STUDIA MATHEMATICA 198 (3) (2010)

Boundary value problems for linear operators in ordered Banach spaces

by

GERD HERZOG and CHRISTOPH SCHMOEGER (Karlsruhe)

Abstract. We study boundary value problems of the type Ax = r, $\varphi(x) = \varphi(b)$ $(\varphi \in M \subseteq E^*)$ in ordered Banach spaces.

1. Introduction. Let E be a real ordered Banach space, $A: E \to E$ a continuous linear operator and M a subset of E^* , the topological dual of E. We study Dirichlet type boundary value problems of the form

$$\begin{cases} Ax=r,\\ \varphi(x)=\varphi(b) \quad (\varphi\in M) \end{cases}$$

and we prove that under suitable assumptions on A there exists a natural choice of M such that this problem is uniquely solvable, and such that the solution x depends monotonically on r and b. Problems of this type emerge for example in discretization of linear elliptic boundary value problems [4, Chapter 4]. In this case the underlying space E is finite-dimensional and is ordered coordinatewise, in general.

To illustrate our results we consider the following example. Let $E = C([0,1], \mathbb{R})$ be endowed with the pointwise ordering, let B_n denote the Bernstein operator

$$(B_n f)(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k},$$

and let $m \in \mathbb{N}$. We will see that the problem

$$\begin{cases} (B_n - \mathrm{id})^m f = g, \\ f(0) = \alpha, \quad f(1) = \beta \end{cases}$$

is uniquely solvable for each g in the range of B_n – id and each $\alpha, \beta \in \mathbb{R}$, and that the solution depends monotonically on α, β and g.

²⁰¹⁰ Mathematics Subject Classification: Primary 47B60; Secondary 47A50.

Key words and phrases: ordered Banach spaces, quasimonotone increasing operators, Fredholm operators, boundary value problems.

2. Main result. Let E be a real Banach space ordered by a *cone* K. A cone K is a nonempty closed convex subset of E such that $\lambda K \subseteq K$ $(\lambda \geq 0)$, and $K \cap (-K) = \{0\}$. As usual $x \leq y :\Leftrightarrow y - x \in K$. For $x \leq y$ let [x, y] denote the order interval of all z with $x \leq z \leq y$. We assume in the following that K is normal (that is, $0 \leq x \leq y \Rightarrow ||x|| \leq \gamma ||y||$ for some constant $\gamma \geq 1$), and has nonempty interior int K. Let K^* denote the *dual cone* of K, that is, the set of all $\varphi \in E^*$ with $\varphi(x) \geq 0$ ($x \geq 0$). Let L(E)denote the Banach algebra of all continuous linear operators $A : E \to E$, and for $A \in L(E)$ let A^* denote its adjoint.

An operator $A \in L(E)$ is called quasimonotone increasing [11] if

$$x \in K, \varphi \in K^*, \varphi(x) = 0 \Rightarrow \varphi(Ax) \ge 0.$$

It is well known [8] that $A \in L(E)$ is quasimonotone increasing if and only if $\exp(tA)(K) \subseteq K$ (that is, $\exp(tA)$ is a positive operator) for each $t \ge 0$. In this case also $\exp(tA^*)(K^*) \subseteq K^*$ ($t \ge 0$).

Next, if any $p \in \text{int } K$ is fixed, then we may renorm E equivalently by the Minkowski functional of the order interval [-p, p]. This norm $\|\cdot\|$ satisfies

$$-cp \le x \le cp \iff ||x|| \le c.$$

Under these settings we have

$$\|\varphi\| = \varphi(p) \quad (\varphi \in K^*),$$

and we set

$$C^* := \{\varphi \in K^* : \varphi(p) = 1\} = \{\varphi \in E^* : \varphi(p) = \|\varphi\| = 1\}$$

Moreover, we define a continuous sublinear functional $S: E \to \mathbb{R}$ by

$$S(x) = \min\{\lambda \in \mathbb{R} : x \le \lambda p\}$$

Note [6] that S is increasing with respect to the order given by K, that

$$S(x) = \max\{\varphi(x) : \varphi \in C^*\},\$$

and that

$$||x|| = \max\{S(-x), S(x)\} \quad (x \in E).$$

We denote by $N(\cdot)$, $R(\cdot)$, and $ext(\cdot)$ the kernel and range of a linear operator, and the set of all extremal points of a subset of a Banach space, respectively.

