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Boundedness of Fourier integral operators on Fourier
Lebesgue spaces and affine fibrations

by

Fabio Nicola (Torino)

Abstract. We study Fourier integral operators of Hörmander’s type acting on the
spaces FLp(Rd)comp, 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier
transform is in Lp. We show that the sharp loss of derivatives for such an operator to be
bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x, η) with
respect to the space variables x. Indeed, we show that operators of order m = −r|1/2−1/p|
are bounded on FLp(Rd)comp if the mapping x 7→ ∇xΦ(x, η) is constant on the fibres, of
codimension r, of an affine fibration.

1. Introduction. Consider the spaces FLp(Rd)comp of compactly sup-
ported distributions whose Fourier transform is in Lp(Rd), with the norm
‖f‖FLp = ‖f̂‖Lp . In [3] we studied the boundedness on these spaces of
Hörmander’s type Fourier integral operators (FIOs) of the form

(1.1) Tf(x) =
�
e2πiΦ(x,η)σ(x, η)f̂(η) dη.

Here the Fourier transform of f ∈ S(Rd) is normalized to be f̂(η) =	
f(t)e−2πitη dt. The symbol σ is in Sm1,0, Hörmander’s class of order m, that

is, σ ∈ C∞(R2d) and

(1.2) |∂αx ∂βη σ(x, η)| ≤ Cα,β〈η〉m−|β|, ∀(x, η) ∈ R2d,

where, as usual, 〈η〉 := (1 + |η|2)1/2. We also suppose that σ has compact
support with respect to x.

The phase Φ(x, η) is real-valued, positively homogeneous of degree 1 in η,
and smooth on Rd × (Rd \ {0}). We assume Φ(x, η) is defined on an open
subset Λ ⊂ Rd × (Rd \ {0}), conic in dual variables, containing the closure
of the set

Λ′ = {(x, η) ∈ Rd × (Rd \ {0}) : (x, λη) ∈ suppσ for some λ > 0}
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in Rd × (Rd \ {0}). We also assume the non-degeneracy condition

(1.3) det
(

∂2Φ

∂xi∂ηl

∣∣∣∣
(x,η)

)
6= 0 ∀(x, η) ∈ Λ.

It is easy to see that such an operator maps continuously the space S(Rd)
of Schwartz functions into the space C∞0 (Rd) of test functions. See [8, 22] for
the general theory of FIOs, and [19, 20] for results in Lp.

The main result of [3] states that if

m ≤ −d
∣∣∣∣12 − 1

p

∣∣∣∣,
the operator T above, initially defined on C∞0 (Rd), extends to a bounded
operator on FLp(Rd)comp whenever 1 ≤ p < ∞. For p = ∞, T extends to
a bounded operator on the closure of C∞0 (Rd) in FL∞(Rd)comp. Moreover
this loss of derivatives was proved to be generally sharp in any dimension,
even for phases linear in η. This result can be regarded as an investigation
of the minimal loss of derivatives occurring in the Beurling–Helson theorem
[1, 9] (see also [11, 16]).

However, it was shown in [16] that, in the case of phases linear in x,
local FLp-boundedness holds without loss of derivatives, i.e. for m = 0.
This suggests the possibility of intermediate thresholds, depending on the
rank of the Hessian d2

xΦ(x, η).
A similar phenomenon is well-known for Lp-boundedness: a celebrated

result by Seeger, Sogge and Stein [17] shows that T is bounded on Lp,
1 < p < ∞, if m ≤ −(d − 1)|1/2 − 1/p| (see also [20, 21]). Moreover, if
the rank of the Hessian d2

ηΦ(x, ·) is ≤ r, then the threshold goes up to
−r|1/2−1/p|, provided a certain smooth factorization condition is satisfied.
Although that condition is not necessary for boundedness to hold, it turns
out to be essential in the proof, given in [17], when the rank of d2

ηΦ(x, η) is
allowed to drop, and its relaxation is an open problem. The main reference
on this topic is Ruzhansky’s survey [13] and book [14], where the case of
complex-valued phases is also considered. See also [12].

