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A new metric invariant for Banach spaces

by

F. Baudier (Besançon), N. J. Kalton (Columbia, MO) and
G. Lancien (Besançon)

Abstract. We show that if the Szlenk index of a Banach space X is larger than
the first infinite ordinal ω or if the Szlenk index of its dual is larger than ω, then the
tree of all finite sequences of integers equipped with the hyperbolic distance metrically
embeds into X. We show that the converse is true when X is assumed to be reflexive. As an
application, we exhibit new classes of Banach spaces that are stable under coarse-Lipschitz
embeddings and therefore under uniform homeomorphisms.

1. Introduction. In 1976 Ribe proved in [22] that two uniformly hom-
eomorphic Banach spaces are finitely representable in each other. This the-
orem gave birth to the “Ribe program” (see [4] or [17] for a detailed descrip-
tion). Local properties of Banach spaces are properties which only involve
finitely many vectors. These are properties which are stable under finite rep-
resentability. In view of Ribe’s result the “Ribe program” aims at looking for
metric invariants that characterize local properties of Banach spaces. The
first example of realization of the “Ribe program” is Bourgain’s metric char-
acterization of superreflexivity given in [4]. The metric invariant discovered
by Bourgain is the collection of the hyperbolic dyadic trees of arbitrarily
large height N . We denote Ω0 = {∅}, the root of the tree, Ωi = {−1, 1}i,
and BN =

⋃N
i=0Ωi. Then BN endowed with its shortest path metric ρ is the

hyperbolic dyadic tree of height N .
Let us recall some definitions. Let (M,d) and (N, δ) be two metric spaces

and let f : M → N be an injective map. The distortion of f is

dist(f) := ‖f‖Lip‖f−1‖Lip = sup
x 6=y∈M

δ(f(x), f(y))
d(x, y)

· sup
x 6=y∈M

d(x, y)
δ(f(x), f(y))

.

If dist(f) is finite, we say that f is a Lipschitz or metric embedding of M
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into N . If there exists an embedding f from M into N with dist(f) ≤ C,

we use the notation M
C
↪→ N .

Bourgain’s characterization is the following:

Theorem 1.1 (Bourgain 1986, [4]). Let X be a Banach space. Then X
is not superreflexive if and only if there exists a constant C ≥ 1 such that

(BN , ρ)
C
↪→ X for all N ∈ N.

It has been proved in [1] that this is also equivalent to the metric embed-
ding of the infinite hyperbolic dyadic tree (B∞, ρ) where B∞ =

⋃∞
N=0BN .

It should also be noted that in [4] and [1], the embedding constants are
bounded above by a universal constant.

We also recall that it follows from the Enflo–Pisier renorming theorem
([6] and [21]) that superreflexivity is equivalent to the existence of an equiv-
alent uniformly convex and (or) uniformly smooth norm.

In the series of papers [5], [16], [17] local properties such as linear type
and linear cotype are deeply studied and other realizations of “Ribe’s pro-
gram” are given.

In a similar vein our paper is an attempt to investigate which asymptotic
properties admit a metrical characterization. Asymptotic properties have
been intensively studied in [9], [7] and [20] and we refer to [11] for a precise
definition of the asymptotic structure of a Banach space. The main result of
this paper is an analogue of Bourgain’s theorem in the asymptotic setting.

Let us first introduce a few notation and definitions. For a positive in-
teger N , we denote TN =

⋃N
i=0 Ni, where N0 := {∅}. Then T∞ =

⋃∞
N=1 TN

is the set of all finite sequences of positive integers. For s ∈ T∞, we denote
by |s| the length of s. There is a natural ordering on T∞ defined by s ≤ t
if t extends s. If s ≤ t, we will say that s is an ancestor of t. If s ≤ t and
|t| = |s| + 1, we will say that s is the predecessor of t and t is a successor
of s, and we will write s = t−. Then we equip T∞, and by restriction every
TN , with the hyperbolic distance ρ, which is defined as follows. Let s and s′

be two elements of T∞ and let u ∈ T∞ be their greatest common ancestor.
We set

ρ(s, s′) = |s|+ |s′| − 2|u| = ρ(s, u) + ρ(s′, u).

We now define the asymptotic version of uniform convexity and uniform
smoothness that we will consider. Let (X, ‖ ‖) be a Banach space and τ > 0.
We denote by BX the closed unit ball of X and by SX its unit sphere. For
x ∈ SX and Y a closed linear subspace of X, we define

ρ(τ, x, Y ) = sup
y∈SY

‖x+ τy‖ − 1 and δ(τ, x, Y ) = inf
y∈SY

‖x+ τy‖ − 1.
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Then

ρ(τ)= sup
x∈SX

inf
dim(X/Y )<∞

ρ(τ, x, Y ) and δ(τ)= inf
x∈SX

sup
dim(X/Y )<∞

δ(τ, x, Y ).

The norm ‖ ‖ is said to be asymptotically uniformly smooth if

lim
τ→0

ρ(τ)/τ = 0.

It is said to be asymptotically uniformly convex if

∀τ > 0 δ(τ) > 0.

These moduli have been first introduced by Milman in [18].
We can now state the main result of our paper in a way that is clearly

an asymptotic analogue of Bourgain’s theorem.

Theorem 1.2. Let X be a reflexive Banach space. The following asser-
tions are equivalent.

(i) There exists C ≥ 1 such that T∞
C
↪→ X.

(ii) There exists C ≥ 1 such that TN
C
↪→ X for any N in N.

(iii) X does not admit any equivalent asymptotically uniformly smooth
norm or X does not admit any equivalent asymptotically uniformly
convex norm.

The main tool for our proof will be the so-called Szlenk index. We now
recall the definition of the Szlenk derivation and the Szlenk index that have
been first introduced in [24] and used there to show that there is no universal
space for the class of separable reflexive Banach spaces. So consider a real
separable Banach space X and K a weak∗-compact subset of X∗. For ε > 0
we let V be the set of all relatively weak∗-open subsets V of K such that
the norm diameter of V is less than ε, and set sεK = K \

⋃
{V : V ∈ V}.

We define inductively sαεK for any ordinal α by sα+1
ε K = sε(sαεK) and

sαεK =
⋂
β<α s

β
εK if α is a limit ordinal. Then we define Sz(X, ε) to be the

least ordinal α so that sαεBX∗ = ∅, if such an ordinal exists. Otherwise we
write Sz(X, ε) = ∞. The Szlenk index of X is finally defined by Sz(X) =
supε>0 Sz(X, ε).