The aim of this paper is to prove the following results. Let $A \in L(E)$ be quasimonotone increasing with

$$N(A) \cap \operatorname{int} K \neq \emptyset$$

and fix $p \in N(A) \cap \operatorname{int} K$. Let E be normed with respect to this p. Moreover

we assume that $t \mapsto \exp(tA)$ is strongly Cesàro integrable, that is,

(1)
$$\frac{1}{t} \int_{0}^{t} \exp(\tau A) x \, d\tau$$

is convergent in E as $t \to \infty$ for each $x \in E$.

LEMMA 1. Under the assumptions above we have: For each $x_0 \in E$ with $Ax_0 \geq 0$ there exists a unique $y_0 \in N(A)$ such that

(2)
$$x_0 \le y_0, \quad \varphi(x_0) = \varphi(y_0) \quad (\varphi \in \operatorname{ext}(N(A^*) \cap C^*)),$$

and

(3)
$$S(x_0) = \max\{\varphi(x_0) : \varphi \in \operatorname{ext}(N(A^*) \cap C^*)\}$$

THEOREM 1. Let A be as in Lemma 1. Then for each $m \in \mathbb{N}$ the Dirichlet type boundary value problem

(4)
$$\begin{cases} A^m x = r, \\ \varphi(x) = \varphi(b) \quad (\varphi \in \operatorname{ext}(N(A^*) \cap C^*)) \end{cases}$$

is uniquely solvable in E for each $r \in R(A^m)$ and $b \in E$, and the solution depends increasingly on b, decreasingly on r if m is odd, and increasingly on r if m is even. If in addition $R(A^m)$ is closed, then there exists a constant c such that

(5)
$$||x|| \le c||r|| + ||b|| \quad (r \in R(A^m), b \in E).$$

REMARK. Part (3) of Lemma 1 and Theorem 1 for m = 1 can be considered in analogy to the classical maximum principle and to the solution behaviour of linear second order BVPs [10], or corresponding BVPs for difference equations [4, Section 4.4].

3. Preliminaries. We make use of the following lemmata. We assume that $p \in \text{int } K$, and that E is normed by the Minkowski functional of the order interval [-p, p]. We denote by $m_+[x, y]$ the right hand side directional derivative [9, Lemma II.5.6]:

$$m_+[x,y] = \lim_{h \to 0+} \frac{\|x+hy\| - \|x\|}{h}.$$

LEMMA 2. Let $A \in L(E)$ be quasimonotone increasing. Then

 $\|\exp(tA)x\| \le \exp(tm_+[p,Ap])\|x\|$ $(x \in E, t \ge 0).$

For the proof of Lemma 2 see [5].

LEMMA 3. Let $A \in L(E)$ be quasimonotone increasing with Ap = 0. Let $x \in E$ and $u(t) = \exp(tA)x$ $(t \ge 0)$. Then

- 1. $||u(t)|| \le ||x|| \ (t \ge 0),$
- 2. $t \mapsto S(u(t))$ is decreasing on $[0, \infty)$,

3. $Ax \ge 0 \Rightarrow S(u(t)) = S(x) \ (t \ge 0).$

Proof. 1. This follows by Lemma 2. 2. We have $x \leq S(x)p$, thus

$$u(t) = \exp(tA)x \le S(x)\exp(tA)p = S(x)p \quad (t \ge 0).$$

Therefore $S(u(t)) \leq S(x)$ $(t \geq 0)$. Hence, if $0 \leq t_1 \leq t_2$ we obtain

$$S(u(t_2)) = S(\exp((t_2 - t_1)A) \exp(t_1A)x) \le S(\exp(t_1A)x) = S(u(t_1)).$$

3. If $Ax \ge 0$, then u is increasing on $[0, \infty)$ (since $u'(t) = \exp(tA)Ax \ge 0$ in this case). Since S is increasing on E it follows that $t \mapsto S(u(t))$ is monotone increasing and (by item 2) $t \mapsto S(u(t))$ is monotone decreasing.

4. Proof of Lemma 1 and Theorem 1. For $x \in E$ we set

$$Qx := \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \exp(\tau A) x \, d\tau \quad (x \in E).$$

Then $Q \in L(E)$, and note that

$$(Q^*\varphi)(x) = \varphi(Qx) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \varphi(\exp(\tau A)x) \, d\tau$$

for each $x \in E$ and $\varphi \in E^*$.

