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Boundary value problems for linear operators
in ordered Banach spaces

by

Gerd Herzog and Christoph Schmoeger (Karlsruhe)

Abstract. We study boundary value problems of the type Ax = r, ϕ(x) = ϕ(b)
(ϕ ∈M ⊆ E∗) in ordered Banach spaces.

1. Introduction. Let E be a real ordered Banach space, A : E → E a
continuous linear operator and M a subset of E∗, the topological dual of E.
We study Dirichlet type boundary value problems of the form{

Ax = r,

ϕ(x) = ϕ(b) (ϕ ∈M)
and we prove that under suitable assumptions on A there exists a natural
choice of M such that this problem is uniquely solvable, and such that the
solution x depends monotonically on r and b. Problems of this type emerge
for example in discretization of linear elliptic boundary value problems [4,
Chapter 4]. In this case the underlying space E is finite-dimensional and is
ordered coordinatewise, in general.

To illustrate our results we consider the following example. Let E =
C([0, 1],R) be endowed with the pointwise ordering, let Bn denote the Bern-
stein operator

(Bnf)(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k,

and let m ∈ N. We will see that the problem{
(Bn − id)mf = g,

f(0) = α, f(1) = β

is uniquely solvable for each g in the range of Bn − id and each α, β ∈ R,
and that the solution depends monotonically on α, β and g.
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2. Main result. Let E be a real Banach space ordered by a cone K.
A cone K is a nonempty closed convex subset of E such that λK ⊆ K
(λ ≥ 0), and K ∩ (−K) = {0}. As usual x ≤ y :⇔ y − x ∈ K. For x ≤ y
let [x, y] denote the order interval of all z with x ≤ z ≤ y. We assume in
the following that K is normal (that is, 0 ≤ x ≤ y ⇒ ‖x‖ ≤ γ‖y‖ for some
constant γ ≥ 1), and has nonempty interior intK. Let K∗ denote the dual
cone of K, that is, the set of all ϕ ∈ E∗ with ϕ(x) ≥ 0 (x ≥ 0). Let L(E)
denote the Banach algebra of all continuous linear operators A : E → E,
and for A ∈ L(E) let A∗ denote its adjoint.

An operator A ∈ L(E) is called quasimonotone increasing [11] if

x ∈ K, ϕ ∈ K∗, ϕ(x) = 0 ⇒ ϕ(Ax) ≥ 0.

It is well known [8] that A ∈ L(E) is quasimonotone increasing if and only
if exp(tA)(K) ⊆ K (that is, exp(tA) is a positive operator) for each t ≥ 0.
In this case also exp(tA∗)(K∗) ⊆ K∗ (t ≥ 0).

Next, if any p ∈ intK is fixed, then we may renorm E equivalently by the
Minkowski functional of the order interval [−p, p]. This norm ‖ · ‖ satisfies

−cp ≤ x ≤ cp ⇔ ‖x‖ ≤ c.

Under these settings we have

‖ϕ‖ = ϕ(p) (ϕ ∈ K∗),

and we set

C∗ := {ϕ ∈ K∗ : ϕ(p) = 1} = {ϕ ∈ E∗ : ϕ(p) = ‖ϕ‖ = 1}.

Moreover, we define a continuous sublinear functional S : E → R by

S(x) = min{λ ∈ R : x ≤ λp}.

Note [6] that S is increasing with respect to the order given by K, that

S(x) = max{ϕ(x) : ϕ ∈ C∗},

and that
‖x‖ = max{S(−x), S(x)} (x ∈ E).

We denote by N(·), R(·), and ext(·) the kernel and range of a linear
operator, and the set of all extremal points of a subset of a Banach space,
respectively.

The aim of this paper is to prove the following results. Let A ∈ L(E) be
quasimonotone increasing with

N(A) ∩ intK 6= ∅

and fix p ∈ N(A)∩ intK. Let E be normed with respect to this p. Moreover
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we assume that t 7→ exp(tA) is strongly Cesàro integrable, that is,

(1)
1
t

t�

0

exp(τA)x dτ

is convergent in E as t→∞ for each x ∈ E.

