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On class A operators
by

SUNGEUN JUNG, EuNcIiL Ko and MEE-JUNG LEE (Seoul)

Abstract. We show that every class A operator has a scalar extension. In particular,
such operators with rich spectra have nontrivial invariant subspaces. Also we give some
spectral properties of the scalar extension of a class A operator. Finally, we show that
every class A operator is nonhypertransitive.

1. Introduction. Let H be a complex separable Hilbert space and let
L(H) denote the algebra of all bounded linear operators on H. If T €
L(H), we write o(T), oap(T), and o.(T") for the spectrum, the approxi-
mate point spectrum, and the essential spectrum, respectively, and write
r(T) = sup{|A| : A € o(T)} for the spectral radius of T'. An operator T' €
L(H) is said to be p-hyponormal if (TT*)P < (T*T')P, where 0 < p < co. In
particular, 1-hyponormal operators and %—hyponormal operators are called
hyponormal operators and semi-hyponormal operators, respectively.

An arbitrary operator 7' € L(’H) has a unique polar decomposition 7' =
U|T|, where |T| = (T*T)"/? and U is a partial isometry satisfying ker U =
ker |T| = kerT and ker U* = kerT*. Associated with T' is the operator
|T|Y/2U|T|"/? called the Aluthge transform of T, and denoted throughout
this paper by T. For every T' € L(H), the sequence {T\ (M1 of Aluthge

iterates of T is defined by TO = T and T(+Y) = T() for every positive
integer n (see [2], [15], and [16]).

An operator T € L(H) is said to be w-hyponormal if |T| > |T| > |T*|
(see [3]), and paranormal if | Tz||?> < ||T?z| ||| for all z € H. We say
that T € L(H) is normaloid if |T|| = r(T). It is well-known that every
p-hyponormal operator is w-hyponormal and that every w-hyponormal op-
erator is normaloid. Furuta—Ito—Yamazaki ([I12]) introduced the following
interesting class of Hilbert space operators.
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DEFINITION 1.1. An operator T' € L£(H) is said to belong to class A if
it satisfies the condition |12 > |T|%.

It is known from [12] that
{hyponormal operators} C {p-hyponormal operators} (0 < p < 1)
C {class A operators}
C {paranormal operators}
C {normaloid operators}.

There is a vast literature concerning class A operators ([I1]-[14], [27], [28],
etc.). By a simple computation one can show that a weighted shift belongs
to class A if and only if it is hyponormal. In [II], T. Furuta gives several
examples of class A operators, including the following.

ExXAMPLE 1.2 ([I1]). Let A = (¥ g)z and B = (} 2)2 be operators on
R?, and let H,, = R? for all positive integers n. Consider the operator TaB
on ;7 H,, defined by

Tap=

o o o o
o o o o
o o Iy o o
(=T e B e B )
N o o o O

where the hat indicates the position of the (0, 0) element in the matrix. Then
Ts p is a class A operator, but is not p-hyponormal for any p.

An operator S € L(H) is called scalar of order m if it possesses a spectral
distribution of order m, i.e. a continuous unital morphism of topological
algebras

w: C(C) — L(H)

such that u(z) = S, where as usual z stands for the identity function on
Cy', the complex-valued continuously differentiable functions of order m,
0 < m < o0o. An operator is said to be subscalar of order m if it is similar
to the restriction of a scalar operator of order m to an invariant subspace.

In 1984, M. Putinar [24] showed that every hyponormal operator has a
scalar extension. In 1987, his theorem was used to show that hyponormal
operators with thick spectra have nontrivial invariant subspaces, a result
due to S. Brown (see [7]). In this paper we generalize those theorems to the
context of class A operators. In fact, we show that every class A operator is
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subscalar of order 12. In particular, every class A operator whose spectrum
has nonempty interior has a nontrivial invariant subspace. Also we give some
spectral properties of the scalar extension of a class A operator. Finally,
we consider the hypertransitive operator problem, i.e., the question whether
(NHT) = L(H) (defined later). In particular, we show that every class A
operator is nonhypertransitive.

