (2.3) is well-defined, linear in f , and∥∥∥ �

X

〈f(x), ν(dx)〉
∥∥∥
Z
≤ ‖f‖∞ ‖ν‖M .

Proof. Let f ∈ L∞(K;X) be countably valued as in (2.1). The integral
is independent of the representation used for f because of the countable
additivity of ν. For any N ∈ N,

N∑
j=1

‖〈xj , ν(Aj)〉‖Z ≤
N∑
j=1

‖xj‖X‖ν(Aj)‖Y ≤ (sup
j
‖xj‖X)

N∑
j=1

‖ν(Aj)‖Y

≤ ‖f‖∞‖ν‖M .

Taking the limit as N →∞ provides the desired bound. The linearity of the
integral follows from the fact that the series

∑
j〈xj , ν(Aj)〉 converges abso-

lutely. To prove the theorem for functions in L∞(K;X), use Theorem 2.1 and
the definition in (2.3). The integral is independent of the defining sequence
by uniform convergence.

When the domain is apparent, we denote
	
X〈f(x), ν(dx)〉 by

	
〈f, dν〉.

Remark 2.5. Assume X, Y , Z, (K,F), and ν are as in Theorem 2.4. To
compare (2.3) with the integral of Dinculeanu (e.g., [5]), let L(X,Z) denote
the set of bounded linear operators from X into Z, and define a measure
m : F → L(X,Z) by

m(A)(x) = 〈x, ν(A)〉, A ∈ F ,
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for all x ∈ X. Then for any f ∈ L∞(K;X),
�
〈f, dν〉 =

�
f dm,

where the integral on the right is Dinculeanu’s integral.

Remark 2.6. In Theorem 2.4, the separability of the Banach space X
was used to ensure the existence of uniformly approximating sequences.
Strongly measurable functions are separably valued (see the Pettis measur-
ability theorem, e.g., Theorem II.1.2 in [4]), and so they can be integrated
as in Theorem 2.4, even when X is not separable.

Remark 2.7. Suppose K is a compact Hausdorff space. Denote by
C(K;X) the set of continuous functions on K taking values in the Ba-
nach space X. Functions in C(K;X) can be approximated uniformly by
simple functions. (The proof is the same as in the scalar case, with norms
replacing absolute values.) Consequently, functions in C(K;X) are strongly
measurable.

3. The iterated integral. Suppose (X,A) and (Y,B) are measurable
spaces. For any f ⊗ g ∈ L∞(X) ⊗ L∞(Y ) the integral with respect to µ ∈
F2(A,B) can be evaluated iteratively, that is,

	
f⊗g dµ =

	
f dµg (see (1.8)).

Now consider bounded measurable functions f : X → H, g : Y → H, where
H is a separable Hilbert space. Let

〈f, g〉(x, y) = 〈f(x), g(y)〉, (x, y) ∈ X × Y.

We construct an iterated integral
	
〈f, dνg〉, where νg is a Hilbert space-valued

measure, and show �
〈f, g〉 dµ =

�
〈f, dνg〉,

where
	
〈f, g〉 dµ is given by (1.4).

3.1. An extension of the Lindenstrauss and Pełczyński inequal-
ity. In order to continue, we extend Theorem 1.1 to infinite sums. We begin
by recalling the following Fubini-type property for β ∈ F2(N,N), which is
taken from Corollary IV.7 in [2].

Lemma 3.1 (Blei). Let β ∈ F2(N,N). Then
∑∞

n=1

∑∞
m=1 β(m,n) exists

and
∞∑
n=1

∞∑
m=1

β(m,n) =
∞∑
m=1

∞∑
n=1

β(m,n).

This lemma, which remains true in higher dimensions, leads directly to
the following:
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Lemma 3.2. Suppose (aij) ∈ F2(N,N). If (xi) and (yj) are bounded se-
quences in a Hilbert space, then the series

∑
i

∑
j aij〈xi, yj〉 converges and

(3.1)
∞∑
i=1

∞∑
j=1

aij〈xi, yj〉 =
∞∑
j=1

∞∑
i=1

aij〈xi, yj〉.