By means of Lemma 2 we find that $\|\exp(tA)\| = 1$ $(t \ge 0)$. Therefore

$$QAx = AQx = \lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} A \exp(\tau A) x \, d\tau$$
$$= \lim_{t \to \infty} \frac{1}{t} (\exp(tA) x - x) = 0 \quad (x \in E).$$

Thus $Q(E) \subseteq N(A)$, and since Q(x) = x ($x \in N(A)$) we see that Q is a projection onto N(A). From the definition of Q we immediately get

$$Q(K) \subseteq K, \quad \|Q\| = 1.$$

Thus

$$Q^*(K^*) \subseteq K^*, \quad ||Q^*|| = 1.$$

Moreover Q^* is a projection onto $N(A^*)$. Indeed, if $\varphi = Q^*\psi$, then

$$(A^*\varphi)(x) = (A^*Q^*\psi)(x) = \psi(QAx) = 0 \quad (x \in E),$$

thus $Q^*(E^*) \subseteq N(A^*)$, and if $\varphi \in N(A^*)$, then

$$(Q^*\varphi)(x) = \lim_{t \to \infty} \frac{1}{t} \int_0^t \varphi(\exp(\tau A)x) \, d\tau = \lim_{t \to \infty} \frac{1}{t} \int_0^t \varphi(x) \, d\tau = \varphi(x) \quad (x \in E),$$

therefore $Q^*\varphi = \varphi$.

We set
$$u(t) = \exp(tA)x_0 \ (t \ge 0), \ g(0) = x_0$$
 and
 $g(t) = \frac{1}{t} \int_0^t u(\tau) \, d\tau \quad (t > 0).$

Then g is continuous and increasing on $[0, \infty)$ (since u is increasing), and therefore $y_0 := Qx_0 \ge x_0$. Moreover, by Lemma 3, we know that $S(u(t)) = S(x_0)$ ($t \ge 0$). Since S is sublinear we have

$$S(g(t)) \le \frac{1}{t} \int_{0}^{t} S(u(\tau)) d\tau = S(x_0) \quad (t > 0)$$

Thus $S(y_0) \leq S(x_0)$. Since S is increasing, in addition $S(x_0) \leq S(y_0)$, and so $S(x_0) = S(y_0)$. Since

$$\varphi(y_0) = \varphi(Qx_0) = (Q^*\varphi)(x_0) = \varphi(x_0) \quad (\varphi \in N(A^*))$$

we have $y_0 \in N(A)$ satisfying (2). Uniqueness of y_0 will follow from unique solvability of (4) (with m = 1, r = 0 and $b = x_0$).

Next, we choose $\psi_0 \in C^*$ such that $\psi_0(x_0) = S(x_0)$, and we set $\varphi_0 := Q^*\psi_0$. Then $\varphi_0 \in N(A^*) \cap K^*$, and

$$\varphi_0(p) = (Q^*\psi_0)(p) = \psi_0(Qp) = \psi_0(p) = 1,$$

thus $\varphi_0 \in N(A^*) \cap C^*$.

We set $v(t) = \exp(tA^*)\psi_0$ $(t \ge 0)$, $h(0) = \psi_0$ and

$$h(t) = \frac{1}{t} \int_{0}^{t} v(\tau) d\tau \quad (t > 0).$$

Now h is continuous, and with u also $\psi_0 \circ u$ and $(h(\cdot))(x_0)$ are increasing on $[0, \infty)$. For t > 0 we have

$$(h(t))(x_0) = \frac{1}{t} \int_0^t (\exp(\tau A^*)\psi_0)(x_0) d\tau$$

= $\frac{1}{t} \int_0^t \psi_0(u(\tau)) d\tau \to \psi_0(Qx_0) = \varphi_0(x_0) \quad (t \to \infty).$

Thus $\psi_0(x_0) = (h(0))(x_0) \le \varphi_0(x_0)$. Now

$$S(x_0) = \psi_0(x_0) \le \varphi_0(x_0) \le S(x_0),$$

and therefore $\varphi_0(x_0) = S(x_0)$. At this point we know that

$$S(x_0) = \max\{\varphi(x_0) : \varphi \in N(A^*) \cap C^*\}.$$

Since $N(A^*) \cap C^*$ is a convex and weak-* compact subset of E^* , and since $\varphi \mapsto \varphi(x_0)$ is an affine function on $N(A^*) \cap C^*$, its maximum is attained at an extremal point (see [2, Prop. 7.9]). Thus we have (3).