Lemma 1. Under the assumptions above we have: For each x0 ∈ E with
Ax0 ≥ 0 there exists a unique y0 ∈ N(A) such that

(2) x0 ≤ y0, ϕ(x0) = ϕ(y0) (ϕ ∈ ext(N(A∗) ∩ C∗)),
and

(3) S(x0) = max{ϕ(x0) : ϕ ∈ ext(N(A∗) ∩ C∗)}.
Theorem 1. Let A be as in Lemma 1. Then for each m ∈ N the Dirichlet

type boundary value problem

(4)
{
Amx = r,

ϕ(x) = ϕ(b) (ϕ ∈ ext(N(A∗) ∩ C∗))
is uniquely solvable in E for each r ∈ R(Am) and b ∈ E, and the solution
depends increasingly on b, decreasingly on r if m is odd, and increasingly
on r if m is even. If in addition R(Am) is closed, then there exists a constant
c such that

(5) ‖x‖ ≤ c‖r‖+ ‖b‖ (r ∈ R(Am), b ∈ E).

Remark. Part (3) of Lemma 1 and Theorem 1 for m = 1 can be con-
sidered in analogy to the classical maximum principle and to the solution
behaviour of linear second order BVPs [10], or corresponding BVPs for dif-
ference equations [4, Section 4.4].

3. Preliminaries. We make use of the following lemmata. We assume
that p ∈ intK, and that E is normed by the Minkowski functional of the
order interval [−p, p]. We denote by m+[x, y] the right hand side directional
derivative [9, Lemma II.5.6]:

m+[x, y] = lim
h→0+

‖x+ hy‖ − ‖x‖
h

.

Lemma 2. Let A ∈ L(E) be quasimonotone increasing. Then

‖exp(tA)x‖ ≤ exp(tm+[p,Ap])‖x‖ (x ∈ E, t ≥ 0).

For the proof of Lemma 2 see [5].

Lemma 3. Let A ∈ L(E) be quasimonotone increasing with Ap = 0. Let
x ∈ E and u(t) = exp(tA)x (t ≥ 0). Then

1. ‖u(t)‖ ≤ ‖x‖ (t ≥ 0),
2. t 7→ S(u(t)) is decreasing on [0,∞),
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3. Ax ≥ 0 ⇒ S(u(t)) = S(x) (t ≥ 0).

Proof. 1. This follows by Lemma 2.
2. We have x ≤ S(x)p, thus

u(t) = exp(tA)x ≤ S(x) exp(tA)p = S(x)p (t ≥ 0).

Therefore S(u(t)) ≤ S(x) (t ≥ 0). Hence, if 0 ≤ t1 ≤ t2 we obtain

S(u(t2)) = S(exp((t2 − t1)A) exp(t1A)x) ≤ S(exp(t1A)x) = S(u(t1)).

3. If Ax ≥ 0, then u is increasing on [0,∞) (since u′(t) = exp(tA)Ax ≥ 0
in this case). Since S is increasing on E it follows that t 7→ S(u(t)) is
monotone increasing and (by item 2) t 7→ S(u(t)) is monotone decreasing.

4. Proof of Lemma 1 and Theorem 1. For x ∈ E we set

Qx := lim
t→∞

1
t

t�

0

exp(τA)x dτ (x ∈ E).

Then Q ∈ L(E), and note that

(Q∗ϕ)(x) = ϕ(Qx) = lim
t→∞

1
t

t�

0

ϕ(exp(τA)x) dτ

for each x ∈ E and ϕ ∈ E∗.
By means of Lemma 2 we find that ‖exp(tA)‖ = 1 (t ≥ 0). Therefore

QAx = AQx = lim
t→∞

1
t

t�

0

A exp(τA)x dτ

= lim
t→∞

1
t
(exp(tA)x− x) = 0 (x ∈ E).

Thus Q(E) ⊆ N(A), and since Q(x) = x (x ∈ N(A)) we see that Q is a
projection onto N(A). From the definition of Q we immediately get

Q(K) ⊆ K, ‖Q‖ = 1.

Thus
Q∗(K∗) ⊆ K∗, ‖Q∗‖ = 1.

