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Generalized Weyl’s theorem and quasi-affinity

by

Pietro Aiena (Palermo) and Mohammed Berkani (Oujda)

Abstract. A bounded operator T ∈ L(X) acting on a Banach space X is said to
satisfy generalized Weyl’s theorem if the complement in the spectrum of the B-Weyl
spectrum is the set of all eigenvalues which are isolated points of the spectrum. We prove
that generalized Weyl’s theorem holds for several classes of operators, extending previous
results of Istrăţescu and Curto–Han. We also consider the preservation of generalized
Weyl’s theorem between two operators T ∈ L(X), S ∈ L(Y ) intertwined or asymptotically
intertwined by a quasi-affinity A ∈ L(X,Y ).

1. Introduction. If T ∈ L(X), where L(X) denotes the Banach algebra
of all bounded linear operators on a complex Banach space X, we denote by
N(T ) its kernel and by R(T ) its range. The operator T ∈ L(X) is called a
B-Fredholm operator [9] if there is an integer n for which R(Tn) is closed
and the operator Tn : R(Tn) → R(Tn) defined by Tn(x) = T (x) for every
x ∈ R(Tn) is a Fredholm operator. From [10, Theorem 3.1], it follows that
T is a B-Fredholm operator if and only if there exists an integer n such
that cn(T ) <∞ and c′n(T ) <∞, where cn(T ) := dim(R(Tn)/R(Tn+1)) and
c′n(T ) := dim(N(Tn+1)/N(Tn)). For a B-Fredholm operator T ∈ L(X) the
index is defined by ind(T ) = c′n(T ) − cn(T ). From [9, Proposition 2.1], the
index is independent of the choice of the integer n. Moreover, in the case
of a Fredholm operator, this definition coincides with the classical definition
of the index. Recall that the ascent of T is defined as a(T ) =: inf{n ∈ N :
N(Tn) = N(Tn+1)}, while the descent is defined as δ(T ) := inf{n ∈ N :
R(Tn) = R(Tn+1)} (in both cases the infimum over the empty set is taken
to be ∞). An operator T ∈ L(X) is said to be left Drazin invertible if
a(T ) < ∞ and R(T a(T )+1) is closed. Note that if T has finite ascent and
finite descent then a(T ) = δ(T ) (see [1, Theorem 3.3]). It is well known that
0 < a(T − λI) = δ(T − λI) <∞ precisely when λ is a pole of the resolvent
of T . A Fredholm operator which has index 0 is called a Weyl operator, and
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the Weyl spectrum is defined as σW(T ) = {λ ∈ C : T − λI is not Weyl}.
These concepts may be generalized ad follows:

Definition 1.1. Let T ∈ L(X). Then T is called a B-Weyl operator if
it is a B-Fredholm operator of index 0. The B-Weyl spectrum σBW(T ) of T
is defined by σBW(T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

A classical result of Weyl on the fine structure of the spectrum of a normal
operator T , defined on a Hilbert space, states that σW(T ) = σ(T ) \ E0(T ),
where E0(T ) denotes the set of isolated eigenvalues of finite multiplicity.
This result has been extended to many other important classes of opera-
tors, and in the literature T is said to satisfy Weyl’s theorem if σW(T ) =
σ(T )\E0(T ). By [10, Theorem 4.5] any normal operator T also satisfies
σBW(T ) = σ(T ) \E(T ), where E(T ) is the set of all eigenvalues of T which
are isolated points of σ(T ), and in general T ∈ L(X) is said to satisfy gen-
eralized Weyl’s theorem if σBW(T ) = σ(T ) \ E(T ). Note that

generalized Weyl’s theorem⇒Weyl’s theorem,

and the opposite implication is, in general, not true (see [13, Theorem 3.9]).
Two weaker variants of Weyl’s theorems are defined as follows: T ∈ L(X)

satisfies Browder’s theorem if σW(T ) = σ(T ) \ Π0(T ), where Π0(T ) is the
set of those poles λ ∈ C of the resolvent of T such that T − λ is Fredholm
(or equivalently Weyl, see [1, Theorem 3.4]). A bounded operator T ∈ L(X)
is said to satisfy generalized Browder’s theorem if σBW(T ) = σ(T ) \ Π(T ),
where Π(T ) denotes the set of all poles of the resolvent of T . Note that, in
general, Π(T ) ⊆ E(T ) for every T ∈ L(X). Recently, it has been proved
that Browder’s theorem and generalized Browder’s theorem for an operator
are equivalent ([8]). Browder’s theorem and Weyl’s theorem are related as
follows (see [11, Corollary 2.6] and [2, Theorem 3.1]):

Theorem 1.2. Let T ∈ L(X). Then T satisfies Weyl’s theorem if and
only if Browder’s theorem holds for T and E0(T ) = Π0(T ). Analogously,
T satisfies generalized Weyl’s theorem if and only if generalized Browder’s
theorem (or, equivalently, Browder’s theorem) holds for T and E(T ) = Π(T ).