We denote by ω the first infinite ordinal and by ω1 the first uncountable
ordinal. Note that the dual of a separable Banach space X is separable if and
only if Sz(X) < ω1 (this is a consequence of Baire’s theorem on the pointwise
limit of sequences of continuous functions). We will essentially deal with the
condition Sz(X) ≤ ω. The weak∗-compactness of BX∗ implies that this is
equivalent to the condition: Sz(X, ε) < ω for all ε > 0. Also, it follows from a
theorem of Knaust, Odell and Schlumprecht ([11]) that a separable Banach
space admits an equivalent asymptotically uniformly smooth norm if and
only if Sz(X) ≤ ω. Then it is easy to see that for a reflexive Banach space
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the condition Sz(X∗) ≤ ω is equivalent to the existence of an equivalent
asymptotically uniformly convex norm on X. Therefore condition (iii) in
Theorem 1.2 is equivalent to

(iv) Sz(X) > ω or Sz(X∗) > ω.

With this information at hand, we can almost forget the formulations
in terms of renormings and work essentially with the notion of the Szlenk
index of a Banach space.

In order to have a complete view of the analogy between our result and
Bourgain’s theorem, it is worth noting at this point that the superreflexivity
can be similarly characterized by the behavior of an ordinal index. For a
given weak∗-compact convex subset C of X∗ and a given ε > 0, let us
denote by S the set of all relatively weak∗-open slices S of C such that the
norm diameter of S is less than ε, and set dεC = C \

⋃
{S : S ∈ S}. We

then define inductively dαε (C) for α ordinal as before and Dz(X, ε) to be the
least ordinal α so that dαεBX∗ = ∅, if such an ordinal exists. Otherwise we
write Dz(X, ε) = ∞. Finally, the weak∗-dentability index of X is Dz(X) =
supε>0 Dz(X, ε). Then it follows from [12] (see also the survey [13]) that the
following conditions are equivalent:

(i) X is superreflexive.
(ii) Dz(X) ≤ ω.

(iii) Dz(X∗) ≤ ω.

Let us now describe the organization of this article. In Section 2 we give
the construction of several embeddings and finally prove that T∞ Lipschitz-
embeds into X whenever Sz(X) > ω or Sz(X∗) > ω. In Section 3 we show
the converse statement in the reflexive case. This will conclude the proof of
Theorem 1.2. In the last section we describe a few applications of our result
to the stability of certain classes of Banach spaces under coarse-Lipschitz em-
beddings or uniform homeomorphisms. The main consequence of our work
is that the class of all separable reflexive spaces X so that Sz(X) ≤ ω and
Sz(X∗) ≤ ω is stable under coarse-Lipschitz embeddings. It seems also in-
teresting to us that a metric invariant (the embeddability of T∞ in this case)
is used to prove stability results, whereas the metric invariant is more often
found after the class is already known to be stable.

2. Construction of the embeddings. Before starting, we need to
introduce more notation concerning our trees. For s = (s1, . . . , sn) and t =
(t1, . . . , tm) in T∞, we denote

s _ t = (s1, . . . , sn, t1, . . . , tm) and ∅_ t = t _ ∅ = t.

For t ∈ T∞ and k ≤ |t|, we denote by t|k the ancestor of t of length k. For
s ≤ t in T∞, we set [s, t] = {u ∈ T∞ : s ≤ u ≤ t}.
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For N in N and T ⊂ TN , we say that a map Φ : TN → T is a tree
isomorphism if Φ(TN ) = T , Φ(∅) = ∅ and for all s ∈ TN−1 and n ∈ N we
have Φ(s _ n) = Φ(s) _ ks,n with ks,n ∈ N and ks,n < ks,m whenever
n < m. A subset T of TN is called a full subtree of TN if there exists
a tree isomorphism from TN onto T or equivalently if ∅ ∈ T and for all
s ∈ T ∩ TN−1, the set of successors of s that also belong to T is infinite.

We now begin with a very simple lemma.

Lemma 2.1. Let (x∗n)∞n=0 be a weak∗-null sequence in X∗ such that ‖x∗n‖
≥ 1 for all n in N and let F be a finite-dimensional subspace of X∗. Then
there exists a sequence (xn)n in BX such that y∗(xn) = 0 for all y∗ ∈ F and
lim inf x∗n(xn) ≥ 1/2.

Proof. It is a classical consequence of Mazur’s technique for constructing
basic sequences (see for instance [14]) that lim inf d(x∗n, F ) ≥ 1/2. Denote
by E := {x ∈ X : ∀x∗ ∈ F x∗(x) = 0} the pre-orthogonal of F . Since
F is finite-dimensional, we have F = E⊥. Therefore, for any x∗ ∈ X∗,
d(x∗, F ) = ‖x∗|E‖E∗ . This finishes the proof.

Let now X be a separable Banach space. It follows from the metrizability
of the weak∗ topology on BX∗ that if Sz(X, ε) > ω, then for all N ∈ N
there exists (y∗s)s∈TN

in B∗X such that for all s ∈ TN−1 and all n ∈ N,

‖y∗s_n − y∗s‖ ≥ ε/2 := ε′ and y∗s_n
w∗→ y∗s .

It is an easy and well known fact that the map ε 7→ Sz(X, ε) is submulti-
plicative (see for instance [13]). So, if Sz(X) > ω, then Sz(X, ε) > ω for any
ε ∈ (0, 1). Therefore, in the above choice of (y∗s)s∈TN

we can take ε′ = 1/3.
By considering z∗s = y∗s − y∗s− for s 6= ∅, z∗∅ = y∗∅ and rescaling, this is clearly
equivalent to the existence, for all N ∈ N, of (z∗s )s∈TN

in X∗ so that

• ∀s ∈ TN \ {∅}, ‖z∗s‖ ≥ 1,
• ∀s ∈ TN−1, z∗s_n

w∗→ 0,
• ∀s ∈ TN , ‖

∑
t≤s z

∗
t ‖ ≤ 3.

In our next proposition, we improve the above statement by constructing
an almost biorthogonal system associated with (z∗s )s∈T , where T is a full
subtree of TN .

Proposition 2.2. Let X be a separable Banach space. If Sz(X) > ω,
then for all N ∈ N and δ > 0 there exist (x∗s)s∈TN

in X∗ and (xs)s∈TN
in

BX such that

• ∀s ∈ TN−1, x
∗
s_n

w∗→ 0,
• ∀s ∈ TN \ {∅}, ‖x∗s‖ ≥ 1 and ∀s ∈ TN , ‖

∑
t≤s x

∗
t ‖ ≤ 3,

• ∀s ∈ TN , x∗s(xs) ≥ 1
3‖x

∗
s‖,

• ∀s 6= t, |x∗s(xt)| < δ.
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Proof. Let f : N→ TN be a bijection such that

∀s < t ∈ TN , f−1(s) < f−1(t)
and

∀s ∈ TN−1, ∀n < m ∈ N, f−1(s _ n) < f−1(s _ m).
Denote si = f(i). In particular, ∅ = s1.