2. Preliminaries. An operator 7' € L(H) is said to have the single-
valued extension property at zg if for every neighborhood D of zp and any
analytic function f : D — H with (T — 2)f(z) = 0, we have f(z) = 0. An
operator T' € L('H) is said to have the single-valued extension property (or
SVEP) if it has the single-valued extension property at every z in C. For an
operator T' € L(H) with SVEP and for 2z € H we can consider the set pp(x)
of elements zp in C such that there exists an analytic function f(z) defined
in a neighborhood of zp, with values in H, which satisfies (I' — z) f(z) = «.
We denote op(xz) = C\ pr(z) and Hyp(F') = {z € H : or(z) C F}, where F'
is a subset of C. An operator T' € L(H) is said to have Dunford’s property
(C) if Hr(F') is closed for each closed subset F' of C. An operator T' € L(H)
is said to have the property () if for every open subset G of C and every
sequence fy, : G — H of H-valued analytic functions such that (' — z) f,,(2)
converges uniformly to 0 in norm on compact subsets of G, f,,(z) converges
uniformly to 0 in norm on compact subsets of G. It is well-known that

Property (#) = Dunford’s property (C) = SVEP.
An operator T' € L(H) with SVEP is said to have the decomposition property

(8) (or simply the property (8)) if H = Hr(U)+Hr (V) for every open cover
{U,V'} of C. Tt is well-known that the adjoint of a bounded linear operator
on a Hilbert space with the property () has the property (0) (see [1]).

Let z be the coordinate in C, and let du(z), or simply du, denote the
planar Lebesgue measure. Let U be a bounded open subset of C. We shall
denote by L?(U,H) the Hilbert space of measurable functions f : U — H

such that /
1/2
120 = (VI du(z) < oc.

U
We denote the space L?(U,’H) N H(U,’H) by A%(U,’H), where H(U, H) is
the Fréchet space of analytic (holomorphic) H-valued functions on U. Then
A%(U,'H) is a closed subspace of the L?(U, H), and the orthogonal projection
of L2(U,’H) onto this space will be denoted by P.
Now, we introduce a special Sobolev type space. Let U be a bounded

open subset of C and m be a fixed nonnegative integer. Then the Sobolev
space W™ (U, H) is the space of functions f € L?(U,H) whose derivatives
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Of,0%f,...,0™f in the sense of distributions still belong to L?(U,H). En-
dowed with the norm

m
1 Ifm = DO 5.0

i=0
W™ (U, H) becomes a Hilbert space contained continuously in L?(U, H). The
linear operator M of multiplication by z on W™ (U, H) is continuous and it
has a spectral distribution w of order m defined by the following relation: for
p e CM(C) and f € W™(U, H), u(e)f = ¢f. Hence M is a scalar operator
of order m.

3. Main results. In this section, we show that every class A operator
has a scalar extension. For this, we begin with the following lemma which
is the key step to prove our main theorem.

LEMMA 3.1. Let T € L(H) be a class A operator and let D be any
bounded disk containing o(T'). Define the map V : H — H(D) by
Vh=1&h (=1®h+ (T — 2)W2(D, H)),

where H(D) = W2(D,H)/(T — 2)W'2(D,H) and 1 ® h denotes the con-
stant function sending z € D to h. Then V is one-to-one and has closed
range.

Proof. Let h,, € H and f,, € W'2(D,H) be sequences which satisfy

(3.1) nlLI&”(T—Z)fn+1®hn"W12 =0.
Then by the definition of the norm of the Sobolev space, (3.1)) implies that
(3.2) lim |[(T — 2)0" full2.p = 0
n—oo
fori=1,...,12. From (3.2)) we get
(3.3) lim [(T? — 22)3" fullo.p = 0
n—oo

for i = 1,...,12. Let T? = Uy|T?| and 2 = V]T\?| be the polar de-
compositions of T? and T2, respectively. Since T2|T?|'/2 = |T?|*/2T? and
—~(2) —~ — —