In this paper we prove that generalized Weyl’s theorem holds for several
classes of operators, extending earlier results of [24] and [15]. In particular,
we give sufficient and necessary conditions for a finitely ascensive operator to
obey generalized Weyl’s theorem. The preservation of Weyl’s theorem when
T ∈ L(X) and S ∈ L(Y ) are intertwined by a quasi-affinity has been inves-
tigated in [25]. Part of this paper concerns the preservation of generalized
Weyl’s theorem for operators intertwined by a quasi-affinity. We shall also
consider the more general case where T and S are asymptotically intertwined
by a quasi-affinity.
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2. Generalized Weyl’s theorem. The following lemma will be needed.

Theorem 2.1. If T ∈ L(X) and a(T ) < ∞ then the following state-
ments are equivalent:

(i) There exists n ≥ a(T ) + 1 such that Tn(X) is closed;
(ii) There exists p such that Tn(X) is closed for all n ≥ p.

Proof. We have ki(T ) := c′i(T ) − c′i+1(T ) = 0 for all i ≥ a(T ). The
equivalence then easily follows from [29, Lemma 12].

Definition 2.2. We say that T ∈ L(X) has the single valued extension
property at λ0 ∈ C if for every open neighborhood U of λ0, f = 0 is the only
analytic function f : U → X such that (T − λI)f(λ) = 0 for all λ ∈ U. We
will say that T has the single valued extension property (SVEP) if T has
this property at every λ ∈ C.

Note that
a(T − λI) <∞ ⇒ T has SVEP at λ,

and the converse holds if T is B-Fredholm (see [3]).
Of importance in local spectral theory is the glocal spectral subspace

XT (F ) associated with a closed subset F ⊆ C. It is defined, for all T ∈ L(X),
as the set of all x ∈ X for which there exists an analytic function f : C \ F
→ X which satisfies the identity

(λI − T )f(λ) = x for all λ ∈ C \ F.
Recall that a bounded operator T ∈ L(X), X a Banach space, is said to have
Dunford’s property (C), briefly property (C), if, for each closed set F ⊆ C,
XT (F ) is closed. It is well-known that property (C) implies SVEP.

If T ∈ L(X), the quasi-nilpotent part of T is defined by

H0(T ) := {x ∈ X : ‖Txn‖1/n → 0}.
Note that N(Tn) ⊆ H0(T ) for all n ∈ N. Moreover, H0(T − λI) = XT ({λ})
(see [1, Theorem 2.20]). The analytical core of T is defined by K(T ) :=
{x ∈ X : there exist c > 0 and a sequence (xn)n≥1 ⊆ X such that Tx1 = x,
Txn+1 = xn for all n ∈ N, and ‖xn‖ ≤ cn‖x‖ for all n ∈ N}. Note that
T (K(T )) = K(T ).

If λ is isolated in σ(T ), then it is known that H0(T −λI) and K(T −λI)
are closed subspaces of X, since H0(T − λI) coincides with the range of the
spectral projection Pλ associated with {λ}, andK(T−λI) coincides with the
kernel of Pλ ([1, Theorem 3.74]). Therefore, X = H0(T − λI)⊕K(T − λI),
where ⊕ means topological direct sum. If λ is a pole of the resolvent and
p := a(T − λI) = δ(T − λI) < ∞ then H0(T − λI) = N((T − λI)p) and
K(T − λI) = R((T − λI)p).
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An operator T in B(X) is totally paranormal if

‖(T − λI)x‖2 ≤ ‖(T − λI)2x‖ ‖x‖ for all x ∈ X, λ ∈ C.

Theorem 2.3. Let T in B(X) be a totally paranormal operator. Then
generalized Weyl’s theorem holds for T .

Proof. From [26] we know that if T is totally paranormal, then T−λI has
finite ascent for all λ ∈ C. Hence T has SVEP. Also from [26, Corollary 4.8],
we have H0(T − λI) = N(T − λI) for all λ ∈ C. From [12, Theorem 3.5], it
then follows that T satisfies generalized Weyl’s theorem.

A spectral point λ ∈ σ(T ) is said to be a bare point if it lies on the
circumference of some closed disc that contains σ(T ).

Theorem 2.4. Suppose that T ∈ L(X) and every λ ∈ σ(T ) is a bare
point. Then T has SVEP.

Proof. Let U ⊆ C be an nonempty open set and let f : U → X be an
analytic function such that (T − λI)f(λ) = 0 for all λ ∈ U . Let ρ(T ) :=
C \ σ(T ) be the resolvent set of T . Since every spectral point of T is bare,
U ∩ ρ(T ) 6= ∅. Therefore there exists an open nonempty subset V contained
in U ∩ ρ(T ). Moreover for all λ ∈ V , we have f(λ) = 0, because T − λI is
invertible. Since the zeros of a nonvanishing analytic function are isolated,
f = 0. Hence T has SVEP.

Let T ∈ L(X) and m ∈ N. We say that T satisfies the growth condition
(Gm) if

sup
λ/∈σ(T )

‖(T − λI)−1‖ dist(λ, σ(T ))m <∞.

An operator T ∈ L(X) is said to be isoloid if every isolated point of the
spectrum is an eigenvalue. In [16, Lemma 3] it is shown that every T ∈ L(X)
which satisfies the growth condition (Gm) for some m is polaroid (i.e. every
isolated point of the spectrum is a pole) and hence isoloid. Let H(σ(T ))
denote the set of all analytic functions defined on an open neighborhood
of σ(T ) and define, by the classical functional calculus, f(T ) for every f ∈
H(σ(T )).

