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Homomorphisms on algebras of Lipschitz functions

by

Fernanda Botelho and James Jamison (Memphis, TN)

Abstract. We characterize a class of ∗-homomorphisms on Lip∗(X,B(H)), a non-
commutative Banach ∗-algebra of Lipschitz functions on a compact metric space and with
values in B(H). We show that the zero map is the only multiplicative ∗-preserving linear
functional on Lip∗(X,B(H)). We also establish the algebraic reflexivity property of a class
of ∗-isomorphisms on Lip∗(X,B(H)).

1. Introduction. We consider a compact metric space (X, d) and

(1.1) Lip∗(X,B(H)) =
{
f : X → B(H)

∣∣∣∣ sup
x 6=y

‖f(x)− f(y)‖
d(x, y)

<∞
}

with the norm

‖f‖∗ = ‖f‖∞ + sup
x 6=y

‖f(x)− f(y)‖
d(x, y)

.

The space B(H) represents the bounded operators on a separable complex
Hilbert space H. We set f∗(x) = [f(x)]∗ for all x ∈ X. Since ‖f∗‖∗ = ‖f‖∗
and ‖fg‖∗ ≤ ‖f‖∗‖g‖∗, Lip∗(X,B(H)) is a non-commutative Banach ∗-al-
gebra with identity.

We denote by Const∗(X,B(H)) the ∗-subalgebra of all constant opera-
tor valued functions on X. This subalgebra is a C∗-algebra. In this paper,
we derive a characterization of a class of ∗-algebra homomorphisms from
Lip∗(X,B(H)) into Lip∗(Y,B(H)), with X and Y compact metric spaces.
We recall that a ∗-homomorphism, ψ, on Lip∗(X,B(H)) is an algebra ho-
momorphism that satisfies ψ(f∗) = ψ(f)∗ for all f .

Since it is not known whether ∗-homomorphisms in this setting are con-
tinuous we introduce a weaker continuity hypothesis, called “ps-continuity”.

Definition 1.1. We say that a sequence of functions in Lip∗(X,B(H)),
{fn}, is ps-convergent to f if ‖(fn(x)− f(x))v‖H → 0 for every x ∈ X and
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v ∈ H. We then write
fn ⇀ f.

We say that ψ is ps-continuous at f ∈ Lip∗(X,B(H)) if the sequence {ψ(fn)}
is ps-convergent to ψ(f), for every sequence {fn} which is ps-convergent to f :

fn ⇀ f ⇒ ψ(fn) ⇀ ψ(f).

Furthermore, if ψ is a ∗-isomorphism, we say that ψ is a ps-homeomorphism
if both ψ and ψ−1 are ps-continuous.

We remark that if fn → f relative to the norm ‖ · ‖∗, then

‖fn − f‖∞ → 0 and fn ⇀ f.

Our main theorem characterizes all ps-continuous ∗-homomorphisms be-
tween Lipschitz algebras of the type described in (1.1).

We first introduce some additional notation and terminology. We denote
by idX the function defined on X and everywhere equal to IdH, the identity
on H. We say that a ∗-homomorphism ψ : Lip∗(X,B(H)) → Lip∗(Y,B(H))
preserves constant functions if ψ(IdX) = IdY and

ψ(Const∗(X,B(H))) ⊆ Const∗(Y,B(H)).

We also say that ψ fixes constant functions if ψ(Ã)(y) = A for every y ∈ Y
and A ∈ B(H), with Ã the constant function everywhere equal to A.

A family of partial isometries on H, say {Uα}α∈Λ, with Hα denoting the
range of Uα, is said to be orthogonally ranged if Hα is orthogonal to Hβ for
α 6= β, and for each u ∈ H, u =

∑
α uα with uα ∈ Hα (cf. [13] and [15]). We

also observe that the adjoint of Uα, U∗α : Hα → H, satisfies UαU∗α = IdHα
and U∗αUα = IdH .

We denote by 〈 , 〉 the inner product in H. We now state our main result.