To prove that (4) has at most one solution first note that $N(A^2) = N(A)$. Indeed if $y \in N(A^2)$ then

$$\|\exp(tA)y\| = \|y + tAy\| \le \|y\| \quad (t \ge 0).$$

Thus Ay = 0. Consequently $N(A^n) = N(A)$ $(n \in \mathbb{N})$. Now, consider a solution $x \in E$ of the homogeneous problem

$$\begin{cases} A^m x = 0, \\ \varphi(x) = 0 \quad (\varphi \in \text{ext}(N(A^*) \cap C^*)). \end{cases}$$

Then $x \in N(A^m) = N(A)$, and according to (3) we have S(x) = S(-x) = 0. Thus x = 0.

To prove the existence of a solution of (4) we consider

$$B: (I-Q)(E) \to R(A^m)$$

defined by $Bx = A^m x$ ($x \in (I-Q)(E)$). Then B is bijective, and $A^m B^{-1} r = r$. Moreover

$$\varphi(Qx) = (Q^*\varphi)(x) = \varphi(x) \quad (x \in E, \, \varphi \in N(A^*)).$$

Now,

$$x = B^{-1}r + Qb$$

satisfies $A^m x = r$, and for each $\varphi \in N(A^*)$ we have

$$\varphi(x) = \varphi(B^{-1}r) + \varphi(Qb) = 0 + \varphi(b) = \varphi(b).$$

In particular x is the solution of (4), and since Q is a positive operator, we see that the solution of (4) depends increasingly on b.

Next, let $r_1, r_2 \in R(A^m)$ with $r_1 \leq r_2$, and let x_1, x_2 be the solutions of

$$\begin{cases} A^m x_i = r_i, \\ \varphi(x_i) = \varphi(b) \quad (\varphi \in \text{ext}(N(A^*) \cap C^*)) \end{cases}$$

for i = 1, 2. Then $z = x_2 - x_1$ is the solution of

$$\begin{cases} A^m z = r_2 - r_1 \ge 0, \\ \varphi(z) = 0 \quad (\varphi \in \text{ext}(N(A^*) \cap C^*)) \end{cases}$$

and

$$\varphi(A^{m-1}z) = ((A^*)^{m-1}\varphi)(z) = 0 \quad (\varphi \in \text{ext}(N(A^*) \cap C^*)).$$

By means of (3) we have $S(A^{m-1}z) = 0$, so $A^{m-1}z \le 0$. Thus, -z satisfies

$$\begin{cases} A^{m-1}(-z) \ge 0, \\ \varphi(-z) = 0 \quad (\varphi \in \operatorname{ext}(N(A^*) \cap C^*)) \end{cases}$$

and repeating this step we obtain

$$A^{m-2}(-z) \le 0, \quad A^{m-3}z \le 0, \quad \dots, \quad (-1)^{m-1}z \le 0,$$

which means

$$(-1)^m x_1 \le (-1)^m x_2.$$

266

To prove (5) we assume in addition that $R(A^m)$ is closed. Since (I-Q)(E) is a closed subspace of E, and since $B : (I-Q)(E) \to R(A^m)$ is bijective, we have a continuous inverse $B^{-1} : R(A^m) \to (I-Q)(E)$ in this case. Set $c := \|B^{-1}\|$. Now the solution $x = B^{-1}r + Qb$ of (4) satisfies

$$||x|| \le ||B^{-1}r|| + ||Qb|| \le c||r|| + ||b||.$$

5. Fredholm operators. In special cases the convergence of the integral (1) for each $x \in E$ is automatically true under the remaining assumptions of Lemma 1. This is the case for example if E is reflexive [3, VIII.7.3]. For general E we can even prove a bit more if A is a Fredholm operator.

An operator $A \in L(E)$ is called a *Fredholm operator* if

$$\alpha(A) := \dim N(A) < \infty, \quad \beta(A) := \operatorname{codim} R(A) < \infty.$$

In this case R(A) is closed [7, Prop. 36.3], A^n is a Fredholm operator $(n \in \mathbb{N})$ [7, Prop. 25.3], and A^* is a Fredholm operator [7, Prop. 27.3]. Moreover $\operatorname{ind}(A) := \alpha(A) - \beta(A)$ is called the *index* of A.