Corollary 2.5. Suppose that T ∈ L(X) has SVEP and satisfies the
growth condition (Gm) for some m. Then f(T ) satisfies generalized Weyl’s
theorem for each f ∈ H(σ(T )). In particular, if T satisfies (Gm) and every
λ ∈ σ(T ) is a bare point then generalized Weyl’s theorem holds for f(T ) for
each f ∈ H(σ(T )).

Proof. Generalized Weyl’s theorem for T is a direct consequence of [12,
Corollary]. Since T satisfies SVEP the spectral theorem holds for σBW(T ).
Moreover, as T is isoloid, by [15, Theorem 3.4] generalized Weyl’s theorem
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holds for f(T ) for each f ∈ H(σ(T )). The last statement is clear from The-
orem 2.4.

As noted above, an operator satisfying generalized Weyl’s theorem also
satisfies Weyl’s theorem. Corollary 2.5 extends an earlier result of Istrăţescu
[24, Theorem], where Weyl’s theorem was proved for bounded operators T
for which condition (G1) holds for the restriction (T −λI)|M to every closed
invariant subspace M and such that the bare point condition is satisfied.
Observe that if the Banach space X is reflexive (in particular, a Hilbert
space), the growth condition (Gm) for T ∈ L(X) entails property (C), and
consequently that T has SVEP ([28, Proposition 1.2.19]). Since T is polaroid,
we have E(T ) = Π(T ), hence T satisfies generalized Weyl’s theorem. The
argument of the proof of Corollary 2.5 then also works, so f(T ) satisfies
generalized Weyl’s theorem, and in the case of reflexive Banach spaces, the
bare point condition is not necessary.

Corollary 2.6. Let T ∈ L(X) be a spectral operator of finite type. Then
f(T ) satisfies generalized Weyl’s theorem for each f ∈ H(σ(T )).

Proof. If T ∈ L(H) is a spectral operator of finite type, then from [18,
Theorem XV 6.7], T satisfies the growth condition (Gm) for some m. More-
over, T has SVEP.

Corollary 2.6 extends [30, Theorem 4] where it is proved that Weyl’s
theorem holds for every spectral operator of finite type.

An operator T ∈ L(X) is said to be reguloid (see [23]) if for each isolated
point λ ∈ σ(T ) the operator T − λI is regular in the sense that there exists
an operator S ∈ B(X) such that T − λI = (T − λI)S(T − λI).

Theorem 2.7. If T ∈ B(X) has SVEP and is reguloid, then generalized
Weyl’s theorem holds for T if and only if for all λ ∈ E(T ) the sequence
(N(T − λI) ∩R((T − λI)n))n is stationary for n large enough.

Proof. If T satisfies generalized Weyl’s theorem, and λ ∈ E(T ), then
λ ∈ Π(T ). So T − λI has a finite ascent and descent. Consequently, the
sequence (N(T − λI) ∩ R((T − λI)n))n is stationary for n large enough.
Conversely, let λ ∈ E(T ). Then λ is an isolated point in σ(T ) and by our
assumption T−λ is a regular operator. In this case it is well known ([22, The-
orem 3.8.2]) that R((T − λI)n) is closed for each integer n. As the sequence
(N(T − λI) ∩R((T − λI)n))n is stationary for n large enough, T − λI is of
topological uniform descent ([21]). Since T has SVEP, from [12, Theorem 3.5]
it follows that T satisfies generalized Weyl’s theorem.

It should be noted that (N(T − λI) ∩ R((T − λI)n)) is a stationary
sequence for n large enough in the following cases:



110 P. Aiena and M. Berkani

(a) dimN(T −λI) <∞ or codR(T −λI) <∞ (see [1, proof of Theorem
1.10]).

(b) a(T − λI) <∞ or δ(T − λI) <∞ (see [1, proof of Theorem 3.5]).

An operator T ∈ L(X) is said to be finitely ascensive if a(T − λI) < ∞
for all λ ∈ C.

Theorem 2.8. Let T ∈ L(X) be a finitely ascensive operator. Then the
following statements are equivalent:

(i) T satisfies generalized Weyl’s theorem.
(ii) E(T ) = Π(T ).
(iii) For every λ ∈ E(T ) there exists an integer p := p(λ) such that

R((T − λI)n) is closed for all n ≥ p.
(iv) For every λ ∈ E(T ) there exists an integer p := p(λ) such that

H0(T − λI) = N((T − λI)p).

Proof. (i)⇔(ii) is clear by Theorem 1.2, since every finitely ascensive
operator has SVEP and hence satisfies generalized Browder’s theorem ([5,
Corollary 3.3]).