Moreover, ∣∣∣ ∞∑
i=1

∞∑
j=1

aij〈xi, yj〉
∣∣∣ ≤ KG‖a‖F2(sup

i∈N
‖xi‖)(sup

j∈N
‖yj‖),(3.2)

and
∞∑
i=1

∥∥∥ ∞∑
j=1

yjaij

∥∥∥ ≤ KG‖a‖F2(sup
j∈N
‖yj‖).(3.3)

Proof. Let β(i, j) = aij〈xi, yj〉. By Lemma 3.1, it suffices to show β ∈
F2(N,N). Let N ∈ N and let |ti|, |sj | ≤ 1 for i, j = 1, . . . , N . Then∣∣∣ N∑

i,j=1

β(i, j)tisj
∣∣∣ = ∣∣∣ N∑

i,j=1

aij〈xi, yj〉tisj
∣∣∣ = ∣∣∣ N∑

i,j=1

aij〈tixi, sjyj〉
∣∣∣.

By Theorem 1.1, this is bounded by

KG‖a‖F2(sup
i∈N
‖xi‖)(sup

j∈N
‖yj‖),

which is finite, by assumption. Thus, β ∈ F2(N,N), as required.
The inequality in (3.2) follows by taking limits. The inequality in (3.3)

is a restatement of (3.2) with xi the element of norm 1 in H such that〈
xi,

∞∑
j=1

yjaij

〉
=
∥∥∥ ∞∑
j=1

yjaij

∥∥∥, i ∈ N.

This final sum is absolutely convergent because (aij) ∈ F2(N,N):
N∑
j=1

‖yjaij‖ =
N∑
j=1

‖yj‖εjaij ≤ ‖a‖F2 sup
j∈N
‖yj‖,

where εj = sgn(aij) (i is fixed).

3.2. Constructing an iterated integral. LetH be a separable Hilbert
space and let (X,A) and (Y,B) be measurable spaces. For any g ∈ L∞(Y ;H)
and µ ∈ F2(A,B), define an H-valued set function on A by

(3.4) νg(A) :=
�

Y

g(y)µ(A, dy), A ∈ A.

For each A ∈ A, the set function µ(A, ·) is a scalar-valued measure of
finite total variation, so the integral is well-defined by Theorem 2.4, with
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both X and Z taken to be H, Y taken to be the scalar field, and the bilinear
map taken to be multiplication.

Lemma 3.3. Let E ∈ A. Then νg(E) is the unique element of H with
the property

〈x, νg(E)〉 =
�

Y

〈x, g(y)〉µ(E, dy), x ∈ H.

Proof. The right-hand side of (3.4) is well-defined, because 〈x, g〉 is a
bounded measurable scalar-valued function for each x ∈ H. It follows that,
for fixed g ∈ L∞(Y ;H), µ ∈ F2(A,B), and E ∈ A,

Λ(x) :=
�

Y

〈x, g(y)〉µ(E, dy), x ∈ H,

is a bounded linear functional on H. Therefore, there exists a unique element
z ∈ H such that

〈x, z〉 = Λ(x), x ∈ H.

It only remains to show z = νg(E).
If g =

∑∞
j=1 bj1Bj , where (Bj) is a sequence of pairwise disjoint sets in B

and (bj) is a bounded sequence in H, then, by (2.2), for each x ∈ H,

〈x, νg(E)〉 =
〈
x,

∞∑
j=1

bjµ(E,Bj)
〉

=
∞∑
j=1

〈x, bj〉µ(E,Bj),

where convergence follows from Lemma 3.2 (the Grothendieck inequality).
Since

�

Y

〈x, g(y)〉µ(E, dy) =
∞∑
j=1

〈x, bj〉µ(E,Bj),

the claim is proved in this case. (Recall that for E ∈ A, µ(E, ·) is a measure
on B.)

For g ∈ L∞(Y ;H), let (gn) be a sequence of countably valued bounded
measurable functions converging uniformly to g. By definition,

νg(E) =
�

Y

g(y)µ(E, dy) = lim
n→∞

�

Y

gn(y)µ(E, dy) = lim
n→∞

νgn(E).