Moreover Q∗ is a projection onto N(A∗). Indeed, if ϕ = Q∗ψ, then

(A∗ϕ)(x) = (A∗Q∗ψ)(x) = ψ(QAx) = 0 (x ∈ E),

thus Q∗(E∗) ⊆ N(A∗), and if ϕ ∈ N(A∗), then

(Q∗ϕ)(x) = lim
t→∞

1
t

t�

0

ϕ(exp(τA)x) dτ = lim
t→∞

1
t

t�

0

ϕ(x) dτ = ϕ(x) (x ∈ E),

therefore Q∗ϕ = ϕ.
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We set u(t) = exp(tA)x0 (t ≥ 0), g(0) = x0 and

g(t) =
1
t

t�

0

u(τ) dτ (t > 0).

Then g is continuous and increasing on [0,∞) (since u is increasing), and
therefore y0 := Qx0 ≥ x0. Moreover, by Lemma 3, we know that S(u(t)) =
S(x0) (t ≥ 0). Since S is sublinear we have

S(g(t)) ≤ 1
t

t�

0

S(u(τ)) dτ = S(x0) (t > 0).

Thus S(y0) ≤ S(x0). Since S is increasing, in addition S(x0) ≤ S(y0), and
so S(x0) = S(y0). Since

ϕ(y0) = ϕ(Qx0) = (Q∗ϕ)(x0) = ϕ(x0) (ϕ ∈ N(A∗))

we have y0 ∈ N(A) satisfying (2). Uniqueness of y0 will follow from unique
solvability of (4) (with m = 1, r = 0 and b = x0).

Next, we choose ψ0 ∈ C∗ such that ψ0(x0) = S(x0), and we set ϕ0 :=
Q∗ψ0. Then ϕ0 ∈ N(A∗) ∩K∗, and

ϕ0(p) = (Q∗ψ0)(p) = ψ0(Qp) = ψ0(p) = 1,

thus ϕ0 ∈ N(A∗) ∩ C∗.
We set v(t) = exp(tA∗)ψ0 (t ≥ 0), h(0) = ψ0 and

h(t) =
1
t

t�

0

v(τ) dτ (t > 0).

Now h is continuous, and with u also ψ0 ◦u and (h(·))(x0) are increasing on
[0,∞). For t > 0 we have

(h(t))(x0) =
1
t

t�

0

(exp(τA∗)ψ0)(x0) dτ

=
1
t

t�

0

ψ0(u(τ)) dτ → ψ0(Qx0) = ϕ0(x0) (t→∞).

Thus ψ0(x0) = (h(0))(x0) ≤ ϕ0(x0). Now

S(x0) = ψ0(x0) ≤ ϕ0(x0) ≤ S(x0),

and therefore ϕ0(x0) = S(x0). At this point we know that

S(x0) = max{ϕ(x0) : ϕ ∈ N(A∗) ∩ C∗}.
Since N(A∗) ∩ C∗ is a convex and weak-∗ compact subset of E∗, and since
ϕ 7→ ϕ(x0) is an affine function on N(A∗)∩C∗, its maximum is attained at
an extremal point (see [2, Prop. 7.9]). Thus we have (3).
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To prove that (4) has at most one solution first note that N(A2) = N(A).
Indeed if y ∈ N(A2) then

‖exp(tA)y‖ = ‖y + tAy‖ ≤ ‖y‖ (t ≥ 0).

Thus Ay = 0. Consequently N(An) = N(A) (n ∈ N). Now, consider a
solution x ∈ E of the homogeneous problem{

Amx = 0,
ϕ(x) = 0 (ϕ ∈ ext(N(A∗) ∩ C∗)).

Then x ∈ N(Am) = N(A), and according to (3) we have S(x) = S(−x) = 0.
Thus x = 0.

To prove the existence of a solution of (4) we consider

B : (I −Q)(E)→ R(Am)

defined by Bx = Amx (x∈(I−Q)(E)). Then B is bijective, and AmB−1r=r.
Moreover

ϕ(Qx) = (Q∗ϕ)(x) = ϕ(x) (x ∈ E, ϕ ∈ N(A∗)).