In this paper we present a variant of the smooth factorization condition
which is relevant when dealing with FLp spaces. Then we show, under that
condition, that in fact the above threshold for local FLp-boundedness can
go up.

Definition 1.1 (Spatial smooth factorization condition). Let 0 ≤ r ≤ d
and suppose that for every (x0, η0) ∈ Λ with |η0| = 1, there exists an open
neighbourhood Ω of x0 and an open neighbourhood Γ ′ ⊂ Sd−1 of η0, with
Ω×Γ ′ ⊂ Λ, satisfying the following condition. For every η ∈ Γ ′ there exists
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a smooth fibration of Ω, smoothly depending on η and with affine fibres of
codimension r, such that ∇xΦ(·, η) is constant on every fibre (1).

Observe that this condition implies that the Hessian d2
xΦ(x, η) has rank

≤ r. Moreover the condition is always satisfied if r = d or if d2
xΦ(x, η)

has constant rank r (in particular, for phases linear in x, corresponding to
r = 0).

Theorem 1.2. Let σ and Φ satisfy the above assumptions. Moreover,
assume that Φ satisfies the spatial smooth factorization condition (Definition
1.1) for some r. If

(1.4) m ≤ −r
∣∣∣∣12 − 1

p

∣∣∣∣,
then the corresponding FIO T, initially defined on C∞0 (Rd), extends to a
bounded operator on FLp(Rd)comp whenever 1 ≤ p < ∞. For p = ∞, T
extends to a bounded operator on the closure of C∞0 (Rd) in FL∞(Rd)comp.

The threshold in (1.4) is sharp in any dimension d ≥ 1, even for phases
Φ(x, η) which are linear in η. Indeed, in dimension d, consider the phase
Φ(x, η) =

∑r
k=1 ϕ(xk)ηk +

∑d
k=r+1 xkηk, where ϕ : R → R is a diffeomor-

phism with ϕ(t) = t for |t| ≥ 1 and whose restriction to (−1, 1) is non-linear.
Consider then the symbol

σ(x, η) = G(x)〈η〉m with G ∈ C∞0 (Rd), G ≡ 1 on [−1, 1]d.

Let moreover 1 ≤ p ≤ 2. Then Theorem 1.2 and an easy variant of the argu-
ments in [3, Section 6] show that the corresponding operator T :FLp(Rd)comp

→ FLp(Rd)comp is bounded if and only if m satisfies (1.4). By duality one
can construct similar examples for 2 < p ≤ ∞.

The proof of the result in [3], corresponding to Theorem 1.2 with r = d
(when the spatial smooth factorization condition is automatically satisfied)
used tools from time-frequency analysis, relying on our previous work [2].
Instead, the proof of Theorem 1.2 is inspired by more classical arguments
in [17]. Indeed, we will conjugate the operator T above with the Fourier
transform, obtaining the FIO

T̃ f(x) = F ◦ T ◦ F−1f(x) =
� �
e2πi(Φ(η,y)−xη)σ(η, y)f(y) dy dη,

for which Lp-boundedness has to be proved. However, notice that we cannot
apply to T̃ the well-known results of the classical (i.e. local) Lp-theory.
Indeed, the corresponding symbol is no longer compactly supported with
respect to y and the phase is no longer homogeneous with respect to η.

(1) To be precise, by “a fibration of Ω, smoothly depending on η ∈ Γ ′ and with fibres
of codimension r” we mean that a smooth function Π : Ω × Γ ′ → Rd is given, with dxΠ
having constant rank r. The fibres are the level sets of the mapping Π(·, η).
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Among other things, it does not satisfy the (frequency) smooth factorization
condition of [17]. In fact, for operators T̃ of this special type we will prove
results in Lp in the limiting cases p = 1,∞ too, which are generally false,
for example, for the operator T above.

Our strategy consists in splitting T̃ into dyadic pieces via a Littlewood–
Paley decomposition of the physical domain and then each dyadic operator
is further split into a certain number of FIOs with symbols localized in
thin boxes of the frequency domain, and phases essentially linear in η. By
comparison, notice that in the classical Lp-theory one performs a dyadic de-
composition and then a second decomposition, both in the frequency domain
([17, 20]); moreover, the geometry of our second decomposition is different
from that in [17].