Theorem 1.2. Let X and Y be compact metric spaces. If ψ :
Lip∗(X,B(H)) → Lip∗(Y,B(H)) is a ps-continuous ∗-algebra homomor-
phism that preserves constant functions then there exist a Lipschitz function
ϕ : Y → X and a countable orthogonally ranged family of partial isometries
Un : H → H, n = 1, 2, . . . , such that

(1.2) ψ(f)(y) =
∑
n

Unf(ϕ(y))U∗n for all f ∈ Lip∗(X,B(H)) and y ∈ Y.

The proof of this theorem uses the following characterization of ∗-homo-
morphisms on B(H), due to Molnár.

Theorem 1.3 (cf. [14]). Let ψ : B(H)→ B(H) be a continuous ∗-homo-
morphism. If ψ is spectrum non-increasing, then there is a countable orthog-
onally ranged family of partial isometries Un : H → H (n = 1, 2, . . .) with
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range Hn such that ψ is of the form

(1.3) ψ(A) =
∑
n

UnAU
∗
n (A ∈ B(H)).

We also use the characterization of algebra homomorphisms on scalar
valued Lipschitz spaces due to Sherbert. Although we use Sherbert’s theo-
rem, our proof techniques are necessarily different to account for the non-
commutative setting.

Theorem 1.4 (cf. [22]). Let X and Y be compact metric spaces. If ψ :
Lip∗(X)→ Lip∗(Y ) is an algebra homomorphism then there exists a unique
Lipschitz function ϕ : Y → X such that

(1.4) ψ(f)(y) = f(ϕ(y)) for all f ∈ Lip∗(X) and y ∈ Y.
If ψ : Lip∗(X) → Lip∗(Y ) is an algebra isomorphism then ϕ is a lipeomor-
phism.

2. Proof of the main theorem. In this section we prove Theorem 1.2.
We first prove that a ps-continuous ∗-homomorphism that fixes constant
functions is a composition operator. For simplicity of notation we denote
a constant function everywhere equal to A ∈ B(H) simply by A. We also
denote the resolvent set of an operator A by ρ(A), i.e.

ρ(A) = {λ ∈ C : A− λ IdH is invertible}.

Proposition 2.1. Let X and Y be compact metric spaces. Let ψ :
Lip∗(X,B(H))→ Lip∗(Y,B(H)) be a mapping that fixes constant functions.
If ψ is a ps-continuous ∗-homomorphism then there exists a unique Lipschitz
function ϕ : Y → X such that

(2.1) ψ(f)(y) = f(ϕ(y)) for all f ∈ Lip∗(X,B(H)) and y ∈ Y.
If ψ : Lip∗(X,B(H))→ Lip∗(Y,B(H)) is a ps-homeomorphism and a ∗-iso-
morphism then ϕ is a lipeomorphism.

Proof. Given f ∈ Lip∗(X,B(H)) and y ∈ Y we set

Af,y = {x ∈ X : 0 /∈ ρ(f(x)− ψ(f)(y))}.

(i) Af,y 6= ∅.

Suppose that Af,y = ∅. For every x ∈ X, 0 ∈ ρ(f(x) − ψ(f)(y)).
Equivalently, f(x) − ψ(f)(y) is invertible. We define h : X → B(H) by
h(x) = [f(x)−ψ(f)(y)]−1. It is easy to see that h ∈ Lip∗(X,B(H)). Firstly,
the continuity of h is a consequence of Theorem 10.11 in [17]. Secondly,

‖h(x0)− h(x1)‖
d(x0, x1)

≤ ‖h‖2∞ sup
x0 6=x1

‖f(x0)− f(x1)‖
d(x0, x1)

<∞.
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We set g(x) = f(x) − ψ(f)(y). The function g ∈ Lip∗(X,B(H)) and hg =
IdX (with IdX(x) = IdH, the identity operator on H). Therefore ψ(hg) =
ψ(IdX) = IdH, but ψ(g)(y) = 0. This contradiction establishes (i).