For each n, the function gn is countably valued, hence the lemma holds for
each νn. Therefore, for all x ∈ H,

〈x, νg(E)〉 = lim
n→∞

〈x, νgn(E)〉 = lim
n→∞

�

Y

〈x, gn(y)〉µ(E, dy).

For a fixed set E, µ(E, ·) is a measure of finite total variation. Therefore, by
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the bounded convergence theorem,

lim
n→∞

�

Y

〈x, gn(y)〉µ(E, dy) =
�

Y

〈x, g(y)〉µ(E, dy),

which provides the desired result.

Theorem 3.4. For g ∈ L∞(Y ;H), the H-valued set function νg defined
in (3.4) is an H-valued countably additive measure.

Proof. We will show the measure is weakly countably additive and the
result will follow by Theorem 2.3. Let (Ai)∞j=1 be a sequence of pairwise
disjoint measurable sets, and let A =

⋃∞
j=1Aj . Let x ∈ H. By Lemma 3.3,

〈x, νg(A)〉 =
�

Y

〈x, g(y)〉µ(A, dy) = µ〈x,g〉(A).

Here, 〈x, g〉(y) = 〈x, g(y)〉, y ∈ Y, is a scalar-valued, bounded measurable
function, and so µ〈x,g〉 is the scalar-valued set function defined in (1.9). Then
µ〈x,g〉 is a measure, and so

µ〈x,g〉

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ〈x,g〉(Ai) =
∞∑
i=1

�

Y

〈x, g(y)〉µ(Ai, dy).

Once again applying Lemma 3.3, we have

(3.5) 〈x, νg(A)〉 =
∞∑
i=1

〈x, νg(Ai)〉,

and νg is weakly countably additive, as required.

Theorem 3.5. Let g ∈ L∞(Y ;H). Then νg has finite total variation and

‖νg‖M ≤ KG‖µ‖F2‖g‖∞,
where KG is the Grothendieck constant.

Proof. Let (Ai)Ni=1 be an arbitrary finite partition of the set A ∈ A.
First, suppose g =

∑∞
j=1 bj1Bj is a countably valued bounded measurable

function. By (3.3) from Lemma 3.2,

(3.6)
N∑
i=1

‖νg(Ai)‖ =
N∑
i=1

∥∥∥ ∞∑
j=1

bjµ(Ai, Bj)
∥∥∥ ≤ KG‖µ‖F2(sup

j∈N
‖yj‖)

≤ KG‖µ‖F2‖g‖∞.
Now suppose g ∈ L∞(Y ;H). By Theorem 2.1, there exists a sequence

(gn) of countably valued measurable functions converging uniformly to g.
Then

N∑
i=1

‖νg(Ai)‖ = lim
n→∞

N∑
i=1

‖νgn(Ai)‖.
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By (3.6),
N∑
i=1

‖νgn(Ai)‖ ≤ KG‖µ‖F2‖gn‖∞.

The result follows by taking the supremum over partitions of A.

Theorem 3.6. Let (X,A) and (Y,B) be measurable spaces and let H
be a separable Hilbert space with inner product 〈·, ·〉. For f ∈ L∞(X;H)
and g ∈ L∞(Y ;H), the H-valued function f is integrable with respect to the
H-valued measure νg, and∣∣∣ � 〈f, dνg〉∣∣∣ ≤ ‖f‖∞‖νg‖M ≤ KG‖µ‖F2‖f‖∞‖g‖∞.

Proof. This follows from Theorems 2.4 and 3.5.

Lemma 3.7. Let g, h ∈ L∞(Y ;H). Then

νg(A)− νh(A) = νg−h(A), A ∈ A.
Proof. This follows from the definition of the integral in (2.3). For counta-

bly valued functions, the result follows from the absolute convergence of the
defining sums (see the proof of Theorem 2.4). For the general case, take
limits.