This discussion also shows that Theorem 1.2 can be read as a global
boundedness result on Lp for the operator T̃ , and hence it partially overlaps
some recent results in [6] (see also some examples in [4] and, for the case
p = 2, [5, 15]). In fact, sharp results are obtained there for general classes
of operators, but no improvements upon them seem to be considered, under
additional conditions like a smooth factorization.

Notation. We write A . B if A ≤ CB for some constant C > 0 which
may depend on parameters, like Lebesgue exponents or the dimension d. We
write A � B if A . B and B . A. Finally, for R > 0, x0 ∈ Rd, we denote
by BR(x0) the open ball in Rd with centre x0 and radius R.

2. Preliminary results on FIOs. In the next section we will make
use of the well-known composition formula for a pseudodifferential operator
and a FIO. We collect here what is needed in the subsequent proofs.

First we recall that a regularizing operator is a pseudodifferential oper-
ator

Rf(x) = r(x,D)f =
�
e2πixηr(x, η)f̂(η) dη,

with a symbol r in the Schwartz space S(R2d) (equivalently, an operator with
kernel in S(R2d), which maps S ′(Rd) into S(Rd)). Then the composition
formula for a pseudodifferential operator and a FIO is as follows (see, e.g.,
[8], [10, Theorem 4.1.1], [18, Theorem 18.2], [22]).

Theorem 2.1. Let the symbol σ and the phase Φ satisfy the assumptions
in the Introduction. Assume, in addition, σ(x, η) = 0 for |η| ≤ 1 if Φ(x, η)
is not linear in η. Let q(x, η) be a symbol in Sm

′
1,0. Then

q(x,D)T = S +R,

where S is a FIO with the same phase Φ and symbol s(x, η) of order m+m′

satisfying

supp s ⊂ suppσ ∩ {(x, η) ∈ Λ : (x,∇xΦ(x, η)) ∈ supp q},
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and R is a regularizing operator with symbol r(x, η) satisfying

Πη(supp r) ⊂ Πη(suppσ),

where Πη is the orthogonal projection on Rd
η.

Moreover, the symbol estimates satisfied by s and the seminorm estimates
of r in the Schwartz space are uniform when σ and q vary in a bounded subset
of Sm1,0 and Sm

′
1,0 respectively.

3. Proof of the main result (Theorem 1.2). By means of a smooth
cut off function near η = 0 we split the symbol σ of T into a symbol sup-
ported where |η| ≤ 4 and a symbol supported where |η| ≥ 2. Now, the first
symbol yields an operator which is bounded on all FLp(Rd)comp, 1 ≤ p <∞,
as well as on the closure of C∞0 (Rd) in FL∞(Rd)comp. This was shown in [3,
Proposition 4.1], regardless of the order of the operator, and without assum-
ing the condition (1.3), nor the spatial smooth factorization condition (2).

Hence we will prove the estimate

(3.1) ‖Tf‖FLp . ‖f‖FLp , ∀f ∈ C∞0 (Rd),

1 ≤ p ≤ ∞, for an operator satisfying the assumptions of Theorem 1.2 and
whose symbol σ satisfies, in addition,

σ(x, η) = 0 for |η| ≤ 2.

This clearly implies the conclusion of Theorem 1.2.
We first perform a further reduction. For every (x0, η0) ∈ Λ′ with |η0| =

1, there exist an open neighbourhood Ω ⊂ Rd of x0, an open conic neigh-
bourhood Γ ⊂ Rd \ {0} of η0 and δ > 0 such that

(3.2) |det ∂2
x,ηΦ(x, η)| ≥ δ > 0, ∀(x, η) ∈ Ω × Γ,

and

(3.3) for each x ∈ Ω, the map Γ 3 η 7→ ∇xΦ(x, η) is a diffeomorphism
onto its range.