Now,
x = B−1r +Qb

satisfies Amx = r, and for each ϕ ∈ N(A∗) we have

ϕ(x) = ϕ(B−1r) + ϕ(Qb) = 0 + ϕ(b) = ϕ(b).

In particular x is the solution of (4), and since Q is a positive operator, we
see that the solution of (4) depends increasingly on b.

Next, let r1, r2 ∈ R(Am) with r1 ≤ r2, and let x1, x2 be the solutions of{
Amxi = ri,

ϕ(xi) = ϕ(b) (ϕ ∈ ext(N(A∗) ∩ C∗))
for i = 1, 2. Then z = x2 − x1 is the solution of{

Amz = r2 − r1 ≥ 0,
ϕ(z) = 0 (ϕ ∈ ext(N(A∗) ∩ C∗))

and
ϕ(Am−1z) = ((A∗)m−1ϕ)(z) = 0 (ϕ ∈ ext(N(A∗) ∩ C∗)).

By means of (3) we have S(Am−1z) = 0, so Am−1z ≤ 0. Thus, −z satisfies{
Am−1(−z) ≥ 0,
ϕ(−z) = 0 (ϕ ∈ ext(N(A∗) ∩ C∗))

and repeating this step we obtain

Am−2(−z) ≤ 0, Am−3z ≤ 0, . . . , (−1)m−1z ≤ 0,

which means
(−1)mx1 ≤ (−1)mx2.
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To prove (5) we assume in addition thatR(Am) is closed. Since (I−Q)(E)
is a closed subspace of E, and since B : (I − Q)(E) → R(Am) is bijective,
we have a continuous inverse B−1 : R(Am) → (I − Q)(E) in this case. Set
c := ‖B−1‖. Now the solution x = B−1r +Qb of (4) satisfies

‖x‖ ≤ ‖B−1r‖+ ‖Qb‖ ≤ c‖r‖+ ‖b‖.

5. Fredholm operators. In special cases the convergence of the inte-
gral (1) for each x ∈ E is automatically true under the remaining assump-
tions of Lemma 1. This is the case for example if E is reflexive [3, VIII.7.3].
For general E we can even prove a bit more if A is a Fredholm operator.

An operator A ∈ L(E) is called a Fredholm operator if

α(A) := dimN(A) <∞, β(A) := codimR(A) <∞.
In this case R(A) is closed [7, Prop. 36.3], An is a Fredholm operator (n ∈ N)
[7, Prop. 25.3], and A∗ is a Fredholm operator [7, Prop. 27.3]. Moreover
ind(A) := α(A)− β(A) is called the index of A.

For A ∈ L(E) we define

a(A) := min{n ≥ 0 : N(An) = N(An+1)},
d(A) := min{n ≥ 0 : R(An) = R(An+1)},

with min ∅ :=∞. Now, A is called chain-finite if a(A) <∞ and d(A) <∞.
In this case a(A) = d(A) [7, Prop. 38.3]. We will use the following facts from
the Riesz–Schauder theory of compact operators [7, Prop. 40.1]:

If T ∈ L(E) is compact and A = T − id, then A and A∗ are Fredholm
operators with

α(A) = β(A) = α(A∗) = β(A∗),
a(A) = d(A) = a(A∗) = d(A∗) <∞.

If T ∈ L(E), and T k is compact for some k ∈ N (we call T power compact
in this case), A = T − id, A1 = T k − id, and

A2 = id + T + · · ·+ T k−1,

then A1 is a Fredholm operator of index 0, a(A1) = d(A1) <∞, and

A1 = AA2 = A2A.

Therefore
N(A) ⊆ N(A1), R(A1) ⊆ R(A),

and so
α(A) ≤ α(A1) <∞, β(A) ≤ β(A1) <∞.

Thus A is a Fredholm operator, and by [7, Exerc. 2, Sect. 38] we have

ind(A) = 0, a(A) = d(A) <∞.
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The following results are stated for operators of the form A = T− id, but
also hold for A = T −λ id with λ > 0. We assume without loss of generality
that λ = 1, since division by λ does not affect the following considerations.