Lemma 3.8. Let f ∈ L∞(X;H) and g ∈ L∞(Y ;H). If (fn) and (gn) are
sequences of bounded measurable functions converging uniformly (in norm)
to f and g, respectively, then�

〈f, dνg〉 = lim
n→∞

�
〈fn, dνgn〉.

Proof. By Theorem 2.4 and Lemma 3.7,∣∣∣ � 〈f, dνg〉 − �
〈fn, dνgn〉

∣∣∣ ≤ ∣∣∣ � 〈f − fn, dνg〉∣∣∣+ ∣∣∣ � 〈fn, dνg−gn〉
∣∣∣.

By Theorem 3.6, this is bounded by

KG‖µ‖F2 (‖f − fn‖∞‖g‖∞ + ‖fn‖∞‖g − gn‖∞).

For sufficiently large n, this is arbitrarily small. The result follows.

Lemma 3.9. Let f ∈ L∞(X;H) and g ∈ L∞(Y ;H). Suppose (fn) and
(gn) are sequences of bounded measurable functions converging uniformly (in
norm) to f and g, respectively. Then for all µ ∈ F2(A,B),�

〈f, g〉 dµ = lim
n→∞

�
〈fn, gn〉 dµ,

where
	
〈f, g〉 dµ is given by (1.4).

Proof. Since�
〈f, g〉 dµ−

�
〈fn, gn〉 dµ =

�
〈f − fn, g〉 dµ+

�
〈fn, g − gn〉 dµ,

the result follows from Theorem 1.2 and uniform convergence.
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Theorem 3.10. Let (X,A) and (Y,B) be measurable spaces and H a
separable Hilbert space with inner product 〈·, ·〉. Let f ∈ L∞(X;H) and g ∈
L∞(Y ;H). If µ ∈ F2(A,B), then

(3.7)
�
〈f, g〉 dµ =

�
〈f, dνg〉,

where
	
〈f, g〉 dµ is given by (1.4).

Proof. In light of Lemmas 3.8 and 3.9, it suffices to show (3.7) for count-
ably valued bounded measurable functions.

Let f =
∑∞

j=1 a(j)
1Aj and g =

∑∞
k=1 b(k)

1Bk
, where (Aj) and (Bk) are

sequences of pairwise disjoint measurable sets, and ‖a(j)‖H ≤ 1, ‖b(k)‖H ≤ 1.
Suppose H has basis (ej). For each j, k ∈ N, let a(j)

n and b
(k)
n be scalar

sequences such that

a(j) =
∞∑
n=1

a(j)
n en, b(k) =

∞∑
n=1

b(k)n en.

Then

f =
∞∑
n=1

( ∞∑
j=1

a(j)
n 1Aj

)
en and g =

∞∑
n=1

( ∞∑
k=1

b(k)n 1Bk

)
en,

and so the coordinate functions are

fn =
∞∑
j=1

a(j)
n 1Aj and gn =

∞∑
k=1

b(k)n 1Bk
.

Observe that
�
〈f, νg〉 dµ =

∞∑
j,k=1

〈a(j), b(k)〉µ(Aj , Bk)(3.8)

=
∞∑

j,k=1

( ∞∑
n=1

a(j)
n b(k)n

)
µ(Aj , Bk).

Furthermore,
�
fn ⊗ gn dµ =

�( ∞∑
j,k=1

a(j)
n b(k)n 1Aj ⊗ 1Bk

)
dµ(3.9)

=
∞∑

j,k=1

a(j)
n b(k)n µ(Aj , Bk).

Therefore, (3.7) will follow from (3.8) and (3.9), provided we can interchange
the order of summation in (3.8). To that end, let

λ(j, k, n) = a(j)
n b(k)n µ(Aj , Bk), j, k, n ∈ N.

It will suffice to show λ ∈ F3(N,N,N) (see Lemma 3.2).
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Let N ∈ N be arbitrary and let εj , δk, γn be arbitrary choices of ±1 for
each j, k, n ∈ N. Then

(3.10)
N∑

j,k,n=1

λ(j, k, n)εjδkγn =
N∑

j,k=1

( N∑
n

a(j)
n b(k)n γn

)
µ(Aj , Bk)εjδk.