We now build inductively a tree isomorphism Φ : TN → Φ(TN ) ⊂ TN
and a family (zΦ(s))s∈TN

in BX such that

(2.1) z∗Φ(s)(zΦ(s)) ≥ 1/3, s ∈ TN and |z∗Φ(s)(zΦ(t))| < δ, s 6= t ∈ TN .

So set Φ(∅) = ∅, pick zΦ(∅) in BX so that z∗Φ(∅)(zΦ(∅)) ≥ 1
3‖z
∗
Φ(∅)‖ and assume

that Φ(s1), . . . , Φ(sk) and zΦ(s1), . . . , zΦ(sk) have been constructed according
to (2.1). Then there exist i ∈ {1, . . . , k} and p ∈ N such that sk+1 = si _ p.
Since (z∗Φ(si)_n)n≥1 is a weak∗-null sequence, Lemma 2.1 ensures that we
can pick n ∈ N and zΦ(si)_n in BX such that |z∗Φ(si)_n(zΦ(sj))| < δ for all
j ≤ k, z∗Φ(sj)

(zΦ(si)_n) = 0 for all j ≤ k and z∗Φ(si)_n(zΦ(si)_n) ≥ 1/3. We
now set Φ(sk+1) = Φ(si) _ n. If n is chosen large enough, all the required
properties, including those needed for making Φ a tree isomorphism, are
satisfied.

We conclude the proof by setting x∗s = z∗Φ(s) and xs = zΦ(s) for s in TN .

We shall progressively improve our embedding results and start with the
following.

Proposition 2.3. There is a universal constant C ≥ 1 such that, when-
ever X is a separable Banach space with Sz(X) > ω, we have

∀N ∈ N, TN
C
↪→ X and TN

C
↪→ X∗.

Proof. Let (x∗s, xs)s∈TN
be the system given by Proposition 2.2. Our

choice of δ will be specified later.
We shall first embed the TN ’s into X. For that purpose, we mimic the

natural embedding of TN into `1(TN ) (with (xt)t∈TN
playing the role of the

canonical basis of `1(TN )) and define F : TN → X by

∀s ∈ TN , F (s) =
∑
t≤s

xt.

Since (xt)t∈TN
⊂ BX , F is clearly 1-Lipschitz for the metric ρ on TN .

Let now s 6= s′ in TN and let u be their greatest common ancestor.
Denote d = ρ(u, s) and d′ = ρ(u, s′). Recall that ρ(s, s′) = d+d′ and assume
for instance that d ≥ d′. Then〈∑
t≤s

x∗t , F (s)−F (s′)
〉
≥ d/3−δ|s|(d+d′) ≥ d/3−2N2δ ≥ d/4 ≥ ρ(s, s′)/8,
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if δ was chosen less than 1/(24N2). Since ‖
∑

t≤s x
∗
t ‖ ≤ 3, we find that for

all s, s′ in TN ,
‖F (s)− F (s′)‖ ≥ ρ(s, s′)/24.

This finishes the proof of our first embedding result.
We now turn to the question of embedding the TN ’s into X∗. Our con-

struction will copy the natural embedding of TN into c0(TN ), with (x∗t )t∈TN

replacing the canonical basis of c0(TN ). For s ∈ TN , we denote y∗s =
∑

t≤s x
∗
t .

Then we define G : TN → X∗ by

∀s ∈ TN , G(s) =
∑
t≤s

y∗t .

Since (y∗t )t∈TN
is a subset of 3BX∗ , it is immediate that G is 3-Lipschitz.

Let now s 6= s′ in TN and denote again by u their greatest common ancestor,
d = ρ(u, s) and d′ = ρ(u, s′). Assume for instance that d ≥ d′. Let v be the
unique successor of u such that v ≤ s and w the unique successor of u such
that w ≤ s′, if it exists. Then

G(s)−G(s′) =
∑
v≤t≤s

y∗t −
∑

w≤t≤s′
y∗t .

If s′ ≤ s, [w, s′] is empty. Otherwise,

∀t ∈ [w, s′], |〈xv, y∗t 〉| ≤ δ|t| ≤ δN.
On the other hand,

∀t ∈ [v, s], |〈xv, y∗t 〉| ≥ 1/3− δ(|t| − 1) ≥ 1/3− δN.
The previous two inequalities yield

‖G(s)−G(s′)‖ ≥ |〈xv, G(s)−G(s′)〉| ≥ d/3− 2δN2 ≥ d/4 ≥ ρ(s, s′)/8

if δ was chosen in (0, 1/(24N2)). This concludes our argument for the second
embedding.

Remark 1. Let us just finally notice that in both cases we proved the
statement for C = 24, but our argument allows us to get the result for any
constant C > 8.

Remark 2. The end of this section will be devoted to various improve-
ments of Proposition 2.3, which are not fully needed in order to read the
last two sections.

We now turn to the problem of embedding T∞. We shall refine our ar-
guments in order to improve Proposition 2.3 and obtain:

Theorem 2.4. There is a constant C ≥ 1 such that for any separable
Banach space X satisfying Sz(X) > ω, we have

T∞
C
↪→ X and T∞

C
↪→ X∗.
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Although this statement implies our previous results, we have chosen to
separate its proof in the hope of making it easier to read.

Proof. So assume that Sz(X) > ω and fix a decreasing sequence (δi)∞i=0

in (0, 1). By combining the technique of Proposition 2.2 and a proper enu-
meration of

⋃∞
i=0{i}×T2i , one can actually build, for every i ≥ 0, (x∗i,s)s∈T2i

in X∗ and (xi,s)s∈T2i in BX such that

(i) ∀i ≥ 0, ∀s ∈ T2i−1, x
∗
i,s_n

w∗→ 0,
(ii) ∀i ≥ 0, ∀s ∈ T2i \ {∅}, ‖x∗i,s‖ ≥ 1 and ∀s ∈ T2i , ‖

∑
t≤s x

∗
i,t‖ ≤ 3,

(iii) ∀i ≥ 0, ∀s ∈ T2i , x∗i,s(xi,s) ≥ 1
3‖x

∗
i,s‖,

(iv) ∀(i, s) 6= (j, t), |x∗i,s(xj,t)| < δi.

Let us just emphasize the fact that the whole system (xi,s, x∗i,s)(i,s) is almost
biorthogonal. We also wish to note that the estimate given in (iv) depends
only on i. This last fact relies on a careful application of Lemma 2.1.

For i ≥ 0, we denote by Fi a translate of the map defined on T2i+1 in the
proof of Proposition 2.3. So let

Fi(∅) = 0 and Fi(s) =
∑
∅<t≤s

xi+1,t, s ∈ T2i+1 \ {∅}.