Hence, by a compactness argument and a finite partition of unity we can
assume that σ itself is supported in a set of the type Ω′ × Γ for some open
Ω′ ⊂⊂ Ω ⊂ Rd and conic open Γ ⊂ Rd \ {0}, with Φ satisfying the above
conditions on Ω × Γ , as well as the spatial smooth factorization condition
(Definition 1.1) for x ∈ Ω and η ∈ Γ ′ := Γ ∩ Sd−1.

Now, we will prove (3.1) with p = 1,∞, for an operator T of order
m = −r/2. Then the desired result when 1 < p <∞, for operators of order
m = −r|1/2−1/p|, will follow by complex interpolation with the well-known
case L2 (see e.g. [20, p. 402]).

(2) There the desired boundedness was proved on the so-called modulation spaces
Mp. However, it was observed that the corresponding norm is equivalent to that of FLp
for distributions supported in a fixed compact set.
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In detail, for the interpolation step we argue as follows. For s ∈ R, denote
by FLps the space of tempered distributions f such that

‖f‖FLps :=
(�
〈η〉ps|f̂(η)|p dη

)1/p
<∞,

with the obvious changes if p=∞. For every s ∈ R, the operator 〈D〉s defines
an isomorphism of FLps onto FLp. Hence, the operator T = T 〈D〉−s〈D〉s
is bounded FLps → FLp if T 〈D〉−s is bounded on FLp. Observe moreover
that T 〈D〉−s is a FIO with the same phase as T , and symbol σ(x, η)〈η〉−s,
which has order m− s.

Suppose now that the desired result is already obtained for p = 1, 2.
Take 1 < p < 2 and consider a FIO T of order m = −r(1/p−1/2). Then, by
the above remarks, T extends to a bounded operator FL1

m+r/2 → FL
1 and

L2
m → L2. Hence, the boundedness on FLp follows by complex interpolation,

because, if θ ∈ (0, 1) satisfies (1− θ)/1 + θ/2 = 1/p, then (m+ r/2)(1− θ) +
mθ = 0. The proof for 2 < p <∞ is similar.

Of course, when in (1.4) there is a strict inequality, the desired result
follows from the equality case, for an operator with order m′ < m also has
order m.

Hence, from now on, we assume m = −r/2 and prove (3.1) for p = 1,∞.
The first step consists in conjugating T with the Fourier transform. The

desired results will be proved if we verify that the operator T̃ = F ◦T ◦F−1

is continuous on L1 and on the closure of C∞0 in L∞. This operator has
integral kernel

K(x, y) =
�
e2πi(Φ(η,y)−xη)σ(η, y) dη,

which is smooth everywhere and supported in Rd×Γ . Indeed, as anticipated
in the Introduction, the problem is the integrability at infinity.

Consider now the usual Littlewood–Paley decomposition, but on the
physical domain. Namely, fix a smooth function ψ0(y) such that ψ0(y) = 1
for |y| ≤ 1 and ψ0(y) = 0 for |y| ≥ 2. Set ψ(y) = ψ0(y) − ψ0(2y), ψj(y) =
ψ(2−jy), j ≥ 1. Then

1 =
∞∑
j=0

ψj(y), ∀y ∈ Rd.

Notice that if j ≥ 1, then ψj is supported where 2j−1 ≤ |y| ≤ 2j+1. Since
σ(η, y) = 0 for |y| ≤ 2, we can write the kernel above as

K =
∑
j≥1

Kj ,

where
Kj(x, y) =

�
e2πi(Φ(η,y)−xη)σj(η, y) dη,
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and

σj(η, y) := σ(η, y)ψj(y).

Observe that η lies in the open neighbourhood Ω′. After shrinking Ω′ and
Γ if necessary, we see from the spatial smooth factorization condition that
there exist an open neighbourhood U×V of (0, 0) in Rr×Rd−r and a smooth
change of variables U × V 3 (u, v) 7→ ηy(u, v) ∈ Ωy, smoothly depending on
the parameter y ∈ Γ and homogeneous of degree 0 with respect to y, with
Ω′ ⊂ Ωy ⊂ Ω, such that the function η 7→ ∇1Φ(η, y) is constant on each of
the (d− r)-dimensional (pieces of) affine planes u = const. Here we denote
by ∇1 the gradient with respect to the first d variables, i.e. ∇1Φ(η, y) =
∇η (Φ(η, y)). Note that, because of the previous change of variables, we are
using Definition 1.1 with the variables (x, η) replaced by (η, y).