7 )\T2\1/2 = |T2|"/2T2, we have

lim (T2 — )72 fullo.p = 0

n—oo

(3-4) - 5@ 2\ mi7m1/22(1/2
Tim (727 2T Y2T2 2, o = 0,
fori =1,...,12. Since T belongs to class A, from [13], T? is a w-hyponormal

— —~(2
operator, and so T2 is semi-hyponormal and 72 ~ is hyponormal by the
definition of a w-hyponormal operator and [3]. Hence, it follows from ([3.4])
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that
. 5@ ovemiima1/212)1/2 _
(35) Tim (72— 22 3T T2 o = 0
for i = 1,...,12. By Theorem 3.1 of [18], there exists a constant Cp such
that

(36) (I = PYINT?IT fo
441
<Cp Y " 2y 9T 2| T2 Y2 £,
Jj=2+1i
for i = 0,1,...,8, where P denotes the orthogonal projection of L?(D,H)
onto the Bergman space A%(D,H). From (3.5) and (3.6)), we obtain

(3.7) lim [|(1 — P)&| 72|72 fu|,p = 0
fori=1,...,8. Thus, by (3.4) and ,

—(2 L~
(3.8) tim (|72 = 22) PO T2 V2722, o = O

—~(2
for i =1,...,8. Since T2( : is hyponormal, it has the property (3). Hence

(3.9) ngPﬁﬁWﬂw%ﬂnmm:o

fori=1,...,8, where o(T) € Dy € D. From and (3.9)), we get

(3.10) im || \T2|1/2|T2\1/252fn||2,D0 =0

fori=1,...,8. Since T2|T2]1/2 |T2|'/272, from (3.3)) and we obtain
(3.11) lim [[2%0" full2,py = 0

for i = 1,...,8. By Theorem 3.1 of [I§], there exists a constant Cp, such
that

8
(3.12) I(T = P) fullz,py < Cpy Y 120" fall2,po-
i=4
By (3.11]) and , it follows that
(3.3) Tim [[(7 = P)fullep, = 0.

Combining (3.13)) with (3.1)), we have
n]LH;O H(T — Z)an +1® hnHQ,DO = 0.

Let I" be a curve in Dg surrounding o(7"). Then
Tim [[Pf(2) + (T~ )7 (1@ hu)(2)] = 0
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uniformly for all z € I'. Applying the Riesz—Dunford functional calculus, we
obtain

i,gpfn(z)dwhn

= 0.
21
r

lim
n—oo

But by Cauchy’s theorem, ﬁ § Pfn(2)dz = 0. Hence

lim [|h,| = 0.
n—oo
So, V is one-to-one and has closed range.

Now we are ready to show that every class A operator has a scalar
extension.

THEOREM 3.2. Ewvery class A operator in L(H) is subscalar of order 12.

Proof. Let T € L(H) be a class A operator, let D be an arbitrary
bounded open disk in C that contains ¢(7") and consider the quotient space

H(D) =W2(D,H)/(T — 2)W2(D,H)

endowed with the Hilbert space norm. The class of a vector f or an operator
S on H(D) will be denoted by f, respectively S. Let M be multiplication by
z on W12(D,H). As noted at the end of Section 2, M is a scalar operator of
order 12 and has a spectral distribution u. Since the range of T'—z is invariant
under M, M is well-defined. Moreover, consider the spectral distribution w :
CE2(C) — L(W'?(D,H)) defined by the following relation: for p € C$?(C)
and f € W'2(D,H), u(p)f = ¢f. Then the spectral distribution u of M
commutes with 7' — z, and so M is still a scalar operator of order 12 with
u as a spectral distribution. Consider the operator V : H — H(D) given by

Vh= ié?l and denote the range of V' by ranV. Since
VIh=19Th=z@h=M(1&h)=MVh

for all h € 'H, we have VT = MV.In particular, ranV is invariant under M.
Furthermore, it is closed by Lemma [3.1] and hence it is a closed invariant
subspace of the scalar operator M. Since T is similar to the restriction
M |ranv, and M is a scalar operator of order 12, T is subscalar of order 12. =

Theorem [3.2] has the following corollary.
COROLLARY 3.3.