Let

a(j,N) =
N∑
n=1

a(j)
n en and b(k,N,γ) =

N∑
n=1

b(k)n γnen.

Then (3.10) becomes
N∑

j,k,n=1

λ(j, k, n)εjδkγn =
N∑

j,k=1

〈a(j,N), b(k,N,γ)〉µ(Aj , Bk)εjδk(3.11)

=
N∑

j,k=1

〈a(j,N)εj , b
(k,N,γ)δk〉µ(Aj , Bk).

For each j, k ∈ N, ‖a(j,N)εj‖H ≤ ‖a(j)‖H ≤ 1, ‖b(k,N,γ)δk‖H ≤ ‖b(k)‖H
≤ 1. Therefore, by the Grothendieck inequality,∣∣∣ N∑

j,k,n=1

λ(j, k, n)εjδkγn
∣∣∣ ≤ KG‖µ‖F2 .

It follows that λ ∈ F3(N,N,N), as required.

3.3. The order of integration. Let (X,A) and (Y,B) be measurable
spaces and H a separable Hilbert space with inner product 〈·, ·〉. When inte-
grating a tensor product of scalar-valued bounded measurable functions, the
order of integration could be reversed when evaluating iteratively (see (1.8)).
We now show the same is true when integrating an inner product iteratively.

For f ∈ L∞(X,H), define an H-valued measure on B by

(3.12) νf (B) =
�

X

f(x)µ(dx,B), B ∈ B.

The set function νf is well-defined by Theorem 2.3 (cf. (3.4)). The proof
that νf is an H-valued measure with the same properties as νg is similar
to the proofs of Theorems 3.4 and 3.5. The integral of an H-valued func-
tion g with respect to the H-valued measure νf is given by Theorem 2.3 (cf.
Theorem 3.6), and the bound is the same.

Theorem 3.11. Let (X,A) and (Y,B) be measurable spaces and H a
separable Hilbert space with inner product 〈·, ·〉. If f ∈ L∞(X;H) and g ∈
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L∞(Y ;H), then �

X

〈f(x), νg(dx)〉 =
�

Y

〈g(y), νf (dy)〉.

Proof. It suffices to show the theorem when f and g are countably valued
bounded measurable functions. Let

f =
∞∑
j=1

aj1Aj and g =
∞∑
k=1

bk1Bk
,

where (Aj) and (Bk) are sequences of pairwise disjoint sets in A and B,
respectively, and (aj), (bk) are bounded sequences in H. By Lemma 3.2,

�
〈f, dνg〉 =

∞∑
j=1

∞∑
k=1

〈aj , bk〉µ(Aj , Bk)

=
∞∑
k=1

∞∑
j=1

〈aj , bk〉µ(Aj , Bk) =
�
〈g, dνf 〉.

3.4. A remark about general Banach spaces. We have proved for
measurable spaces (X,A) and (Y,B), and a separable Hilbert space H, that
any µ ∈ F2(A,B) and g ∈ L∞(Y ;H) determine an H-valued measure νg =	
Y g(y)µ(·, dy) on A, and ‖νg‖M ≤ KG‖µ‖F2‖g‖∞. The same cannot be said
for general Banach spaces.

Theorem 3.12. Let E be a separable Banach space with dual E∗. Sup-
pose (Y,F) is a measurable space such that F is infinite. For all µ ∈ F2(F ,F)
and g ∈ L∞(Y ;E), if the E-valued set function

νg =
�

Y

g(y)µ(·, dy)

is an E-valued measure on F such that ‖νg‖M ≤ K‖µ‖F2‖g‖∞ for some
universal constant K, then E is a Hilbert space.

Proof. The proof follows from Corollary 1 of Theorem 4.2 in [10]:

Proposition 3.13 (Lindenstrauss and Pełczyński). Let E be a Banach
space for which there is a constant K such that the following is true: When-
ever (ajk) ∈ F2(N,N) with ‖a‖F2 ≤ 1, then∣∣∣∑

j,k

ajk〈vj , v∗k〉
∣∣∣ ≤ K sup

j
‖vj‖ sup

k
‖v∗k‖

for every choice of (vj)Nj=1 ⊂ E and (v∗k)
N
k=1 ⊂ E∗. Then E is isomorphic to

a Hilbert space.