Now we adopt the gluing technique introduced in [1] and also used in [2]
and build our embedding as follows. For s ∈ T∞ \ {∅} there exists k ≥ 0
such that 2k ≤ |s| < 2k+1. We define

F (s) = λsFk(s) + (1− λs)Fk+1(s), where λs =
2k+1 − |s|

2k
.

Of course, we set F (∅) = 0. Clearly ‖F (s)‖ ≤ |s| for all s ∈ T∞, and
following the proof of Theorem 2.1 in [2] we find that F is 9-Lipschitz.
Consider now s 6= s′ ∈ T∞ \ {∅} and assume for instance that 1 ≤ |s′| ≤ |s|.
Let 2k ≤ |s′| ≤ 2k+1 and 2l ≤ |s| ≤ 2l+1, with k ≤ l. Then

F (s)− F (s′) = λs
∑
t≤s

xl+1,t + (1− λs)
∑
t≤s

xl+2,t

−
(
λs′
∑
t≤s′

xk+1,t + (1− λs′)
∑
t≤s′

xk+2,t

)
.

Let u be the greatest common ancestor of s and s′ and let d = ρ(u, s) as
before. If we denote

(∗) =
〈 ∑
u<t≤s

(x∗l+1,t + x∗l+2,t), F (s)− F (s′)
〉
,

we get
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(∗) ≥ λs d/3 + (1− λs) d/3
− δl+1(λsd(|s| − 1) + (1− λs)d|s|+ λs′d|s′|+ (1− λs′)d|s′|)
− δl+2((1− λs)d(|s| − 1) + λsd|s|+ λs′d|s′|+ (1− λs′)d|s′|)

≥ d/3− 2d|s|(δl+1 + δl+2)

≥ d/3− 2 · 22l+2(δl+1 + δl+2) ≥ d/4 ≥ ρ(s, s′)/8,

if the δi’s were chosen small enough. Since ‖
∑

t≤s x
∗
i,t‖ ≤ 3 for all i ≥ 0, we

obtain the lower bound
‖F (s)− F (s′)‖ ≥ ρ(s, s′)/96.

If s′ = ∅ 6= s′, the argument is similar but simpler. This concludes our proof.
In order to embed T∞ into X∗, we use exactly the same technique. For

i ≥ 0 and s ∈ T2i denote y∗i,s =
∑

t≤s x
∗
i,t and

Gi(∅) = 0 and Gi(s) =
∑
∅<t≤s

y∗i+1,t, s ∈ T2i+1 \ {∅}.

Then again we set G(∅) = 0 and for s ∈ T∞ \ {∅},
G(s) = λsGk(s) + (1− λs)Gk+1(s).

Following again the proof in [2], we first deduce that G is 27-Lipschitz.
Consider now s 6= s′ ∈ T∞ such that for instance 0 ≤ |s′| ≤ |s|, 2l ≤

|s| ≤ 2l+1 and 2k ≤ |s′| ≤ 2k+1 with k ≤ l or s′ = ∅. Let u be the greatest
common ancestor of s and s′ and v be the successor of u such that v ≤ s.
In a very similar way, by evaluating 〈xl+1,v + xl+2,v, G(s) − G(s′)〉, we can
show that a proper choice for the δi’s implies that

‖G(s)−G(s′)‖ ≥ ρ(s, s′)/16.
This concludes the proof of the proposition.

We will now study the condition “Sz(X∗) > ω”. We already know that
if Sz(X∗) > ω, then T∞ Lipschitz embeds into X∗∗ and therefore, when
X is reflexive, T∞ Lipschitz embeds into X. We will show how to drop the
reflexivity assumption in this statement. As before, we start with finite trees.

Proposition 2.5. There is a universal constant C ≥ 1 such that, when-
ever X is a separable Banach space with Sz(X∗) > ω, we have

∀N ∈ N, TN
C
↪→ X.

Proof. If X∗ is nonseparable, then Sz(X) > ω and our problem is settled
by Proposition 2.3. Thus we assume that X∗ is separable. Then, for a given
positive integer N and a given δ > 0, Proposition 2.2 provides us with
(x∗s)s∈TN

in BX∗ and (x∗∗s )s∈TN
in X∗∗ such that

• ∀s ∈ TN−1, x
∗∗
s_n

w∗→ 0,
• ∀s ∈ TN \ {∅}, ‖x∗∗s ‖ ≥ 1 and ∀s ∈ TN , ‖

∑
t≤s x

∗∗
t ‖ ≤ 3,
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• ∀s ∈ TN , x∗∗s (x∗s) ≥ 1
3‖x

∗∗
s ‖,

• ∀s 6= t, |x∗∗s (x∗t )| < δ.

Let {si : i ∈ N} be an enumeration of {s ∈ TN : |s| = N} and let Bi = {t ∈
TN : t ≤ si} be the corresponding branches of TN .

For s ∈ TN denote y∗∗s =
∑

t≤s x
∗∗
t .

Let us now fix η > 0. Agreeing that B0 is the empty set, for a given
s ∈ TN , there is a unique i = is ∈ N such that s ∈ Bis \ Bis−1. Then we can
pick ys in X so that

(2.2) ‖ys‖ ≤ 3 and ∀t ∈
is⋃
j=1

Bj , |〈x∗t , y∗∗s − ys〉| < η.

In particular

(2.3) ∀t ≤ s, |〈x∗t , y∗∗s − ys〉| < η.

We now define G : TN → X by

∀s ∈ TN , G(s) =
∑
t≤s

yt.

Since (yt)t∈TN
is a subset of 3BX , it is immediate that G is 3-Lipschitz.

Let now s 6= s′ in TN and denote again by u their greatest common
ancestor, d = ρ(u, s) and d′ = ρ(u, s′), v the successor of u so that v ≤ s
and w the successor of u so that w ≤ s′, if they exist.

Assume first that s and s′ are comparable and for instance s′ ≤ s. Then
u = s′, v exists, w does not, and by (2.3),

(2.4) 〈x∗v, G(s)−G(s′)〉 ≥
〈
x∗v,

∑
v≤t≤s

y∗∗t

〉
− ηd ≥ d/4

for δ and η chosen small enough.
Suppose now that s and s′ are not comparable. Then v and w are defined

and not comparable. Therefore iv 6= iw. For instance iv < iw. We will then
consider two cases.

If d′ ≥ 24d, then ‖G(s) − G(s′)‖ ≥ ‖
∑

u<t≤s′ yt‖ − 3d. From (2.4) it
follows that

‖G(s)−G(s′)‖ ≥ d′/4− 3d ≥ d′/8 ≥ ρ(s, s′)/16.