Theorem 2. Let T ∈ L(E) be power compact, let A = T − id be quasi-
monotone increasing, and let N(A) ∩ intK 6= ∅. Then (1) is convergent as
t→∞ for each x ∈ E. Moreover A is a Fredholm operator of index 0 and

a(A) = d(A) = 1.

By Theorems 1 and 2 we get the following result on problem (4).

Theorem 3. Let T ∈ L(E) be power compact, let A = T − id be quasi-
monotone increasing, let N(A) ∩ intK 6= ∅, and let m ∈ N. Then problem
(4) is uniquely solvable in E for each r ∈ R(A) and b ∈ E, and the solution
depends increasingly on b, decreasingly on r if m is odd, and increasingly on
r if m is even, and there exists a constant c such that

‖x‖ ≤ c‖r‖+ ‖b‖ (r ∈ R(A), b ∈ E).

Proof. By Theorem 2, A is a Fredholm operator of index 0, hence R(Am)
is closed. Since d(A) = 1 we have R(A) = R(Am). The assertion now follows
from Theorem 1.

Remark. Theorem 3 applies to our introductory example. There E =
C([0, 1],R) is ordered by the cone

K = {f ∈ E : f(t) ≥ 0 (t ∈ [0, 1])}.

The operator Bn is compact, and since Bn is increasing, A = Bn − id is
quasimonotone increasing. The function p(t) = 1 (t ∈ [0, 1]) is in intK,
and Ap = 0. The norm induced by p is the maximum norm. Since Bk

n → B1

pointwise on E as k →∞ (cf. [1]) we see that N(A) = {1, t}. Hence α(A∗) =
α(A) = 2. Let ϕ0, ϕ1 denote the functionals ϕ0(f) = f(0), ϕ1(f) = f(1)
(f ∈ E). Then ϕ0, ϕ1 ∈ N(A∗), and since α(A∗) = 2 we have N(A∗) =
span{ϕ0, ϕ1}. Thus

N(A∗) ∩ C∗ = {µϕ0 + (1− µ)ϕ1 : µ ∈ [0, 1]},

and therefore
ext(N(A∗) ∩ C∗)) = {ϕ0, ϕ1}.

6. Proof of Theorem 2. Fix p ∈ N(A) ∩ intK and again let E be
normed with respect to this p. Let x ∈ E. We have

exp(tA)x = exp(−t)
(k−1∑

j=0

tjT jx

j!
+ T k

∞∑
j=k

tjT j−kx

j!

)
.
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Since
dk

dtk

( ∞∑
j=k

tjT j−kx

j!

)
= exp(tT )

we have

h(t) := exp(−t)
( ∞∑

j=k

tjT j−kx

j!

)
=

t�

0

t1�

0

. . .

tk−1�

0

exp(tkT − t id)x dtk . . . dt2 dt1.

Since tkT − t id is quasimonotone increasing for tk, t ≥ 0, and since

m+[p, (tkT − t id)p] = m+[p, (tk − t)p] = tk − t

we deduce by Lemma 2 that

‖exp(tkT − t id)x‖ ≤ exp(tk − t)‖x‖ (tk, t ≥ 0).

Thus

‖h(t)‖ ≤
t�

0

t1�

0

. . .

tk−1�

0

exp(tk − t)‖x‖ dtk . . . dt2 dt1,

and evaluation of this integral proves that h is bounded on [0,∞). Now

1
t

t�

0

exp(τA)x dτ

=
1
t

t�

0

exp(−τ)
(k−1∑

j=0

τ jT jx

j!

)
dτ + T k

(
1
t

t�

0

h(τ) dτ
)

(t > 0)

proves that {
1
t

t�

0

exp(τA)x dτ : t > 0
}

is relatively compact, and according to [3, VIII.7.1],

lim
t→∞

1
t

t�

0

exp(τA)x dτ

exists.
Next, we have already seen that A is a Fredholm operator with

ind(A) = 0, a(A) = d(A) <∞,

since T is power compact. In the proof of Theorem 1 we have seen that
N(A2) = N(A). Thus a(A) ≤ 1, and since A is not injective, a(A) = 1.
Thus d(A) = 1 too.
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