(i) Ewvery p-hyponormal or w-hyponormal operator is subscalar.
(ii) If T € L(H) is a class A operator, then f(T) is subscalar for every
function f analytic on a neighborhood of o(T).

Proof. (i) Since every p-hyponormal and every w-hyponormal operator
belongs to class A by Section 1, the assertion follows from Theorem
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(ii) Let T be a class A operator and let f be an analytic function on
a neighborhood of ¢(7"). With the same notations as in the proof of Theo-

rem we have V f(T) = f(M)V. Thus f(T) is subscalar. =

Recall from [6] that an operator T' € L£(H) is said to be power regular if
lim,, o0 || T7h||/™ exists for every h € H.

COROLLARY 3.4.

(i) Ewvery class A operator satisfies the property (3), Dunford’s property
, and the single-valued extension property.
C d the single-valued extension property
(ii) Ewvery class A operator is power regular.

Proof. (i) Let T' € L(H) be a class A operator. It suffices to prove that T’
has the property (). Since the property (/) is transmitted from an operator
to its restrictions to closed invariant subspaces, we are reduced by Theorem
to the case of a scalar operator of order 12. Since every scalar operator
has the property (5) (see [24]), T has the property (53).

(ii) Let T' € L(H) be a class A operator. Since 7' is subscalar of order 12
from Theorem [3.2], it is the restriction of a scalar operator of order 12 to one
of its closed invariant subspaces. Since a scalar operator is power regular
and all restrictions of power regular operators to their invariant subspaces
clearly remain power regular, T" is power regular. m

Recall that an operator X € L(H,K) is called a quasiaffinity if it has
trivial kernel and dense range. An operator S € L(H) is said to be a quasi-
affine transform of T € L(K) if there is a quasiaffinity X € L£(H, ) such
that XS = TX. Furthermore, S and T" are quasisimilar if there are quasi-
affinities X and Y such that XS =TX and SY =YT.

COROLLARY 3.5. Let C and D in L(H) belong to class A. If C" and D
are quasisimilar, then o(C) = (D) and 0¢(C) = 0e(D).

Proof. Since C' and D satisfy the property () from Corollary the
assertion follows from [25]. =

Next we will give some applications of Theorem including a partial
solution of the invariant subspace problem for class A operators. Moreover,
the following theorem is a generalization of S. Brown’s theorem and Berger’s
theorem (see [7] and [5]).

THEOREM 3.6. Let T' € L(H) be a class A operator.

(i) If o(T) has nonempty interior in C, then T has a nontrivial invari-
ant subspace.

(ii) There exists a positive integer K such that for all positive integers
k> K, T% has a nontrivial invariant subspace.
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Proof. (i) This follows from Theorem [3.2{ and [9].

(i) From [13], T2 is a w-hyponormal operator. Therefore, by [5] there
exists a positive integer K such that for all positive integers k > K, T2* has
a nontrivial invariant subspace. =

Next we study some spectral properties of the scalar extension of a class
A operator.

THEOREM 3.7. Let T € L(H) be a class A operator. With the notation
of the proof of Theorem o37(Vh) = or(h) for each h € H.

Proof. Let h € H. If Ao € pr(h), then there is an H-valued analytic
function ¢ defined on a neighborhood U of A\g such that (7'— \)g(\) = h for
all A € U. Then

(M —X)Vg(\) = V(T — \g(A\) = Vh
for all A € U. Hence A\g € pg;(Vh). That is, p37(Vh) D pr(h).