Assume now that d′ < 24d. Clearly it ≥ iv for all t in [v, s] ∪ [w, s′], and
therefore (2.2) yields

∀t ∈ [v, s] ∪ [w, s′], |〈x∗v, y∗∗t − yt〉| < η.
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It follows that

‖G(s)−G(s′)‖ ≥
〈
x∗v,

∑
v≤t≤s

y∗∗t −
∑

w≤t≤s′
y∗∗t

〉
− (d+ d′)η

≥ d/4 ≥ ρ(s, s′)/100

if δ and η were beforehand carefully chosen small enough.

We now state the last result of this section.

Theorem 2.6. There is a universal constant C ≥ 1 such that T∞
C
↪→ X

whenever X is a separable Banach space with Sz(X∗) > ω.

Proof. Again, we may assume that X∗ is separable. The gluing argument
that we used before to embed T∞ does not seem to be efficient in this case.
We shall develop another technique. Fix first an integer K ≥ 2. Then choose
a decreasing sequence (δi)i in (0, 1). Assuming that Sz(X∗) > ω we can build
(x∗∗i,s)s∈TKi+1

in X∗∗ and (x∗i,s)s∈TKi+1
in BX∗ such that

• ∀i ≥ 0, ∀s ∈ TKi , x∗∗i,s_n
w∗→ 0,

• ∀i ≥ 0, ∀s ∈ TKi+1 \{∅}, ‖x∗∗i,s‖ ≥ 1 and ∀s ∈ TKi+1, ‖
∑

t≤s x
∗∗
i,t‖ ≤ 3,

• ∀i ≥ 0, ∀s ∈ TKi+1, x
∗∗
i,s(x

∗
i,s) ≥ 1

3‖x
∗∗
i,s‖,

• ∀(i, s) 6= (j, t), |x∗∗i,s(x∗j,t)| < δi.

For s in TKi+1, we define y∗∗i,s =
∑

t≤s x
∗∗
i,s.

Let Ni =
∑i

k=0K
k, choose an enumeration {sir : r ∈ N} of {s ∈ TNi :

|s| = Ni} and denote by Bir = {t ∈ TNi , t ≤ sir} the branch of TNi whose
endpoint is sir. We will also use an enumeration {tir : r ∈ N} of the terminal
nodes of TKi+1 and the corresponding branches Cir = {t ∈ TKi+1 : t ≤ tir}.

Let us first describe the general idea. We set G(∅) = 0. Consider now
s ∈ T∞ \ {∅}. Then there exist n ∈ N and s0, . . . , sn in T∞ such that
|sj | = Kj for j ≤ n − 1, 1 ≤ |sn| ≤ Kn and s = s0 _ · · · _ sn. For
j ≤ n− 1, s0 _ · · ·_ sj is a terminal node of TNj that we denote sjrj . We
now define

G(s) =
∑
∅<t≤s0

yt,0 + · · ·+
∑

rj−1≤t≤rj−1_sj

yt,j + · · ·+
∑

rn−1≤t≤rn−1_sn

yt,n

where yt,j is a proper weak∗-approximation of y∗∗t,j .
We now detail the rather technical construction of the yt,j ’s.
So let s = (s(1), . . . , s(k)) ∈ TKi+1\{∅}. We recall that si−1

s(1) is the s(1)th

terminal node of TNi−1 . So it can be written si−1
s(1) = s0 _ · · · _ si−1 with

|sj | = Kj for j ≤ i− 1. Then, for any j ≤ i− 1, s0 _ · · ·_ sj is a terminal
node of TNj that we denote sjrj . Moreover, rj−1 _ sj is a terminal node of
TKj+1 that we denote tjkj

. Let also ki ∈ N be such that s ∈ Ciki
\
⋃ki−1
k=1 Cik.
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Then we pick ys,i in 3BX satisfying the following conditions:

(2.5) ∀j ≤ i, ∀t ∈
kj⋃
k=1

Cjk, |〈y∗∗s,i − ys,i, x∗t,j〉| ≤ δi.

Since any ys,i belongs to 3BX , it is clear that G is 3-Lipschitz.
We now start to prove that G−1 is Lipschitz. So let s 6= s′ in T∞\{∅} and

n,m be nonnegative integers so that Nn−1 < |s| ≤ Nn and Nm−1 < |s′| ≤
Nm (with the convention N−1 := 0). As usual, u is the greatest common
ancestor of s and s′ and we let p be the integer such that Np−1 < |u| ≤ Np,
d = ρ(u, s) and d′ = ρ(u, s′). So we can write s = s0 _ · · · _ sn, s′ =
s′0 _ · · · _ s′m and u = u0 _ · · · _ up with |sj | = Kj for j ≤ n − 1,
0 < |sn| ≤ Kn, |s′j | = Kj for j ≤ m − 1, 0 < |s′m| ≤ Km, |uj | = Kj for
j ≤ p − 1 and 0 < |up| ≤ Kp. Then uj = sj = s′j for j ≤ p − 1 and up
is the greatest common ancestor of sp and s′p in TKp . Finally, if we denote
s0 _ · · · _ sj = sjrj for j ≤ n − 1 and s′0 _ · · · _ s′j = sj

r′j
for j ≤ m − 1,

we can write

G(s)−G(s′) =
∑

rp−1_up<t≤rp−1_sp

yt,p + · · ·+
∑

rn−1≤t≤rn−1_sn

yt,n

−
∑

rp−1_up<t≤rp−1_s′p

yt,p − · · · −
∑

r′m−1≤t≤r′m−1_s′m

yt,m.

(a) Assume first that n ≥ m+ 2. Denote x∗ = x∗rn−2,n−1. Then

‖G(s)−G(s′)‖

≥
〈
x∗,

∑
rn−2≤t≤rn−2_sn−1

yt,n−1 +
∑

rn−1≤t≤rn−1_sn

yt,n

〉
− 6Nn−2

≥
〈
x∗,

∑
rn−2≤t≤rn−2_sn−1

y∗∗t,n−1 +
∑

rn−1≤t≤rn−1_sn

y∗∗t,n

〉
− δn−1(Kn−1 +Kn)− 6Nn−2

≥ 1
3
Kn−1 − δn−1(Kn−1 +Kn +Kn−1Kn−1 +Kn(Kn + 1))− 6Nn−2

≥ 1
4
Kn−1

if K was chosen large enough and the δn’s small enough. In that case
ρ(s, s′) ≤ 2Nn. So

‖G(s)−G(s′)‖ ≥ ρ(s, s′)/L,

where L is a constant depending only on K.
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(b) Assume that n = m + 1 and m = p. Denote x∗ = x∗rn−1,n, a = |sn|
and b = Kn−1 − |un−1|. Notice that a+ b = d and d′ ≤ b. Then

(2.6) 〈x∗, G(s)−G(s′)〉 ≥ a/4− 3b− 3d′ ≥ a/4− 6b

if the δn’s were chosen small enough. Let vn−1 be the successor of un−1 so
that vn−1 ≤ sn−1 and wn−1 be the successor of un−1 so that wn−1 ≤ s′n−1.
Set y∗ = x∗rn−2_vn−1

and z∗ = x∗rn−2_wn−1
.