(ii)⇔(iii). If λ ∈ E(T ) = Π(T ) then λ is an isolated spectral point and
p := a(T−λI) = δ(T−λI) <∞. If n ≥ p thenR((T−λI)n) = R((T−λI)p) is
closed, since it coincides with the kernel of the spectral projection associated
with {λ}. Conversely, assume that for all λ ∈ E(T ) there exists p ∈ N such
that R((T − λI)n) is closed for all n ≥ p. Since a(T − λI) < ∞, from
Lemma 2.1 we know that R((T−λI)a(T )+1) is closed, so T−λI is left Drazin
invertible, and hence semi-B-Fredholm. Since λ is isolated in σ(T ) = σ(T ∗),
T ∗ has SVEP at λ and hence (see [3, Theorem 2.11]) we have δ(T−λI) <∞.
Therefore, λ is a pole of the resolvent and hence λ ∈ Π(T ). Consequently,
E(T ) = Π(T ).

(ii)⇔(iv). Suppose that E(T ) = Π(T ). If λ ∈ E(T ) then λ is a pole of
the resolvent and hence H0(T −λI) = N((T −λI)p), where p := a(T −λI) =
δ(T −λI). Conversely, let λ ∈ E(T ) and suppose that we have H0(T −λI) =
N((T − λI − T )p) for some p ∈ N. Since λ is an isolated point of σ(T ),

X = H0(T − λ)⊕K(T − λI) = N((T − λI)p)⊕K(T − λI),
from which we obtain

R((T − λI)p) = (T − λI)(K(T − λI)) = K(T − λI).
Thus X = N((T − λI)p)⊕R((T − λI)p) and this implies that λ is a pole of
the resolvent, i.e. λ ∈ Π(T ). Consequently, E(T ) = Π(T ).

Theorem 2.9. Suppose that T ∈ L(X) is a finitely ascensive operator
and isoloid. Then f(T ) satisfies generalized Weyl’s theorem if and only if T
does.
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Proof. Suppose that T satisfies generalized Weyl’s theorem. Moreover,
T has SVEP and hence the spectral theorem holds for σBW(T ) (see [5, The-
orem 3.4]). By Theorem 3.4 of [15], f(T ) satisfies generalized Weyl’s theorem
for every f ∈ H(σ(T )). The converse is clear.

The class of isoloid operators which are finitely ascensive is rather large.
In [31] the class ofH(p)-operators was defined to consist of all T ∈ L(X) such
that for all λ ∈ C there exists an integer p := p(λ) such that H0(T − λI) =
N((T −λI)p). Property H(p) is satisfied by every subscalar operator, and in
particular for p-hyponormal, log-hyponormal, and M -hyponormal operators
on Hilbert spaces ([31]). Furthermore, every multiplier of a commutative
semisimple Banach algebra is H(1) (see [1, Theorem 4.33]).

Evidently, every H(p)-operator is finitely ascensive, since H0(T − λI
− T ) = N((T − λI)p) = N((T − λI)n) for every n ≥ p, hence by Theo-
rem 2.8 the generalized Weyl’s theorem holds for T . Every H(p)-operator T
is polaroid and hence isoloid ([2]), so, by Theorem 2.9, f(T ) satisfies gener-
alized Weyl’s theorem for all f ∈ H(σ(T )).

We can say much more. Recall that a bounded operator is said to be
algebraically H(p) if there exists a nonconstant polynomial p such that p(T )
is H(p). Analogously, T ∈ L(X) is said to be algebraically paranormal if
there exists a nonconstant polynomial p such that p(T ) is paranormal.

Theorem 2.10. If T ∈ L(X) is an algebraically H(p)-operator then
f(T ) satisfies generalized Weyl’s theorem for all f ∈ H(σ(T )). Analogously,
if L(H), H a Hilbert space, is algebraically paranormal then f(T ) satisfies
generalized Weyl’s theorem for all f ∈ H(σ(T )).

Proof. Suppose that h(T ) is an H(p)-operator for some nonconstant
polynomial h. Then h(T ) has SVEP and hence T has SVEP ([1, The-
orem 2.40]). Therefore, generalized Browder’s theorem holds for T ([5]).
Furthermore, T is polaroid (see the proof of [17, Lemma 3.6]), so that
E(T ) = Π(T ). By Theorem 1.2 every H(p)-operator satisfies generalized
Weyl’s theorem. On the other hand, T is isoloid and since the spectral the-
orem holds for σBW(T ), by [15, Theorem 3.4] generalized Weyl’s theorem
holds for f(T ) for each f ∈ H(σ(T )).

The proof in the case where T ∈ L(H) is algebraically paranormal is
analogous: every algebraically paranormal operator on a Hilbert space has
SVEP ([6]), and is polaroid by [2, Lemma 4.3].

Every M -hyponormal operator is an H(p)-operator, so Theorem 2.10
subsumes the result of [15, Theorem 4.7] and extends [17, Theorem 3.1].
Generalized Weyl’s theorem for f(T ) has been proved in [15, Theorem 4.14]
by using different arguments.
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A closed subspace M of X reduces an operator T ∈ L(X) if there is a
closed subspace N of X such that X = M ⊕ N and both M and N are
invariant under T .

Theorem 2.11. Suppose that T ∈ L(X) is reduced by the eigenspaces
N((T−λI)k) for all k ≥ p and all λ ∈ C. Then T satisfies generalized Weyl’s
theorem if and only if any one of the conditions (ii)–(iv) of Theorem 2.8
holds.