Conversely, suppose Ao € p37(Vh). Then there exists an H(D)-valued
analytic function f on some neighborhood U of Ag such that (M — ) f(A) =
Vh for all A € U. Let f € H(U,W'2(D,H)) be a holomorphic lifting of f

and fix ( € U. Then h— (¢ —2)f(¢,2) € (T — 2)W'2(D, H). Therefore, there
is a sequence {g,,} C H(U,W'%(D,H)) such that

Tim ([h— (¢~ 2)£(6,2) — (T = 2)ga(, )z = 0
with respect to z € U. Then
lim |[|h — (T — 2) folly2 =0

where f,,(2) := gn(z,2) for z € U. From the proof of Lemma [3.1] (cf. (3.13)),

we obtain

lim [[(I = P) foll20, =0
n—oo
where Up is an open neighborhood of A\g with Uy C U, and so
lim ||h — (T — 2)Pfull2,0, = 0.
n—oo

This implies h € (T — z)H(Uy, H). Since T has the property (5) from
Corollary the operator 7' — z has closed range on H(Uy, H). Thus h €
(T — 2)H(Uy, H), i.e., \g € pr(h). =

COROLLARY 3.8. LetT € L(H) be a class A operator. With the notation
of the proof of Theorem o(T)=o(M).

Proof. Since or(h) = o;(Vh) for all h € H by Theorem or(h) C
o(M) for all h € H. Hence | J{or(h) : h € H} C o(M). Since T has the
single valued extension property by Corollary it follows that o(T) =

U{or(Rh) : h € H} C o(M).
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Conversely, note that if U C C is any open disk containing o(7T) and M
is multiplication by z on W'2(U,’H), then o(M) C o(M) C U. From this
property, if A € p(T'), then we can choose an open disk D so that M — )\ is
invertible. Since this algebraic property is independent of the choice of D,
we get o(M) C o(T). m

Recall that a closed subspace of H is said to be hyperinvariant for T' if it
is invariant under every operator in the commutant {7’} of T'. An operator
T € L(H) is decomposable provided that, for each open cover {U,V} of C,
there exist closed T-invariant subspaces Y, Z of H such that H =Y + Z,

o(T|ly) C U, and o(T|z) C V. Here, T'|y denotes the restriction of T" to Y.

THEOREM 3.9. LetT € L(H) be a class A operator and let T # zI for all
z€C. If S is a decomposable quasiaffine transform of T or limy, .o || T™h|}/™
< |IT|| for some nonzero h € H, then T has a nontrivial hyperinvariant
subspace.

Proof. If S is a decomposable quasiaffine transform of 7', then there
exists a quasiaffinity X such that X.S = T'X where S is decomposable. If T
has no nontrivial hyperinvariant subspace, we may assume that o, (T) = ()
and Hrp(F) = {0} for each closed set F' proper in ¢(7") by Lemma 3.6.1 of
[19]. Let {U, V} be an open cover of C with o(T)\U # () and o(T)\V # 0. If
x € Hg(U), then og(z) C U. So there exists an analytic H-valued function
f defined on C\ U such that (S — 2)f(z) = = for all z € C\ U. Hence
(T — 2)Xf(z) = X(S—2)f(2) = Xz forall z € C\U. Thus C\U C

pr(Xx), which implies that Xa € Hr(U),i.e., XHs(U) C Hr(U). Similarly,

XHs(V) C Hr(V). Then since S is decomposable,

XH=XHs(U)+XHs(V) CHr(U) +Hr(V) = {0}.

But this is a contradiction. So T" has a nontrivial hyperinvariant subspace.
Now suppose that lim,, o [|7"R||Y/" < ||T|| for some nonzero h € H.
Since T is a class A operator,

IT2|* = (|ITPw,2) < (T2, 2) < [Tzl 2] < 1T [|=]
for every x € H. This implies that
1T |* = | TT" 2 )|* < | 72T o | T e = | T || [T 2

for every positive integer n and every z € H. Hence, Proposition 4.6 and a
remark in [6] imply that 7" has a nontrivial hyperinvariant subspace. m

The following proposition provides the concrete structure of a compact
class A operator.