For $A \in L(E)$ we define

$$a(A) := \min\{n \ge 0 : N(A^n) = N(A^{n+1})\},\$$

$$d(A) := \min\{n \ge 0 : R(A^n) = R(A^{n+1})\},\$$

with $\min \emptyset := \infty$. Now, A is called *chain-finite* if $a(A) < \infty$ and $d(A) < \infty$. In this case a(A) = d(A) [7, Prop. 38.3]. We will use the following facts from the Riesz–Schauder theory of compact operators [7, Prop. 40.1]:

If $T \in L(E)$ is compact and A = T - id, then A and A^* are Fredholm operators with

$$\begin{aligned} \alpha(A) &= \beta(A) = \alpha(A^*) = \beta(A^*), \\ a(A) &= d(A) = a(A^*) = d(A^*) < \infty. \end{aligned}$$

If $T \in L(E)$, and T^k is compact for some $k \in \mathbb{N}$ (we call T power compact in this case), $A = T - \mathrm{id}$, $A_1 = T^k - \mathrm{id}$, and

$$A_2 = \mathrm{id} + T + \dots + T^{k-1},$$

then A_1 is a Fredholm operator of index 0, $a(A_1) = d(A_1) < \infty$, and

$$A_1 = AA_2 = A_2A.$$

Therefore

$$N(A) \subseteq N(A_1), \quad R(A_1) \subseteq R(A),$$

and so

$$\alpha(A) \le \alpha(A_1) < \infty, \quad \beta(A) \le \beta(A_1) < \infty.$$

Thus A is a Fredholm operator, and by [7, Exerc. 2, Sect. 38] we have

$$\operatorname{ind}(A) = 0, \quad a(A) = d(A) < \infty.$$

The following results are stated for operators of the form A = T - id, but also hold for $A = T - \lambda id$ with $\lambda > 0$. We assume without loss of generality that $\lambda = 1$, since division by λ does not affect the following considerations.

THEOREM 2. Let $T \in L(E)$ be power compact, let A = T - id be quasimonotone increasing, and let $N(A) \cap \operatorname{int} K \neq \emptyset$. Then (1) is convergent as $t \to \infty$ for each $x \in E$. Moreover A is a Fredholm operator of index 0 and

$$a(A) = d(A) = 1.$$

By Theorems 1 and 2 we get the following result on problem (4).

THEOREM 3. Let $T \in L(E)$ be power compact, let A = T - id be quasimonotone increasing, let $N(A) \cap \operatorname{int} K \neq \emptyset$, and let $m \in \mathbb{N}$. Then problem (4) is uniquely solvable in E for each $r \in R(A)$ and $b \in E$, and the solution depends increasingly on b, decreasingly on r if m is odd, and increasingly on r if m is even, and there exists a constant c such that

$$||x|| \le c||r|| + ||b|| \quad (r \in R(A), b \in E).$$

Proof. By Theorem 2, A is a Fredholm operator of index 0, hence $R(A^m)$ is closed. Since d(A) = 1 we have $R(A) = R(A^m)$. The assertion now follows from Theorem 1.

REMARK. Theorem 3 applies to our introductory example. There $E = C([0,1],\mathbb{R})$ is ordered by the cone

$$K = \{ f \in E : f(t) \ge 0 \ (t \in [0, 1]) \}.$$

The operator B_n is compact, and since B_n is increasing, $A = B_n - \text{id}$ is quasimonotone increasing. The function p(t) = 1 $(t \in [0, 1])$ is in int K, and Ap = 0. The norm induced by p is the maximum norm. Since $B_n^k \to B_1$ pointwise on E as $k \to \infty$ (cf. [1]) we see that $N(A) = \{1, t\}$. Hence $\alpha(A^*) =$ $\alpha(A) = 2$. Let φ_0, φ_1 denote the functionals $\varphi_0(f) = f(0), \varphi_1(f) = f(1)$ $(f \in E)$. Then $\varphi_0, \varphi_1 \in N(A^*)$, and since $\alpha(A^*) = 2$ we have $N(A^*) =$ span{ φ_0, φ_1 }. Thus

$$N(A^*) \cap C^* = \{\mu\varphi_0 + (1-\mu)\varphi_1 : \mu \in [0,1]\},\$$

and therefore

$$\operatorname{ext}(N(A^*) \cap C^*)) = \{\varphi_0, \varphi_1\}.$$

6. Proof of Theorem 2. Fix $p \in N(A) \cap \text{int } K$ and again let E be normed with respect to this p. Let $x \in E$. We have

$$\exp(tA)x = \exp(-t) \left(\sum_{j=0}^{k-1} \frac{t^j T^j x}{j!} + T^k \sum_{j=k}^{\infty} \frac{t^j T^{j-k} x}{j!} \right).$$