Proof. By Theorem 2.8 it suffices to prove that T is finitely ascensive,
i.e. T − λI is of finite ascent for all λ ∈ C. By assumption for any k ≥ p,
and all λ ∈ C, there is an invariant subspace M of T such that we have
X = N((T −λI)k)⊕M . Suppose x ∈ N((T −λI)k+1) and write x = x1 +x2,
with x1 ∈ N((T − λI)k) and x2 ∈M . Then
(T −λI)k+1x = (T −λI)k+1x1 +(T −λI)k+1x2 = (T −λI)k(T −λI)x2 = 0.

So, (T − λI)x2 ∈ N((T − λI)k) ∩ M and then (T − λI)x2 = 0. Hence
x2 ∈ N(T − λI) ⊆ N((T − λI)k) and x ∈ N((T − λI)k). It follows that
N((T −λI)k+1) ⊆ N((T −λI)k) for any k ≥ p. The opposite inclusion holds
for every operator, so N((T − λI)k+1) = N((T − λI)k). Hence, T is finitely
ascensive.

Clearly, the assumption of Theorem 2.11 is satisfied if T is reduced by
each of eigenspaces.

3.. Generalized Weyl’s theorem and quasi-affinity. In this sec-
tion we study the problem of preserving generalized Weyl’s theorem from a
bounded operator S ∈ L(Y ) to T ∈ L(X) when T and S are intertwined by
a quasi-affinity.

Lemma 3.1. Suppose that S ∈ L(Y ) has SVEP at λ0, and let T ∈ L(X)
be such that there exists A ∈ L(X,Y ) injective for which SA = AT . Then T
has SVEP at λ0.

Proof. Let U ⊆ C be an open neighborhood of λ0 and f : U → X be an
analytic function such that (T − λI)f(λ) = 0 for all λ ∈ U . Then

(S − λI)Af(λ) = A(T − λI)f(λ) = 0 for all λ ∈ U.
Since S has SVEP at λ0 we have Af(λ) = 0, and since A is injective we
conclude that f(λ) = 0 for all λ ∈ U . Therefore T has SVEP at λ0.

Definition 3.2. The operator A ∈ L(X,Y ) between the Banach spaces
X and Y is a quasi-affinity if it has a trivial kernel and dense range. We
say that T ∈ L(X) is a quasi-affine transform of S ∈ L(Y ), and we write
T ≺ S, if there is a quasi-affinity A ∈ L(X,Y ) that intertwines T and S, i.e.
SA = AT . If there exist two quasi-affinities A ∈ L(X,Y ), B ∈ L(X,Y ) for
which SA = AT and BS = TB then we say that S and T are quasi-similar.
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Theorem 3.3. Let T ∈ L(X) and S ∈ L(Y ) be such that S has SVEP.
Then the following statements hold:

(i) If T and S are intertwined by an injective map A ∈ L(X,Y ) and
E(T ) ⊆ E(S) then generalized Weyl’s theorem for S implies gener-
alized Weyl’s theorem for T .

(ii) If T ≺ S, σ(S) ⊆ σ(T ), and S satisfies generalized Weyl’s theorem
then so does T .

Proof. (i) If S has SVEP then T has SVEP, by Lemma 3.1, so generalized
Browder’s theorem holds for T . By Theorem 1.2 it suffices to prove E(T ) =
Π(T ). Let λ ∈ E(T ). Then λ ∈ E(S) and since S satisfies generalized
Weyl’s theorem, λ ∈ Π(S). Let PS(λ) and PT (λ) denote, respectively, the
spectral projections associated with the spectral set {λ} for S and T . From
[19, Lemma 2.1], we have PS(λ)A = APT (λ). Since λ ∈ Π(S), we have
p := a(S − λI) = δ(S − λI) < ∞ and N((S − λI)p) = R(PS(λ)) (see [1,
Theorem 3.74]). Therefore, (S − λI)pPS(λ) = 0, and consequently

0 = (S − λI)pPS(λ)A = A(T − λI)pPT (λ).

Since A is injective, we have (T − λI)pPT (λ) = 0, and hence R(PT (λ)) ⊆
N((T − λI)p). The opposite inclusion is obvious, since the range of PT (λ)
is the quasi-nilpotent part of T − λI. Hence R(PT (λ)) = N((T − λI)p).
Arguing as in the last part of the proof of Theorem 2.8 we deduce that
Y = N((T − λI)p) ⊕ R((T − λI)p), from which it follows that λ ∈ Π(T ).
Therefore E(T ) = Π(T ).

(ii) The statement follows from (i) once we prove that σ(S) ⊆ σ(T )
entails E(T ) ⊆ E(S). Let λ ∈ E(T ). Since T ≺ S, from [19, Theorem 2.5]
it follows that λ ∈ σ(S). As σ(S) ⊆ σ(T ), λ is isolated in σ(S). It is easily
seen that λ is an eigenvalue of S. Indeed, let A ∈ L(X,Y ) be a quasi-affinity
for which SA = AT . Since λ is an eigenvalue of T there exists an x 6= 0 such
that (T − λI)x = 0. Then

(S − λI)Ax = A(T − λI)x = 0,

and since A is injective we have Ax 6= 0, so Ax is an eigenvector of S − λI.
Therefore, λ ∈ E(S) and hence E(T ) ⊆ E(S), as desired.