(ii) The family {Af,y : f ∈ Lip∗(X,B(H))} has the finite intersection
property.

Given a finite set of functions in Lip∗(X,B(H)), say {f1, . . . , fk}, we set

g(x) =
k∑
i=1

[fi(x)− ψ(fi)(y)]∗[fi(x)− ψ(fi)(y)].

It is clear that g ∈ Lip∗(X,B(H)). Claim (i) asserts that Ag,y 6= ∅. There-
fore there exists x0 such that 0 /∈ ρ(g(x0)− ψ(g)(y)). Since ψ(g)(y) = 0 we
have 0 /∈ ρ(g(x0)). Furthermore, since g has range in the space of hermi-
tian operators, there must exist a sequence {vn} of unit vectors such that
‖g(x0)vn‖ → 0. We have

k∑
i=1

‖(fi(x0)− ψ(fi)(y))vn‖2

=
〈 k∑
i=1

[fi(x0)− ψ(fi)(y)]∗[fi(x0)− ψ(fi)(y)]vn, vn
〉
≤ ‖g(x0)vn‖.

This implies that for every i, ‖(fi(x0)−ψ(fi)(y))vn‖ → 0 and 0 ∈ ρ(fi(x0)−
ψ(fi)(y)), that is, x0 ∈

⋂k
i=1Afi,y. This proves (ii).

(iii)
⋂
f∈Lip∗(X,B(H))Af,y is a singleton.

The compactness of X and the finite intersection property of {Af,y : f ∈
Lip∗(X,B(H))} imply that Ay =

⋂
f∈Lip∗(X,B(H))Af,y is non-empty. Now we

suppose that there exist x1 and x2 in Ay. We define f(x) = d(x, x1) IdX .
We find that 0 /∈ ρ(f(x1) − ψ(f)(y)) = ρ(−ψ(f)(y)) and 0 /∈ ρ(f(x2) −
ψ(f)(y)). Then there exists a sequence of unit vectors, say {vn}, such that
‖ψ(f)(y)vn‖ → 0. We fix w ∈ H, a vector of norm 1. For each n, let Vn
be a unitary operator such that Vnvn = w. Thus ψ(f)Vn = Vnψ(f). Conse-
quently,

‖ψ(f)(y)w‖ = ‖ψ(f)(y)Vnvn‖ = ‖Vnψ(f)(y)vn‖ = ‖ψ(f)(y)vn‖ → 0.

This implies that ψ(f)(y) is the zero function. Hence 0 /∈ ρ(f(x2)) and
x1 = x2. This proves (iii).

We denote by xy the only element in
⋂
f∈Lip∗(X,B(H))Af,y. We define

ϕ : Y → X by ϕ(y) = xy.
Let E = {ei}i∈N be an orthonormal basis for H, and Pi = ei ⊗ ei a rank

one projection with range the span of ei. We now consider a real valued
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function λ in Lip∗(X) and set f(x) = λ(x)Pi. Since Pif = fPi = f we
have Piψ(f)(y) = ψ(f)(y)Pi = ψ(f)(y). Moreover ψ(f)(y)ek =

∑
j α

k
j ej

with αkj = 〈ψ(f)(y)ek, ej〉. Therefore Piψ(f)(y)ek = αki ei =
∑

j α
k
j ej . Thus

αkj = 0 for j 6= i. Since ψ(f)(y)ek = αki ei, we also have ψ(f)(y)Piek = 0 for
i 6= k. Hence αki = 0 for i 6= k. This implies that ψ(f)(y) = αi(y)Pi.

For a fixed i, the map ψ induces an algebra homomorphism

τEi : Lip∗(X)→ Lip∗(Y ), λ 7→ τEi (λ),

given by τEi (λ)(y) = 〈ψ(λPi)(y)ei, ei〉. We use the superscript E to emphasize
the dependence on the orthonormal basis. Theorem 1.4 asserts that there
exists a Lipschitz function ϕEi : Y → X such that

τEi (λ)(y) = λ(ϕEi (y)).