Since

$$\frac{d^k}{dt^k} \left(\sum_{j=k}^{\infty} \frac{t^j T^{j-k} x}{j!} \right) = \exp(tT)$$

we have

$$h(t) := \exp(-t) \left(\sum_{j=k}^{\infty} \frac{t^j T^{j-k} x}{j!} \right) = \int_{0}^{t} \int_{0}^{t_1} \dots \int_{0}^{t_{k-1}} \exp(t_k T - t \operatorname{id}) x \, dt_k \dots dt_2 \, dt_1.$$

Since $t_kT - t$ id is quasimonotone increasing for $t_k, t \ge 0$, and since

$$m_+[p, (t_kT - t \operatorname{id})p] = m_+[p, (t_k - t)p] = t_k - t$$

we deduce by Lemma 2 that

$$\|\exp(t_k T - t \operatorname{id})x\| \le \exp(t_k - t)\|x\|$$
 $(t_k, t \ge 0).$

Thus

$$||h(t)|| \leq \int_{0}^{t} \int_{0}^{t_{1}} \dots \int_{0}^{t_{k-1}} \exp(t_{k} - t) ||x|| dt_{k} \dots dt_{2} dt_{1},$$

and evaluation of this integral proves that h is bounded on $[0,\infty)$. Now

$$\frac{1}{t} \int_{0}^{t} \exp(\tau A) x \, d\tau = \frac{1}{t} \int_{0}^{t} \exp(-\tau) \left(\sum_{j=0}^{k-1} \frac{\tau^{j} T^{j} x}{j!} \right) d\tau + T^{k} \left(\frac{1}{t} \int_{0}^{t} h(\tau) \, d\tau \right) \quad (t > 0)$$

proves that

$$\left\{\frac{1}{t}\int_{0}^{t}\exp(\tau A)x\,d\tau:t>0\right\}$$

is relatively compact, and according to [3, VIII.7.1],

$$\lim_{t \to \infty} \frac{1}{t} \int_{0}^{t} \exp(\tau A) x \, d\tau$$

exists.

Next, we have already seen that A is a Fredholm operator with

$$\operatorname{ind}(A) = 0, \quad a(A) = d(A) < \infty,$$

since T is power compact. In the proof of Theorem 1 we have seen that $N(A^2) = N(A)$. Thus $a(A) \leq 1$, and since A is not injective, a(A) = 1. Thus d(A) = 1 too.

269

References

- U. Abel and M. Ivan, Over-iterates of Bernstein's operators: a short and elementary proof, Amer. Math. Monthly 116 (2009), 535–538.
- J. B. Conway, A Course in Functional Analysis, Grad. Texts in Math. 96, Springer, New York, 1985.
- [3] N. Dunford and J. T. Schwartz, *Linear Operators. I. General Theory*, Pure Appl. Math. 7, Interscience, New York, 1958.
- [4] W. Hackbusch, Elliptic Differential Equations: Theory and Numerical Treatment, Springer Ser. Comput. Math. 18, Springer, Berlin, 1992.
- G. Herzog, One-sided estimates for linear quasimonotone increasing operators, Numer. Funct. Anal. Optim. 19 (1998), 549–555.
- [6] G. Herzog and R. Lemmert, One-sided estimates for quasimonotone increasing functions, Bull. Austral. Math. Soc. 67 (2003), 383–392.
- [7] H. G. Heuser, *Functional Analysis*, Wiley, Chichester, 1982.
- [8] R. Lemmert and P. Volkmann, On the positivity of semigroups of operators, Comment. Math. Univ. Carolin. 39 (1998), 483–489.
- [9] R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Krieger, Malabar, FL, 1987.
- [10] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1967.
- [11] P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157–164.

Gerd Herzog, Christoph Schmoeger Institut für Analysis Karlsruher Institut für Technologie D-76128 Karlsruhe, Germany E-mail: gerd.herzog2@kit.edu christoph.schmoeger@kit.edu

> Received September 22, 2009 Revised version January 20, 2010 (6700)

270