It is not surprising that, if T ≺ S, the preservation of generalized Weyl’s
theorem requires some spectral inclusions to be satisfied. If T ≺ S a clas-
sical result due to Rosenblum shows that σ(S) and σ(T ) must overlap (see
[20]). But also the stronger condition of quasi-similarity is, in general, not
sufficient to preserve the spectrum. This happens only in some special cases,
for instance if T and S are quasi-similar hyponormal operators, or whenever
T and S have totally disconnected spectra (see [20, Corollary 2.5]).
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We now introduce some important notions from local spectral theory. Let
U be an open subset of C and denote byH(U,X) the Fréchet space of all ana-
lytic functions f : U → X with respect the pointwise vector space operations
and the topology of locally uniform convergence. T ∈ L(X) has Bishop’s
property (β) if, for every open U ⊆ C and every sequence (fn) ⊆ H(U,X)
for which (λI − T )fn(λ) converges to 0 uniformly on every compact subset
of U , also fn → 0 in H(U,X). An important class of operators with property
(β) is the class of subnormal operators (i.e. restrictions of normal operators
to closed invariant subspaces). Note that property (β) implies property (C)
and hence SVEP (see [28, Proposition 1.2.19]).

A bounded operator T ∈ L(X) has the decomposition property (δ) if X =
XT (U) + XT (V ) for every open cover {U, V } of C. Decomposable operators
may be defined in several ways, for instance as satisfying property (β) and
property (δ) (see [28, Theorem 2.5.19] for relevant definitions). Note that
property (δ) implies SVEP for T ?. In fact T has property (δ) if and only if
T ∗ has property (β) (see [28, Theorem 2.5.19]).

Theorem 3.3 applies to operators T and S having a totally disconnected
spectrum, since they are decomposable. This result may be generalized as
follows:

Corollary 3.4. Suppose that T ∈ L(X) and S ∈ L(Y ) are decompos-
able and T ≺ S. If generalized Weyl’s theorem holds for S then it also holds
for T .

Proof. By Theorem 2.4.4 of [14] if T and S are decomposable and T ≺ S
then σ(T ) = σ(S). Moreover, S has SVEP.

Under the stronger condition of quasi-similarity the assumption of de-
composability of Corollary 3.4 may be relaxed as follows:

Corollary 3.5. Let T ∈ L(X) and S ∈ L(Y ) be quasi-similar.

(i) If S has property (β) then generalized Weyl’s theorem for S implies
generalized Weyl’s theorem for T .

(ii) If S is a Hilbert space operator for which property (C) holds, then
generalized Weyl’s theorem for S implies generalized Weyl’s theorem
for T .

Proof. (i) Suppose that S satisfies generalized Weyl’s theorem. If S has
property (β) and T , S are quasi-similar then, by a result of Putinar [32],
σ(T ) = σ(S). Moreover, property (β) entails SVEP and hence, by Theo-
rem 3.3, also T satisfies generalized Weyl’s theorem.

(ii) Property (C) entails SVEP and also in this case we have σ(T ) = σ(S)
(see [33]), so Theorem 3.3 applies.

The preservation of Weyl’s theorem presents a simpler situation:
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Theorem 3.6. Suppose that T ∈ L(X) and S ∈ L(Y ) are intertwined by
an injective map and S has SVEP. If E0(T ) ⊆ E0(S) and S satisfies Weyl’s
theorem, then so does T .

Proof. Since T has SVEP we know that Browder’s theorem holds for T .
In order to show Weyl’s theorem for T it is enough, by Theorem 1.2, to prove
E0(T ) = Π0(T ), or equivalently, by [1, Theorem 3.84], that H0(T − λI) is
finite-dimensional for all λ ∈ E0(T ).

Let λ ∈ E0(T ). Then λ ∈ E0(S) and since S satisfies Weyl’s theorem,
E0(S) = Π0(S). Let A ∈ L(X,Y ) be an injective map such that SA = AT .
Let x ∈ H0(T − λI). Then

lim
n→∞

‖(S−λI)nAx‖1/n = lim
n→∞

‖A(T−λI)nx‖1/n ≤ lim
n→∞

‖(T−λI)nx‖1/n = 0,

thus Ax ∈ H0(S − λI) and hence A(H0(T − λI)) ⊆ H0(S − λI). We know
E0(S) = Π0(S) and it has been observed before that this equality is equiva-
lent to H0(S−λI) being finite-dimensional. Since A is injective H0(T −λI)
is also finite-dimensional, so the proof is complete.

Since a finite ascensive operator has SVEP, the result of Theorem 3.6
shows that the hypothesis that S is reduced by its eigenspaces in [25, The-
orem 7] is not necessary.

We want now to study the preservation of generalized Weyl’s theorem in
the case that T and S are related by a very weak notion of intertwining which
dates back to Foiaş (cf. [14, Chapter 4] and [28, Chapter 3]). If T ∈ L(X)
and S ∈ L(Y ), the commutator C(S, T ) is the mapping on L(X,Y ) defined
by C(S, T )(A) := SA − AT for all A ∈ L(X,Y ). An operator A ∈ L(X,Y )
is said to intertwine T and S asymptotically if

(3.1) lim
n→∞

‖C(S, T )n(A)‖1/n = 0,

where by induction it is easy to show the binomial identity

C(S, T )n(A) =
n∑
k=0

(
n

k

)
(−1)kSn−kAT k.