To prove Theorem 3.12, let (ajk) ∈ F2(N,N) with ‖a‖F2 ≤ 1. Let (Aj)∞j=1

be a sequence of nonempty pairwise disjoint sets in F , and for each j ∈ N,
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choose xj ∈ Aj . Define a scalar-valued bimeasure

µ =
n∑

j,k=1

ajk δxj ⊗ δxk
,

where δx is the Dirac measure at x ∈ Y . Let v1, . . . , vn be arbitrary vectors
in the unit ball of E and consider the E-valued simple measurable function
g =

∑n
k=1 vk 1Ak

. By duality,
n∑
j=1

‖νg(Aj)‖E = sup
{∣∣∣ n∑

j=1

〈v∗j , νg(Aj)〉
∣∣∣ : ‖v∗j ‖E∗ ≤ 1

}
= sup

{∣∣∣ n∑
j=1

n∑
k=1

〈v∗j , vk〉µ(Aj , Ak)
∣∣∣ : ‖v∗j ‖E∗ ≤ 1

}
.

Therefore, for all ‖v∗j ‖E∗ ≤ 1,∣∣∣ n∑
j=1

n∑
k=1

〈v∗j , vk〉µ(Aj , Ak)
∣∣∣ ≤ |νg|(E),

which, by assumption, is bounded by K. Therefore, by the definition of µ,∣∣∣ n∑
j=1

n∑
k=1

〈v∗j , vk〉ajk
∣∣∣ ≤ K.

The choices of ‖vk‖E ≤ 1 and ‖v∗j ‖E∗ ≤ 1 were arbitrary. By Proposi-
tion 3.13, this condition can be satisfied only if E is a Hilbert space.

3.5. Extension to higher dimensions. In dimensions greater than
two, not all multilinear functionals satisfy Grothendieck-type inequalities.
We distinguish those that do in the following definition (see [2, Chap-
ter VIII]).

Definition 3.14. Let A be an n-linear functional on a Hilbert space H.
Let

‖A‖pbn = sup{‖A|E1×···×En‖Vn(E1,...,En) : Ej ⊂BH , |Ej |<∞, j = 1, . . . , n},

where BH is the unit ball in H, and Vn(E1, . . . , En) = L∞(E1) ⊗̂ · · · ⊗̂
L∞(En). If ‖A‖pbn <∞, then A is said to be projectively bounded. Otherwise,
A is said to be projectively unbounded.

The results of this paper can be generalized to higher dimensions for
multilinear functionals that are projectively bounded. The arguments are
similar to the two-dimensional case, and will not be included here.

Theorem 3.15. Let A be a projectively bounded n-linear functional on
a separable Hilbert space H. Let (Ki,Fi) be a measurable space, and let fi ∈
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L∞(Ki;H), i = 1, . . . , n. Let µ ∈ Fn(F1, . . . ,Fn). Let ν be a function on F1

defined so that, for each E ∈ F1, ν(E) satisfies

(3.13) 〈x, ν(E)〉 =
�

K2×···×Kn

A(x, f2(x2), . . . , fn(xn))µ(E, dx2, . . . , dxn)

for all x ∈ H. Then ν is a countably additive, H-valued measure of finite
total variation, and

‖ν‖M ≤ ‖A‖pbn‖µ‖Fn‖f2‖∞ . . . ‖fn‖∞.

Furthermore, A(f1, . . . , fn) is integrable with respect to µ and
�
A(f1, . . . , fn) dµ =

�
〈f1, dν〉.

Remark 3.16. The Grothendieck inequality implies that all bounded
bilinear functionals on a Hilbert space are projectively bounded. In dimen-
sions higher than two, however, there exist bounded multilinear functionals
on a Hilbert space which are projectively unbounded (see [2, Chapter VIII]).
Countably additive measures can be constructed as in (3.13) using projec-
tively unbounded multilinear functionals; however, such measures will nec-
essarily have infinite total variation.