Assume first that there exists an integer k such that rn−2 _ vn−1 ∈ Cn−1
k

and rn−2 _ wn−1 /∈
⋃k
l=1 C

n−1
l . Then, for small enough δn’s,

(2.7) 〈y∗, G(s)−G(s′)〉 ≥ b/4.
It follows from (2.6) and (2.7) that

〈x∗ + 25y∗, G(s)−G(s′)〉 ≥ (a+ b)/4 ≥ (d+ d′)/8.

Thus
‖G(s)−G(s′)‖ ≥ ρ(s, s′)/208.

Assume now that there exists an integer k such that rn−2 _ wn−1 ∈ Cn−1
k

and rn−2 _ vn−1 /∈
⋃k
l=1 C

n−1
l . Then, still for small δn’s,

〈y∗, G(s)−G(s′)〉 ≥ b/4− 3d′ and 〈z∗, G(s)−G(s′)〉 ≥ d′/4.
It follows from the above and (2.6) that

〈x∗+25y∗+301z∗, G(s)−G(s′)〉 ≥ d+ d′

4
and ‖G(s)−G(s′)‖ ≥ ρ(s, s′)

1308
.

(c) Assume that n = m + 1 and p ≤ m − 1. Denote x∗ = x∗rn−1,n,
y∗ = x∗rn−2,n−1 and z∗ = x∗r′n−2,n−1. Note that y∗ 6= z∗. We also set a =

|sn|, b = |sn−1| = Kn−1, b′ = |s′n−1| and c = |s0 _ · · · _ sn−2| − |u| =
|s′0 _ · · ·_ s′n−2| − |u|. First, for small enough δn’s,

(2.8) 〈x∗, G(s)−G(s′)〉 ≥ a/4− 3b− 3b′ − 6c ≥ a/4− 6b− 6c.

Assume first that there exists an integer k such that rn−2 ∈ Cn−1
k and

r′n−2 /∈
⋃k
l=1 C

n−1
l . Then, for small enough δn’s,

〈y∗, G(s)−G(s′)〉 ≥ b/4− 6c.

This together with (2.8) yields

〈x∗ + 25y∗, G(s)−G(s′)〉 ≥ (a+ b)/4− 156c.

A previous choice of a large enough K ensures in this situation that

(a+ b)/4− 156c ≥ ρ(s, s′)/10− 156c ≥ ρ(s, s′)/20.

Therefore
‖G(s)−G(s′)‖ ≥ ρ(s, s′)/520.
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Otherwise, there exists an integer k such that r′n−2 ∈ C
n−1
k and rn−2 /∈⋃k

l=1 C
n−1
l . Then a proper choice of the δn’s yields

(2.9) 〈y∗, G(s)−G(s′)〉 ≥ b/4−3b′−6c and 〈z∗, G(s)−G(s′)〉 ≥ b′/4−6c.

From (2.8) and (2.9) we deduce

〈x∗ + 25y∗ + 300z∗, G(s)−G(s′)〉 ≥ (a+ b)/4− 1956c.

Again, our starting choice of a very large K will ensure the existence of a
universal constant L so that in this situation

‖G(s)−G(s′)‖ ≥ ρ(s, s′)/L.

(d) Assume that n = m = p. We just have to follow the proof of Propo-
sition 2.5.

(e) Assume that n = m and p ≤ n − 2. Denote y∗ = x∗rn−2,n−1, z∗ =
x∗r′n−2,n−1, a = |sn|, a′ = |s′n|, b = |sn−1| = |s′n−1| = Kn−1 and c =
|s0 _ · · · _ sn−2| − |u| = |s′0 _ · · · _ s′n−2| − |u|. It follows from (2.5)
and a proper choice of the δn’s that

either 〈y∗, G(s)−G(s′)〉 ≥ b/4− 6c or 〈z∗, G(s)−G(s′)〉 ≥ b/4− 6c.

If K was chosen large enough we then obtain

‖G(s)−G(s′)‖ ≥ Kn−1/8 ≥ ρ(s, s′)/L

for some universal constant L.
(f) Finally assume that n = m and p = n− 1. Let vn−1 be the successor

of un−1 so that vn−1 ≤ sn−1 and wn−1 be the successor of un−1 so that
wn−1 ≤ s′n−1. Set x∗ = x∗rn−1,n, y∗ = x∗rn−2_vn−1

and z∗ = x∗rn−2_wn−1
.

We also denote a = |sn| and b = |s0 _ · · · _ sn−1| − |u| = |s′0 _ · · · _
s′n−1| − |u|.

First, we have

‖G(s)−G(s′)‖ ≥ ‖G(s′)−G(u)‖ − 3d ≥ αd′ − 3d,

where α ∈ (0, 1) is a universal constant given by case (b). If d′ ≥Md, with
M = 6/α, we obtain

‖G(s)−G(s′)‖ ≥ αd′/2 ≥ αρ(s, s′)/4.

So, we may as well assume that d′ < Md. Now, with our usual careful choice
of small δn’s we get

〈x∗, G(s)−G(s′)〉 ≥ a/4− 6b

and

either 〈y∗, G(s)−G(s′)〉 ≥ b/4 or 〈z∗, G(s)−G(s′)〉 ≥ b/4.
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Then, using x∗ + 25y∗ or x∗ + 25z∗, we obtain

‖G(s)−G(s′)‖ ≥ d

104
=

(M + 1)d
104(M + 1)

≥ d+ d′

104(M + 1)
=

ρ(s, s′)
104(M + 1)

.

All possible cases have been considered and our discussion is finished.

3. On the nonembeddability of the hyperbolic trees. Our aim
is now to prove in the reflexive case the converse of the results given in
the previous section. More precisely, the main result of this section is the
following.

Theorem 3.1. Assume that X is a separable reflexive Banach space

and that there exists C ≥ 1 such that TN
C
↪→ X for all N in N. Then either

Sz(X) > ω or Sz(X∗) > ω.

Before proceeding with the proof of this theorem, we need to recall two
very convenient renorming theorems essentially due to Odell and Schlum-
precht. We refer to [19] and [20] for a complete exposition of the links be-
tween the Szlenk index of a Banach space and its embeddability into a Ba-
nach space with a finite-dimensional decomposition with upper and lower
estimates.

Theorem 3.2. Let X be a separable reflexive Banach space. Then the
following properties are equivalent:

(i) Sz(X) ≤ ω.
(ii) There exist 1 < p <∞ and an equivalent norm ‖ · ‖ on X such that

if U is a nonprincipal ultrafilter on N, x ∈ X and (xn)∞n=1 is any
bounded sequence with limn∈U xn = 0 weakly, then

(3.1) lim
n∈U
‖x+ xn‖ ≤ lim

n∈U
(‖x‖p + ‖xn‖p)1/p.