Evidently, this notion is a generalization of the intertwining condition
C(S, T )(A) = 0 which appears in the definition of T ≺ S. This notion is
also a generalization of the higher order intertwining condition:

C(S, T )n(A) = 0 for some n ∈ N.

Note that if T and S are generalized scalar then the condition (3.1) holds
if and only if C(S, T )n(A) = 0 for some n ∈ N (see [14, Theorem 4.4.5]).
If the pairs (S, T ) and (T, S) are both asymptotically intertwined by some
quasi-affinity then T and S are said to be asymptotically quasi-similar. We
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recall that if a pair (S, T ) is asymptotically intertwined by A ∈ L(X,Y ) then

(3.2) A(XT (F )) ⊆ YS(F ) for all closed sets F ⊆ C

(see Corollary 3.4.5 of [28]).
The result of Theorem 3.6 may be generalized as follows:

Theorem 3.7. Let T ∈ L(X) and S ∈ L(Y ) be such that the pair (S, T )
is asymptotically intertwined by an injective map A ∈ L(X,Y ). Suppose that
T has SVEP and E0(T ) ⊆ E0(S). If S satisfies Weyl’s theorem then so
does T .

Proof. By Theorem 1.2 it suffices to prove E0(T ) = Π0(T ), or equiva-
lently that H0(T − λI) is finite-dimensional for all λ ∈ E0(T ). If λ ∈ E0(T )
then λ ∈ E0(S) and since S satisfies Weyl’s theorem, H0(S − λI) is finite-
dimensional. By (3.2) we have

A(H0(T − λI)) = A(XT ({λ})) ⊆ YS({λ}) = H0(S − λI),
and since A is injective, H0(T − λI) is finite-dimensional. Therefore, T sat-
isfies Weyl’s theorem.

The analogue of Theorem 3.7 for generalized Weyl’s theorem does not
hold. To see that, consider a very particular case of asymptotically quasi-
similar operators: T, S ∈ L(X) are said to be quasi-nilpotent equivalent if
each of the pairs (S, T ) and (T, S) is asymptotically intertwined by the iden-
tity operator I on X. Note that any quasi-nilpotent operator and the zero
operator are quasi-nilpotent equivalent.

Example 3.8. Generalized Weyl’s theorem may fail for a quasi-nilpotent
operator. For instance, if T ∈ L(`2(N)) is defined by

T (x1, x2, . . . ) = (x2/2, x3/3, . . . ) for all (xn) ∈ `2(N),

then T is quasi-nilpotent, so has SVEP, and

{0} = E(T ) 6= σ(T ) \ σBW(T ) = ∅.
Obviously, generalized Weyl’s theorem holds for S := 0. Clearly, E(T ) =
E(0) = {0}. This example shows that, in general, generalized Weyl’s theorem
is not transmitted whenever S and T are asymptotically intertwined by a
quasi-affinity, even in the case that the inclusion E(T ) ⊆ E(S) is satisfied.

Theorem 3.9. Let T ∈ L(X) and S ∈ L(Y ) be asymptotically in-
tertwined by a quasi-affinity A ∈ L(X,Y ). Assume that S is isoloid and
Π(S) ⊆ Π(T ).

(i) If S has property (C), and if either T or T ∗ has SVEP, then general-
ized Weyl’s theorem for S implies that T satisfies generalized Weyl’s
theorem.



Generalized Weyl’s theorem 117

(ii) If T and S are asymptotically quasi-similar and each has one of the
properties (δ) or (C), then generalized Weyl’s theorem for S implies
generalized Weyl’s theorem for T .

Proof. (i) If T or T ∗ has SVEP then Browder’s theorem (or equivalently,
generalized Browder’s theorem) holds for T (see [5, Corollary 3.3]). By The-
orem 1.2 it then suffices to prove E(T ) = Π(T ). Let λ ∈ E(T ). Then λ
is an eigenvalue of T and an isolated point of σ(T ). Since A is injective,
Corollary 3.5.8 of [28] entails that λ ∈ σ(S) (more precisely, λ belongs to the
approximate-point spectrum of S). Since A has dense range, property (C)
for S entails, by [27, Theorem 4.1], that σ(S) ⊆ σ(T ). This implies that λ is
an isolated point of σ(S), hence, by the isoloid condition, λ is an eigenvalue
of S, i.e. λ ∈ E(S). Since S satisfies generalized Weyl’s theorem, we have
E(S) = Π(S) ⊆ Π(T ), so λ ∈ Π(T ).

(ii) Note that T or T ∗ has SVEP, so Browder’s theorem holds for T . By
[28, Corollary 3.5.16] we know that σ(T ) = σ(S). If λ ∈ E(T ) then λ is an
isolated point of σ(S), hence by the isoloid condition λ ∈ E(S) = Π(S) ⊆
Π(T ).

Remark 3.10. Without assuming the inclusion Π(S) ⊆ Π(T ), the re-
sults of Theorem 3.9 do not hold. For instance, the operators S and T of
Example 3.8 do not satisfy this inclusion, since Π(T ) = ∅ while Π(S) = {0}.
Clearly, S is isoloid, and also all the other assumptions on T and S are sat-
isfied, since T and S are decomposable.