4. An application: an Lp-Lq Grothendieck-type inequality. Let
(K,F , λ) be a measure space, where λ is a positive measure. Let H be a
separable Hilbert space with inner product 〈·, ·〉H and norm ‖ ·‖H . Let p and
q be conjugate exponents, and let 〈·, ·〉q,p denote the dual action between
an Lq space (the element on the left) and an Lp space (the element on the
right). Elements of the Hilbert space H, and functions taking values in H,
will be printed in boldface.

For all 1 ≤ p < ∞ denote by Lp(K,λ;H) the space of all (equivalence
classes of) measurable functions f taking values in H such that

�

K

‖f(x)‖pH λ(dx) <∞.

Equipped with the norm

‖f‖Lp =
( �

K

‖f(x)‖pH λ(dx)
)1/p

,

the space Lp(K,λ;H) forms a Banach space with dual space Lq(K,λ;H).
Further, simple functions are dense in Lp(K,λ;H) ([4, Section IV.1]).

Theorem 4.1. Let 1 < p, q < ∞ be conjugate exponents. Suppose T :
Lp(K,λ)→ Lq(K,λ) is a bounded linear map so that

|〈Tf, g〉q,p| ≤ 1 for all ‖f‖Lp , ‖g‖Lp ≤ 1.
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Then T determines a linear map from Lp(K,λ;H) to Lq(K,λ;H), also de-
noted by T , such that

(4.1) |〈Tf , g〉q,p| ≤ KG‖f‖Lp‖g‖Lp

for all f , g ∈ Lp(K,λ;H), where KG is the Grothendieck constant.

It was pointed out to us by Nigel Kalton that this theorem is not new.
(See Theorem 1.f.14 in [11, p. 93].) We present here an alternative proof,
using the techniques developed in the previous sections.

Proof. To extend T to a map from Lp(K,λ;H) to Lq(K,λ;H), first con-
sider simple functions. If {A1, . . . , An} is a collection of pairwise disjoint
measurable sets, and {a1, . . . ,an} is a collection of elements in H, then let

T
( n∑
j=1

aj1Aj

)
=

n∑
j=1

aj(T1Aj ).

This is well-defined by the linearity of T . To extend to all functions in
Lp(K,λ;H), use the continuity of T and the density of simple functions
in Lp(K,λ;H).

The bilinear map in (4.1) is given by

(4.2) 〈Tf , g〉q,p =
�

K

〈(Tf)(y), g(y)〉H λ(dy).

Define real-valued functions f and g on K by f(x) = ‖f(x)‖H and
g(y) = ‖g(y)‖H for x, y ∈ K. Without loss of generality, suppose f, g > 0.

Define a scalar-valued set function µ by

µ(E,F ) = 〈T (f1E), g1F 〉q,p, E, F ∈ F .

Since ‖f‖Lp(K;H) = ‖f‖Lp(K) and ‖g‖Lp(K;H) = ‖g‖Lp(K), both f and g are
in Lp(K), and so µ is well-defined.

By Theorem 1.2, ∣∣∣∣ �〈f

f
,
g

g

〉
H

dµ

∣∣∣∣ ≤ KG‖µ‖F2 ,

provided µ ∈ F2. Consequently, it will suffice to prove that µ ∈ F2 with

(4.3) ‖µ‖F2 ≤ ‖f‖Lp‖g‖Lp

and

(4.4)
�

K×K

〈
f(x)
f(x)

,
g(y)
g(y)

〉
H

µ(dx, dy) = 〈Tf , g〉q,p.

Without loss of generality, assume f(x) = g(y) = 1 for all x ∈ X and
y ∈ Y . We show µ ∈ F2 by showing it is a measure on F in each argument
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separately. By definition,

µ(E,F ) =
�

K

(T (1E))(y) (1F )(y)λ(dy)

for E,F ∈ F . Let E0 ∈ F be fixed. Then

(4.5) µ(E0, F ) =
�

F

(T (1E0))(y)λ(dy),

which is known to be a measure on F (e.g., Theorem 1.29 in [13]).
Next, fix F0 ∈ F and let E =

⋃
j Ej , where (Ej) is a sequence of pairwise

disjoint measurable sets. Then

µ(E,F0) = 〈T (1E),1F0〉q,p.
By the bounded convergence theorem (for scalar-vaued functions), it follows
that

∑N
j=1 1Ej → 1E in Lp(K,λ) as N →∞. By the continuity of T ,

T (1E) = lim
N→∞

N∑
j=1

T (1Ej ).