On the other hand, given g(x) = λ(x) IdX , 0 /∈ ρ(g(ϕ(y)) − ψ(g)(y)). This
implies the existence of a sequence {vn} of unit vectors such that

lim
n
‖(g(ϕ(y))− ψ(g)(y))vn‖ = 0.

Similar techniques to those employed in the proof of claim (iii) allow us to
conclude that g(ϕ(y)) = ψ(g)(y). We set gn(x) = λ(x)

∑n
i=1 Pi; then gn ⇀ g.

The continuity assumption on ψ implies that ψ(gn) ⇀ ψ(g). Therefore we
have

(2.2) ψ(gn)(y) =
n∑
i=1

λ(ϕEi (y))Pi ⇀ λ(ϕ(y)) IdH .

We claim that

(?) ϕEi (y) = ϕ(y) for all i and y ∈ Y.
Suppose that there exist i0 and y0 such that ϕEi0(y0) 6= ϕ(y0). Let λ(x) =
d(x, ϕEi0(y0)). Equation (2.2) implies that

‖ψ(gn)(y0)ei0‖ → λ(ϕ(y0)) 6= 0.

This contradiction establishes claim (?). Moreover, this also implies that ϕ
is Lipschitz and τEi is independent of the orthonormal basis. We conclude
that given a function of the form λP with λ a scalar valued function in
Lip∗(X) and P a projection on H, we have

ψ(λP )(y) = λ(ϕ(y))P.

We extend this representation to functions of the form λA with λ a real
valued Lipschitz function and A a hermitian operator in B(H). We use the
spectral representation for hermitian operators (see [6]) to set

A =
M+ε�

m

λ dE(λ)
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with m = inf‖v‖=1 ‖Av‖, M = sup‖v‖=1 ‖Av‖, 0 < ε < 1 and {E(λ)}
a spectral family of projections associated with A. We define E(4k) =
E(λk) − E(λk−1), with m = λ0 < λ1 < · · · < λn = M + ε. The sequence
{
∑n

k=1 λk E(4k)}n converges uniformly to A. The continuity assumption on
ψ and the representation previously derived imply that ψ(f)(y) = λ(ϕ(y))A.
An arbitrary operator A has the representation

A =
A+A∗

2
+ i

A−A∗

2i
,

as the linear combination of two hermitian operators. Therefore given a
complex valued Lipschitz function λ and a bounded operator A on H, we
have

ψ(λA)(y) = λ(ϕ(y))A.

Now given a function f ∈ Lip∗(X,B(H)), f is clearly continuous relative
to the ‖·‖∞. It is shown in [2, p. 224] (see also [11, Theorem 1.13, p. 9]) that
the tensor product space C(X) ⊗ B(H), with the least crossnorm, is dense
in C(X,B(H)), the space of all continuous B(H) valued functions equipped
with the ‖ · ‖∞. Therefore, there exists a sequence {Fn} in C(X) ⊗ B(H)
that converges uniformly to f . We identify the space C(X)⊗ B(H) with all
the functions of the form

∑m
i=1 λiAi with λi ∈ C(X). Each function Fn is

represented as follows:

Fn(x) =
kn∑
i=1

λni (x)Ani

with λni ∈ C(X) and Ani ∈ B(H). Without loss of generality we may assume
that λni are Lipschitz functions (see [8, Theorem 6.8]). Once more, the ps-
continuity of ψ allows us to conclude that

ψ(f)(y) = f(ϕ(y))

for every y ∈ Y and f ∈ Lip∗(X,B(H)).
It is easy to show that ϕ is unique. This concludes the proof of the first

statement in the proposition.
If ψ is an isomorphism then ψ and ψ−1 are both composition operators

of the form

ψ(f)(y) = f(ϕ(y)) for all f ∈ Lip∗(X,B(H)) and y ∈ Y,
ψ−1(g)(x) = g(λ(x)) for all g ∈ Lip∗(Y,B(H)) andx ∈ X,

where ϕ : Y → X and λ : X → Y are Lipschitz functions. Hence ϕ ◦ λ = Id
and λ ◦ ϕ = Id. Therefore ϕ is a lipeomorphism.