For every j ≥ 1 we choose uνj , ν = 1, . . . , Nr(j), such that |uνj − uν
′
j | ≥

C02−j/2 for different ν, ν ′, and such that U is covered by balls with centre
uνj and radius C12−j/2. It is easy to see that Nr(j) = O(2jr/2). Let then
ηνj = ηy(uνj , 0). Consider moreover a smooth partition of unity tailored to the
covering above, namely given by smooth functions χνj (u), ν = 1, . . . , Nr(j),
supported in the above balls, and satisfying the estimate

(3.4) |∂αuχνj (u)| . 2j|α|/2.

Accordingly we decompose the kernel Kj as
∑Nr(j)

ν=1 Kν
j with

(3.5) Kν
j (x, y) =

�
e2πi(Φ(η,y)−xη)χνj (u(y, η))σj(η, y) dη,

where the function u = u(y, η) is obtained by the inverse change of variables.
Consider now the second order Taylor expansion of Φ(·, y) at ηνj :

Φ(η, y) = Φ(ηνj , y) + 〈∇1Φ(ηνj , y), η − ηνj 〉+Rνj (η, y),

where

(3.6) Rνj (η, y) =
1
2

1�

0

(1− t)(d2
1Φ)(ηνj + t(η − ηνj ), y)[η − ηνj , η − ηνj ] dt.

Here d2
1Φ stands for the Hessian of Φ with respect to the first d variables,

regarded as a bilinear form.
For fixed j and ν, after a rotation we perform a splitting (η′, η′′) of η

such that the vectors η′′ are tangent to the pieces of plane u = uνj . We then
consider the operator

Lνj = (1− 〈2−j/2∇η′ , 2−j/2∇η′〉)(1− 〈∇η′′ ,∇η′′〉).
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We have

(1+4π22−j |(∇1Φ(ηνj , y)−x)′|2)(1+4π2|(∇1Φ(ηνj , y)−x)′′|2)e2πi〈∇1Φ(ηνj ,y)−x,η〉

= Lνj e
2πi〈∇1Φ(ηνj ,y)−x,η〉.

Moreover, we will prove in the Appendix that
(3.7)
|(Lνj )N (e2πi(Φ(ηνj ,y)−〈∇1Φ(ηνj ,y),η

ν
j 〉+Rνj (η,y))χνj (u(y, η))σj(η, y))| ≤ CN2−jr/2.

Hence, a repeated integration by parts in (3.5) yields

|Kν
j (x, y)| . 2−jr(1+2−j/2|(∇1Φ(ηνj , y)−x)′|)−2N(1+|(∇1Φ(ηνj , y)−x)′′|)−2N,

where we take into account that we integrate on a set of measure . 2−jr/2.
Hence one sees that, choosing N > d/2,

(3.8)
�
|Kν

j (x, y)| dx . 2−jr/2.

To treat the integral of the kernel with respect to y, in view of (3.3) we
can perform the change of variable y 7→ ∇1Φ(ηνj , y), whose inverse jacobian
determinant is homogeneous of degree 0 and uniformly bounded because of
(3.2). We therefore obtain

(3.9)
�
|Kν

j (x, y)| dy =
�

Γ

|Kν
j (x, y)| dy . 2−jr/2.

It follows from (3.8), (3.9) and the Schur test (see e.g. [7, Theorem 6.18])
that the operators with kernels Kν

j are bounded on L1 and L∞, with norm
O(2−jr/2). Summing over ν = 1, . . . , Nr(j) we see that the operators with
kernels Kj satisfy the uniform estimates∥∥∥�Kj(·, y)f(y) dy

∥∥∥
Lp

. ‖f‖Lp , p = 1,∞, ∀u ∈ S(Rd).