The indicator function 1F0 is in Lp, and so by duality,

〈T (1E),1F0〉q,p = lim
N→∞

〈 N∑
j=1

T (1Ej ),1F0

〉
q,p

= lim
N→∞

N∑
j=1

〈T (1Ej ),1F0〉q,p.

Therefore, µ(E,F0) =
∑∞

j=1 µ(Ej , F0), as required. Thus µ is a measure in
each argument separately, and hence an F2-measure.

Now we calculate the F2-variation of µ. Let (Ej) and (Fk) be finite collec-
tions of pairwise disjoint measurable sets, and for each j and k let εj and δk
be arbitrary choices of signs. Then∣∣∣∑

j,k

µ(Ej , Fk)εjδk| =
∣∣∣∑
j,k

〈T (1Ej ),1Fk
〉q,pεjδk

∣∣∣
=
∣∣∣〈T(∑

j

εj1Ej

)
,
∑
k

δk1Fk

〉
q,p

∣∣∣.
By assumption, this is bounded by∥∥∥∑

j

εj1Ej

∥∥∥
Lp(K)

∥∥∥∑
k

δk1Fk

∥∥∥
Lp(K)

≤ 1.

This bound is uniform over choices of partitions and signs, and so ‖µ‖F2 ≤ 1,
which provides the desired result.

Now it remains to verify (4.4). By Theorem 3.10, we have
	
〈f , g〉H dµ =	

〈f , dνg〉, where

νg(E) =
�
g(y)µ(E, dy), E ∈ F .
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By (4.5),
(4.6) µ(E, dy) = (T1E)dλ,

and so
νg(E) =

�
g(T1E) dλ.

By Lemma 3.8,

(4.7)
�
〈f , dνg〉 = lim

n→∞

�
〈fn, dνg〉,

where (fn) is a sequence of uniformly bounded, countably valued measur-
able functions which converge uniformly to f . (Such a sequence exists by
Theorem 2.1.)

Suppose for a fixed n ∈ N, fn =
∑∞

j=1 xj1Aj . Then
�
〈fn, dνg〉 =

∞∑
j=1

〈xj , νg(Aj)〉H .

By Lemma 3.3 and (4.6),

〈xj , νg(Aj)〉H =
�
〈xj , g〉H(T 1Aj ) dλ.

By the bilinearity of the inner product in H, and the linearity of T ,�
〈xj , g〉H(T1Aj ) dλ =

�
〈T (xj1Aj ), g〉H dλ.

Therefore,

(4.8)
�
〈fn, dνg〉 =

∞∑
j=1

�
〈T (xj1Aj ), g〉H dλ.

The Lebesgue dominated convergence theorem for Banach space-valued
Lp-spaces (see [5, Theorem II.12.1]) implies that

N∑
j=1

xj1Aj →
∞∑
j=1

xj1Aj

in Lp(K,λ;H) as N →∞. Therefore,
∞∑
j=1

�
〈T (xj1Aj ), g〉H dλ =

�〈
T
( ∞∑
j=1

xj1Aj

)
, g
〉
H
dλ(4.9)

=
�
〈T (fn), g〉H dλ = 〈T (fn), g〉q,p.

By the Lebesgue dominated convergence theorem for Banach space-val-
ued Lp-spaces, fn → f in Lp(K,λ;H). Therefore, putting together (4.7)–
(4.9), �

〈f , dνg〉 = lim
n→∞

〈T (fn), g〉q,p = 〈Tf , g〉q,p.

Therefore,
	
〈f , g〉 dµ = 〈Tf , g〉q,p, which completes the proof.
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