This is contained in the proof of Theorem 3 of [20].

Theorem 3.3. Let X be a separable reflexive Banach space. Then the
following properties are equivalent:

(i) Sz(X) ≤ ω and Sz(X∗) ≤ ω.
(ii) There exist 1 < p ≤ q <∞ and an equivalent norm ‖ · ‖ on X such

that if U is a nonprincipal ultrafilter on N, x ∈ X and (xn)∞n=1 is
any bounded sequence with limn∈U xn = 0 weakly, then

(3.2) lim
n∈U

(‖x‖q + ‖xn‖q)1/q ≤ lim
n∈U
‖x+ xn‖ ≤ lim

n∈U
(‖x‖p + ‖xn‖p)1/p.

Let us remark that (ii) is equivalent to the statement that δ(τ) ≥
(1 + τ q)1/q − 1 and ρ(τ) ≤ (1 + τp)1/p − 1. This result follows directly
from Theorem 7 of [20].
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Proof of Theorem 3.1. Let X be a reflexive Banach space such that
Sz(X) ≤ ω and Sz(X∗) ≤ ω. We will assume that the norm satisfies (3.2) and
we may assume for convenience that p and q are conjugate, i.e. 1/p+1/q = 1.

Suppose that there is a constant C ≥ 1 so that TN
C
↪→ X for every

N ∈ N. We will show that for large enough N this produces a contradiction.
Pick a ∈ N such that a > (2C)q, and then pick m ∈ N with m > (2C)q and
N = am+1.

Suppose now that u : TN → X is a map such that u(∅) = 0 and

(3.3) ∀s, s′ ∈ TN , ρ(s, s′) ≤ ‖u(s)− u(s′)‖ ≤ Cρ(s, s′).

We now consider an ultraproduct X of X modeled on the set NN ; this
idea is inspired by similar considerations in [15]. Let U be a fixed nonprin-
cipal ultrafilter on N and define a seminorm on Z = `∞(NN , X) by

‖x‖X = lim
n1∈U

· · · lim
nN∈U

‖x(n1, . . . , nN )‖.

If we factor out the set {x : ‖x‖X = 0} this induces an ultraproduct X .
For x ∈ Z and 0 ≤ k ≤ N we define

Ek(x)(n1, . . . , nN ) = lim
mk+1∈U

· · · lim
mN∈U

x(n1, . . . , nk,mk+1, . . . ,mN )

where each limit is with respect to the weak topology on X (recall that X
is reflexive). For k < 0 it is convenient to write Ekx = 0. It will be useful to
introduce Fk = I − Ek for the complementary projections.

We now use (3.2) to deduce that if Fkx = 0 and Eky = 0 then

(‖x‖qX + ‖y‖qX )1/q ≤ ‖x+ y‖X ≤ (‖x‖pX + ‖y‖pX )1/p.

From this it follows that the projections Fk are contractive. Also if 0 = k0 <
k1 < · · · < kr and xj ∈ Z with Fkj

xj = 0 and Ekj−1
xj = 0 for 1 ≤ j ≤ r

then

(3.4)
( r∑
j=1

‖xj‖qX
)1/q

≤
∥∥∥ r∑
j=1

xj

∥∥∥
X
≤
( r∑
j=1

‖xj‖pX
)1/p

.

Let us now define zj ∈ Z for 1 ≤ j ≤ N by

zj(n1, . . . , nN ) = u(n1, . . . , nj)− u(n1, . . . , nj−1).

Here we understand that z1(n1, . . . , nN ) = u(n1).
We then define wj0 = zj − Ej−1zj and then

wjk = Ej−ak−1zj − Ej−akzj , 1 ≤ k <∞.
Then

zj =
∞∑
k=0

wjk
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and by (3.4),
m∑
k=1

‖wjk‖X ≤ m1/p
( ∞∑
k=0

‖wjk‖qX
)1/q

≤ m1/p‖zj‖X ≤ Cm1/p.

This implies that

(3.5)
N∑
j=1

m∑
k=1

‖wjk‖X ≤ Cm1/pN.

On the other hand if 0 ≤ r ≤ r + s ≤ N we note that by (3.3),

lim
n′r+1∈U

lim
n′r+2∈U

· · · lim
n′r+s∈U

‖u(n1, . . . ,nr,n
′
r+1, . . . ,n

′
r+s)− u(n1, . . . ,nr+s)‖ ≥ 2s.

Hence if v ∈ `∞(Nr, X) we have

lim
nr+1∈U

· · · lim
nr+s∈U

‖u(n1, . . . , nr+s)− v(n1, . . . , nr)‖ ≥ s.

In particular if we let

v(n1, . . . , nr) = lim
nr+1∈U

· · · lim
nr+s∈U

u(n1, . . . , nr+s)

(with limits in the weak topology) we obtain∥∥∥Fr( r+s∑
j=r+1

zj

)∥∥∥
X
≥ s.

Now suppose s = ak where k ≥ 1. If r ≤ N − ak we have

ak ≤
∥∥∥Fr( r+ak∑

j=r+1

zj

)∥∥∥
X
≤
∥∥∥ r+ak∑
j=r+1

Fj−akzj

∥∥∥
X
.

The last inequality follows from the fact that FkFl = FlFk = Fl whenever
k ≤ l and from the contractivity of Fr.

On the other hand∥∥∥ r+ak∑
j=r+1

Fj−ak−1zj

∥∥∥
X

=
∥∥∥ r+ak−1∑
j=r+1

a−1∑
i=0

Fj+(i−1)ak−1zj+iak−1

∥∥∥
X

≤
r+ak−1∑
j=r+1

( a−1∑
i=0

‖Fj+(i−1)ak−1zj+iak−1‖pX
)1/p

≤ Cak−1a1/p ≤ ak/2.

Combining these statements we find that if r = λak with 1 ≤ k ≤ m and
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0 ≤ λ ≤ am+1−k − 1 (in particular r ≤ N − ak = am+1 − ak), then

r+ak∑
j=r+1

‖wjk‖X ≥ ak/2

and hence
N∑
j=1

‖wjk‖X =
am+1−k−1∑

λ=0

(λ+1)ak∑
j=λak+1

‖wjk‖X ≥ N/2.

This implies

(3.6)
N∑
j=1

m∑
k=1

‖wjk‖X ≥ mN/2.

Now (3.5) and (3.6) give a contradiction since m > (2C)q.

As an immediate consequence of Theorem 3.1 and Section 2 we obtain
the following characterization, which yields Theorem 1.2 announced in our
introduction.

Corollary 3.4. Let X be a separable reflexive Banach space. The fol-
lowing assertions are equivalent

(i) Sz(X) > ω or Sz(X∗) > ω.