Coming back to the FLp spaces we see that the operators

Tjf(x) :=
�
e2πiΦ(x,η)σ(x, η)ψj(η)f̂(η) dη

therefore satisfy the estimates

(3.10) ‖Tjf‖FLp . ‖f‖FLp , p = 1,∞, ∀u ∈ S(Rd).

Hence, in order to obtain the desired estimate for the original operator
T =

∑∞
j=1 Tj , we need to sum the estimates (3.10) over j ≥ 1.

Summing estimates (3.10) for p = 1. Observe that if χ is a smooth
function supported where B−1

0 ≤ |η| ≤ B0 for some B0 > 0, then trivially

(3.11)
∞∑
j=1

‖χ(2−jD)f‖FL1 . ‖f‖FL1

for every f ∈ S(Rd), where χ(2−jD)f = F−1[χ(2−j ·)f̂ ].
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Also, notice that, due to the frequency localization of Tj , the estimate
(3.10) for p = 1 can be refined as

‖Tjf‖FL1 = ‖Tj(χ(2−jD)f)‖FL1 . ‖χ(2−jD)f‖FL1 ,

where χ is a smooth function satisfying χ(η) = 1 for 1/2 ≤ |η| ≤ 2 and
χ(η) = 0 for |η| ≤ 1/4 and |η| ≥ 4 (so that χψ = ψ). Summing over j this
last estimate with the aid of (3.11) we obtain

‖Tf‖FL1 . ‖f‖FL1 ,

which is the desired estimate.

Summing estimates (3.10) for p = ∞. Here we use the following
trivial remark. For k ≥ 0, let fk ∈ S(Rd) satisfy supp f̂0 ⊂ B2(0) and

supp f̂k ⊂ {η ∈ Rd : 2k−1 ≤ |η| ≤ 2k+1}, k ≥ 1.

If the sequence fk is bounded in FL∞(Rd), then the series
∑∞

k=0 fk converges
in FL∞(Rd) and

(3.12)
∥∥∥ ∞∑
k=0

fk

∥∥∥
FL∞

. sup
k≥0
‖fk‖FL∞ .

Indeed, at each point in the frequency domain there are at most two non-zero
terms in the sum. This yields

‖Tf‖FL∞ =
∥∥∥∑
k≥0

ψk(D)Tf
∥∥∥
FL∞

. sup
k≥0
‖ψk(D)Tf‖FL∞(3.13)

= sup
k≥0

∥∥∥ ∞∑
j=1

ψk(D)Tjf
∥∥∥
FL∞

.

Notice that the sequence of symbols σj(x, η) is bounded in S
−r/2
1,0 , whereas

the sequence of symbols ψk(η) is bounded in S0
1,0.

Applying Theorem 2.1 to each product ψk(D)Tj , we have

(3.14) ψk(D)Tj = Sk,j +Rk,j ,

where Sk,j are FIOs with the same phase Φ and symbols σk,j belonging to
a bounded subset of S−d/21,0 , supported in

(3.15) {(x, η) ∈ Ω′ × Γ : |∇xΦ(x, η)| ≤ 2, 2j−1 ≤ |η| ≤ 2j+1} if k = 0,

and in

(3.16)
{(x, η) ∈ Ω′ × Γ : 2k−1 ≤ |∇xΦ(x, η)| ≤ 2k+1, 2j−1 ≤ |η| ≤ 2j+1} if k ≥ 1.

The operators Rk,j are smoothing operators whose symbols rk,j are in a
bounded subset of S(R2d) and supported where 2j−1 ≤ |η| ≤ 2j+1.



216 F. Nicola

Observe that, by Euler’s identity and (3.2),

|∇xΦ(x, η)| = |∂2
x,ηΦ(x, η)η| � |η|, ∀(x, η) ∈ Ω × Γ.

Inserting this equivalence in (3.15) and (3.16), we find that there exists
N0 > 0 such that σk,j vanishes identically if |j − k| > N0.

On the other hand it is easily seen that the functions rk(x, η) :=∑∞
j=1 rj,k(x, η) are well defined and belong to a bounded subset of the

Schwartz space S(Rd). As a consequence, we have
∞∑
j=1

ψk(D)Tj =
∑

j≥1 : |j−k|≤N0

Sk,j + rk(x,D).