PROPOSITION 3.10. Let T' € L(H) be a class A operator. If T is com-
pact, then T = B® C & (—C) where B and C' are normal.
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Proof. If T € L(H) is a class A operator, then T2 is w-hyponormal
from [13]. Since T2 is compact, it is normal by [3]. Hence T is a square root
of a normal operator, and so by [26] we get the following form:

T=B® ¢ D
0 —-C

where B and C' are normal and D is a positive one-to-one operator com-
muting with C'. Since T is also normal by [14], D must be 0, completing the
proof. =

If T € L(H) and = € H, then {T"x}7  is called the orbit of x under T,
and is denoted by O(z,T). If O(z,T') is dense in H, then x is called a hyper-
cyclic vector for T. An operator T' € L(H) is called hypertransitive if every
nonzero vector in H is hypercyclic for T'. Denote the set of all nonhypertran-
sitive operators in £L(H) by (NHT). The hypertransitive operator problem is
the question whether (NHT) = L(H). The following theorem shows that
every class A operator belongs to (NHT).

THEOREM 3.11. IfT € L(H) is a class A operator, then it is nonhyper-
transitive.

Proof. If T' is not a quasiaffinity, then op(T) U op(T*) # 0. Hence T'
has a nontrivial invariant subspace, and so 7' € (NHT'). On the other hand,
suppose that T is a quasiaffinity. Then so is T2. Since T2 is w-hyponormal

—~(2 —~ o~ (2
from [13], T2( : is hyponormal. Set S = T2. Since S = T2( ) is not hy-
percyclic from [I7], there exists a nonzero vector x € H such that O(z, S)
is not dense in H. Let S = U|S| be the polar decomposition of S. Since
U|S|Y/28 = SU|S|'/?,
S(IS[V?0(x,S)) = U|S|'*(SO(x, §)) € UIS[V*0(x, 5).

Since T? is a quasiaffinity, so is S. Hence |S| is a quasiaffinity and U is
unitary. Therefore, U|S|'/20O(z, S) is not dense in H. So S € (NHT). By
the same argument as above, we can show that 72 € (NHT). By [4] or [16],
T € (NHT). u

COROLLARY 3.12. If T € L(H) is an invertible class A operator, then
T and T~ have a common nontrivial invariant closed set.

Proof. This follows from the proof of Theorem and [17]. =

The following theorem, based on the method of [10], gives a necessary
and sufficient condition for hypercyclicity of the adjoint of a class A operator.

THEOREM 3.13. If T € L(H) belongs to class A, then T* is hypercyclic
if and only if op(x) ND # O and op(x) N (C\ D) # 0 for all nonzero x € H,
where D = {z € C: |z] < 1}.
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Proof. Suppose that T is hypercyclic. Then by Proposition 2.3 of [10], it
is enough to show that o(T) meets both D and C\D. Let S = T| 4 for some
closed T-invariant subspace M and let z be a hypercyclic vector for T™.
Since (S*)"Px = P(T*)"x for each nonnegative integer n where P is the
orthogonal projection of H onto M, {(S*)*(Px)}s, = P({(T*)"x}2,) =
P(H) = M, i.e., Px is hypercyclic for S*. Since S belongs to class A and
S* is hypercyclic, r(S) = ||S|| = ||S*|| > 1 as mentioned in [23]. Hence, we
have o(T) N (C\ D) # (). On the other hand, in order to prove o(S) ND # 0,
assume that o(S) C C\ D. Since S~! is a class A operator by [11] and
o(S™1) c D, it follows that ||S7!|| = r(S~!) < 1. Since S* is hypercyclic
and invertible, ($*)~! is hypercyclic by [23], and so [|S~!|| = [|[(S*)7!|| > 1
by [23], which is a contradiction. Therefore, o(S) N D # .

Conversely, suppose that or(x) ND # () and or(z) N (C\ D) # 0 for all
nonzero z € H. Then we get Hy(C \ D) = (0) and Hr(D) = (0). Since T
has the property () by Corollary T* has the property (J). Thus, by
Proposition 2.5.14 in [20], we infer that both Hp«(D) and Hp«(C \ D) are
dense in ‘H. By using Theorem 3.2 in [10], 7" is hypercyclic. m
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