(ii) There exists C ≥ 1 such that T∞
C
↪→ X.

(iii) There exists C ≥ 1 such that TN
C
↪→ X for any N in N.

Remark. Let us mention that we do not know if (iii) implies (i) for
general Banach spaces.

4. Applications to coarse-Lipschitz embeddings and uniform
homeomorphisms between Banach spaces. We need to recall some
definitions and notation. Let (M,d) and (N, δ) be two unbounded metric
spaces. For f : M → N we define

∀t > 0, ωf (t) = sup{δ(f(x), f(y)) : x, y ∈M, d(x, y) ≤ t}.
We say that f is uniformly continuous if limt→0 ωf (t) = 0. The map f is
said to be coarsely continuous if ωf (t) <∞ for some t > 0.

Let us now introduce

Lθ(f) = sup
t≥θ

ωf (t)/t for θ > 0

and
L(f) = sup

θ>0
Lθ(f), L∞(f) = inf

θ>0
Lθ(f).
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A map is Lipschitz if and only if L(f) < ∞. We will say that it is coarse-
Lipschitz if L∞(f) <∞. Clearly, a coarse-Lipschitz map is coarsely continu-
ous. If f is bijective, we will say that f is a uniform homeomorphism (respec-
tively, coarse homeomorphism, Lipschitz homeomorphism, coarse-Lipschitz
homeomorphism) if f and f−1 are uniformly continuous (respectively,
coarsely continuous, Lipschitz, coarse-Lipschitz). Finally we say that f is a
coarse-Lipschitz embedding if it is a coarse-Lipschitz homeomorphism from
X onto f(X).

We conclude this brief introduction with the following easy and well
known fact: if X and Y are Banach spaces, then for any map f : X → Y ,
ωf is a subadditive function. It follows that any coarsely continuous map
f : X → Y is coarse-Lipschitz. In particular, any uniform homeomorphism
is a coarse-Lipschitz homeomorphism.

Theorem 4.1. Let X and Y be separable Banach spaces and suppose
that there is a coarse-Lipschitz embedding of X into Y . Suppose Y is reflexive
and Sz(Y ) = ω. Then X is reflexive.

Proof. We can assume by Theorem 3.2 that Y is normed to satisfy (3.1)
for some 1 < p <∞.

Now let f : X → Y be a coarse-Lipschitz embedding. We may assume
that there exists C ≥ 1 such that

‖x1 − x2‖ − 1 ≤ ‖f(x1)− f(x2)‖ ≤ C‖x1 − x2‖+ 1, x1, x2 ∈ X.

Suppose that X is a nonreflexive Banach space and fix θ ∈ (0, 1). Then
James’ Theorem [8] ensures the existence of a sequence (xn)n in BX such
that ‖y − z‖ ≥ θ for all n ∈ N, all y in the convex hull of {xi}ni=1 and all z
in the convex hull of {xi}i≥n+1. In particular

(4.1)
‖xn1 + · · ·+ xnk

− (xm1 + · · ·+ xmk
)‖ ≥ θk,

n1 < · · · < nk < m1 < · · · < mk.

For k ∈ N let N[k] denote the collection of all k-subsets of N written in
the form (n1, . . . , nk) where n1 < · · · < nk. We define h : N[k] → X by

h(n1, . . . , nk) = xn1 + · · ·+ xnk
.

On N[k] we define the distance

d((n1, . . . , nk), (m1, . . . ,mk)) = |{j : nj 6= mj}|.

Then h is Lipschitz with constant at most 2. Furthermore f ◦h has Lipschitz
constant at most 2C + 1. By Theorem 4.2 of [10] there is an infinite subset
M of N so that diam f ◦ h(M[k]) ≤ 3(2C + 1)k1/p. If n1 < · · · < nk < m1 <
· · · < mk ∈M we thus have
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θk − 1 ≤ ‖f(xn1 + · · ·+ xnk
)− f(xm1 + · · ·+ xmk

)‖ ≤ 3(2C + 1)k1/p.

For large enough k this is a contradiction.

It is proved in [7, Theorem 5.5] that the condition “having a Szlenk index
equal to ω” is stable under uniform homeomorphisms. So we immediately
deduce

Corollary 4.2. The class of all reflexive Banach spaces with Szlenk
index equal to ω is stable under uniform homeomorphisms.

As a final application we now state the main result of this section.

Theorem 4.3. Let Y be a reflexive Banach space such that Sz(Y ) ≤ ω
and Sz(Y ∗) ≤ ω and assume that X is a Banach space which coarse-Lipschitz
embeds into Y . Then X is reflexive, Sz(X) ≤ ω and Sz(X∗) ≤ ω.

Proof. First, it follows from Theorem 4.1 that X is reflexive. Assume
now that Sz(X) or Sz(X∗) is greater than ω. Then we know from Theo-
rem 2.4 that T∞ Lipschitz embeds into X and therefore into Y . This is in
contradiction with Theorem 3.1.

Remark 3. Theorem 4.1, Corollary 4.2 and Theorem 4.3 should be
compared with the fact that in general reflexivity is not preserved un-
der coarse-Lipschitz embeddings or even uniform homeomorphisms. Indeed,
Ribe proved in [23] that `1 ⊕ (

∑
n⊕`pn)`2 is uniformly homeomorphic to

(
∑

n⊕`pn)`2 if (pn)n is strictly decreasing and tending to 1 (we also re-
fer to Theorem 10.28 in [3] for a generalization of this result). The space
X = (

∑
n⊕`pn)`2 is of course reflexive and standard computations show that

its Szlenk index is equal to ω2. On the other hand, if the pn’s are chosen
in (1, 2], it is also easy to show that the natural norm of X∗ is asymptoti-
cally uniformly smooth with a modulus of asymptotic smoothness ρ(t) = t2.
Thus, Sz(X∗) = ω.

So, in view of Corollary 4.2 and Theorem 4.3, Ribe’s example is optimal.

Let us now recall that for a separable Banach space the condition “Sz(X)
≤ ω” is equivalent to the existence of an equivalent asymptotically uni-
formly smooth norm on X and that for a reflexive separable Banach space
the condition “Sz(X∗) ≤ ω” is equivalent to the existence of an equivalent
asymptotically uniformly convex norm on X (see [20] for a survey on these
results and proper references). Let us now denote as in [20]:

Cauc = {Y : Y is separable reflexive and has an equivalent a.u.c. norm},
Caus = {Y : Y is separable reflexive and has an equivalent a.u.s. norm}.

Then we can restate Corollary 4.2 and Theorem 4.3 as follows:

Theorem 4.4. The class Caus is stable under uniform homeomorphisms
and the class Cauc ∩ Caus is stable under coarse-Lipschitz embeddings.
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