It is then clear that the right-hand side in (3.13) can be dominated by the
FL∞ norm of f by using (3.14), (3.10) with p =∞, and the fact that ψk(D),
Rj,k and rk(x,D) are uniformly bounded on FL∞.

This concludes the proof of Theorem 1.2.

Appendix. In this appendix we give some details of the proof of (3.7).
We use the same notation as in the proof of Theorem 1.2. We also ob-
serve that all the formulae below are meant to hold on the support of
χνj (u(y, η))σj(η, y).

First we notice that the following key formula holds:

(3.17) ∇η′′ = A(u, v)∇v +O(2−j/2)∇u.

Indeed,
∇η′′ = A(u, v)∇v +B(u, v)∇u

for suitable smooth matrices A and B. On the other hand, because of our
choice of the splitting η′, η′′, we have B(uνj , v) = 0 for every v. A Taylor
expansion of B(u, v) with respect to u, around u = uνj , then shows (3.17),
because |u− uνj | ≤ C12−j/2.

Similarly it turns out that

∇v = A′(u, v)∇η′′ +O(2−j/2)∇η′ ,

which implies the estimate

(3.18)
∂η′

∂v
= O(2−j/2)

for the Jacobian matrix ∂η′/∂v. Moreover, using (3.18) and a Taylor expan-
sion of η′, as a function of (u, v), around (uνj , 0), one deduces

(3.19) (η − ηνj )′ = O(2−j/2).
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Now, we have to show that the repeated application of the first order oper-
ators

(3.20) 2−j/2∂η′k , ∂η′′l , k = 1, . . . , r, l = 1, . . . , d− r,

to
e2πi(Φ(ηνj ,y)−〈∇1Φ(ηνj ,y),η

ν
j 〉+Rνj (η,y))χνj (u(y, η))σj(η, y)

yields expressions dominated by C ′2−jr/2.
This is of course true when these operators fall on σj(η, y), since σ is a

symbol of order −r/2.
When the operators 2−j/2∂η′k fall on χνj (u(y, η)) one obtains acceptable

terms because the factor 2−j/2 in front of the derivative offsets the loss in
(3.4). The same happens for the derivatives ∂η′′l , because of (3.17) and the
fact that χνj (u(y, η)) is constant on the (pieces of) planes u = const.

Hence it remains to prove that the repeated application of the operators
in (3.20) on Rνj (η, y) yields uniformly bounded expressions. To this end,
denote by Pξ the orthogonal projection on the vector space parallel to the
plane u = const which contains ξ := ηνj + t(η − ηνj ), 0 ≤ t ≤ 1. We observe
that

(η − ηνj )′′ − Pξ((η − ηνj )′′) = 0 if (η − ηνj )′ = 0.

Hence

(3.21) (η − ηνj )′′ = Eνj (t, y, η)(η − ηνj )′ + Pξ((η − ηνj )′′),

for a suitable matrix Eνj (t, y, η) whose entries are positively homogeneous of
degree 0 with respect to y ∈ Γ , and uniformly bounded, together with their
derivatives. Now, in (3.6) we substitute

η−ηνj = (η−ηνj )′+(η−ηνj )′′ = (η−ηνj )′+Eνj (t, y, η)(η−ηνj )′+Pξ((η−ηνj )′′).

Since, by assumption, the gradient ∇1Φ(·, y) is constant on the planes u =
const, we have

Pξ((η − ηνj )′′) ∈ Ker(d2
1Φ(ξ, y)).

Using the bilinearity of the Hessian one sees that Rνj (η, y) can therefore be
written in the form

(3.22) 〈Gνj (η, y)(η − ηνj )′, (η − ηνj )′〉,

where the matrix Gνj (η, y) has entries which are uniformly bounded, together
with their derivatives, by C2j (because Φ(η, y) is positively homogeneous of
degree 1 in y and here |y| � 2j).

In view of (3.19) we see that the repeated action of the operators (3.20)
on the expression in (3.22) yields uniformly bounded terms.

This concludes the proof.
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