Note that if T is polaroid then the assumption Π(S) ⊆ Π(T ) in part (ii)
of Theorem 3.9 is redundant. In fact, from σ(S) = σ(T ) it follows that every
λ ∈ Π(S) is an isolated point of σ(T ), and hence a pole of T .

Remark 3.11. It is easy to see that under the stronger assumption that
C(S, T )n(A) = 0 for some n ∈ N, the isoloid condition on S in the statement
of Theorem 3.9 is not required. To see this, observe first that every eigenvalue
of T is an eigenvalue of S. In fact, if x ∈ X is an eigenvector for the eigenvalue
λ of T , then

0 = C(S, T )n(A)x = C(S − λI, T − λI)n(A)x = (S − λI)nAx,
and since A is injective we have Ax 6= 0, so (S − λI)n is not injective. This
implies that S − λI is not injective either, so λ is an eigenvalue of S. Now,
we have seen in the proof of Theorem 3.9((i) or (ii)) that if λ ∈ E(T ) then
λ is an isolated point of σ(S). Moreover, λ is an eigenvalue of T and hence
an eigenvalue of S, so λ ∈ E(S) = Π(S) ⊆ Π(T ).

Note that in Theorem 3.9 if we assume S is decomposable, always under
the assumption C(S, T )n(A) = 0, then the assumption that T has SVEP can
be dropped. In fact, S has SVEP and it can be shown that SVEP carries
over from S to T .
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Corollary 3.12. Suppose that T ∈ L(X) and S ∈ L(Y ) are decompos-
able operators which are asymptotically intertwined by a quasi-affinity. If S
is isoloid and Π(S) ⊆ Π(T ) then generalized Weyl’s theorem for S implies
generalized Weyl’s theorem for T .

Proof. S has (δ), both T and T ∗ have SVEP. Hence Theorem 3.9 ap-
plies.

Theorem 3.13. Suppose that T, S ∈ L(X) are quasi-nilpotent equiv-
alent, S a polaroid operator which has SVEP, and Π(S) ⊆ Π(T ). Then
generalized Weyl’s theorem for S implies generalized Weyl’s theorem for T .

Proof. Observe first that quasi-nilpotent equivalence preserves SVEP
and quasi-nilpotent equivalent operators have the same spectra ([14, The-
orems 2.2 and 2.3]). Moreover, by [27, Proposition 2.2] (taking A = I) we
have XT (F ) ⊆ XS(F ) for every closed subset F of C. Evidently, the opposite
inclusion holds by symmetry. In particular, taking F = {λ} we conclude that
H0(T − λI) = H0(S − λI) for every λ ∈ C.

Now, let λ ∈ E(T ). Then λ is an isolated point of σ(T ) = σ(S) and
T − λI is not injective. Since N(T − λI) ⊆ H0(T − λI) it follows that
H0(S − λI) = H0(T − λI) 6= {0}. Now, since S is polaroid, there exists
p := p(λ) ∈ N such that H0(S − λI) = N((S − λI)p) (see [4, Theorem 2.9]).
If S − λI were injective then (S − λI)p would also be injective and hence
H0(S − λI) = {0}, which is impossible. Therefore, λ ∈ E(S), i.e. E(T ) ⊆
E(S), and by symmetry we conclude that E(T ) = E(S). Since S satisfies
generalized Weyl’s theorem, we have E(S) = Π(S) and hence E(T ) ⊆ Π(T ),
from which it follows that generalized Weyl’s theorem holds for T .

The operators T and S of Example 3.8 show that without the assumption
Π(S) ⊆ Π(T ), the result of Theorem 3.13 in general does not hold. A very
particular case of quasi-nilpotent equivalence is when C(S, T )n(I) = 0 for
some n ∈ N. If T and S commute then C(S, T )n(I) = (S − T )n = 0. In this
case T and S differ by a commuting nilpotent operator N and, without any
condition, generalized Weyl’s theorem is transmitted from S to T (see [7]).

Two operators T ∈ L(X) and S ∈ L(Y ) are said to be asymptotically
similar if there exists a bijection A ∈ L(X,Y ) such that A intertwines S and
T asymptotically and its inverse A−1 intertwines T and S asymptotically.
This is a slight generalization of quasi-nilpotent equivalence (see [14] for
details).

Theorem 3.14. Suppose that T ∈ L(X) and T ∈ L(Y ) are asymptoti-
cally similar, S a polaroid with SVEP, and Π(S) ⊆ Π(T ). Then generalized
Weyl’s theorem for S implies generalized Weyl’s theorem for T .

Proof. As noted before, asymptotic quasi-similarity, hence asymptotic
similarity, preserves the spectrum and SVEP (see [27, Theorem 3.5]). There-
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fore, T satisfies generalized Browder’s theorem. To show E(T ) = Π(T ) we
proceed as in the proof of Theorem 3.13, taking into account the equality
A(H0(T − λI)) = H0(S − λI), always by [27, Proposition 2.2]. Therefore
generalized Weyl’s theorem for S implies E(T ) = E(S) = Π(S) ⊆ Π(T ).
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