In the proof of Theorem 1.2 we use the characterization of a class of
∗-homomorphisms of B(H) due to Molnár (see Theorem 1.3). Moreover, we
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apply a basic result on ∗-homomorphisms between C∗-algebras that we state
first.

Theorem 2.2 (cf. [10, Theorems 4.1.8 and 4.1.9]). Suppose that C1 and
C2 are C∗-algebras and φ is a ∗-homomorphism from C1 into C2. Then for
each A ∈ C1, sp(φ(A)) ⊆ sp(A), ‖φ(A)‖ ≤ ‖A‖ and φ(C1) is a C∗-subalgebra
of C2.

Proof of Theorem 1.2. We fix y ∈ Y and define Ty : B(H) → B(H) by
Ty(A) = ψ(A)(y). It is clear that Ty is a ∗-homomorphism on B(H). In fact,
Ty is independent of y, since ψ preserves constants. Theorem 2.2 implies
that Ty satisfies the hypotheses of Theorem 1.3. Consequently, there exists
an orthogonally ranged family of partial isometries Un (n = 1, 2, . . . ) such
that Ty(A) =

∑
n UnAU

∗
n for all y ∈ Y. We now define τ : B(H)→ B(H) as

follows: τ(f)(y) =
∑

n U
∗
nψ(f)(y)Un. The mapping τ is a ∗-homomorphism

that leaves invariant all the constant functions. Proposition 2.1 applies and
so τ(f)(y) = f(ϕ(y)) for some Lipschitz function ϕ : Y → X. Ergo,
ψ(f)(y) =

∑
n Unf(ϕ(y))U∗n.

Remark 2.3. If ψ is a ∗-isomorphism and a ps-homeomorphism, then
ϕ is a lipeomorphism. Furthermore ψ(IdX) = IdY . In fact, for every A ∈
B(H), we denote by Ã the Lipschitz function everywhere equal to A. There
exists fA ∈ Lip∗(X,B(H)) such that ψ(fA) = Ã. Therefore ψ(fA IdX)
= Aψ(IdX) = ψ(IdX)A = A. For every y ∈ Y we have Aψ(IdX)(y) =
ψ(IdX)(y)A = A. This implies that ψ(IdX)(y) = IdH.

Corollary 2.4. Let X and Y be compact metric spaces. If ψ :
Lip∗(X,B(H)) → Lip∗(Y,B(H)) is a ∗-algebra isomorphism that preserves
constant functions and ψ is a ps-homeomorphism, then there exist a lipeo-
morphism ϕ : Y → X and a unitary U : H → H such that

(2.3) ψ(f)(y) = Uf(ϕ(y))U∗ for all f ∈ Lip∗(X,B(H)) and y ∈ Y.

Proof. The map ψ induces a ∗-isomorphism T : B(H) → B(H). Corol-
lary 5.42 on page 143 in [3] asserts the existence of a unitary U such that
T (A) = UAU∗. We define τ as follows: τ(f)(y) = U∗ψ(f)(y)U. The map
τ fixes constant functions and then Proposition 2.1 applies. This completes
the proof.

Corollary 2.5. Let X and Y be compact metric spaces. If ψ :
Lip∗(X,B(H)) → Lip∗(X,B(H)) is a ps-continuous ∗-algebra homomor-
phism that preserves constant functions then ψ is continuous.

Proof. Theorem 1.2 asserts the existence of a Lipschitz function ϕ :
Y → X and a countable orthogonally ranged family of partial isometries
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Un : H → Hn such that

ψ(f)(y) =
∑
n

Unf(ϕ(y))U∗n for all f ∈ Lip∗(X,B(H)) and y ∈ Y.

Hence we have

‖ψ(f)(y)‖ = sup
‖v‖≤1

∥∥∥∑
n

(Unf(ϕ(y))U∗n)(v)
∥∥∥.

Given v ∈ H, v =
∑

n vn, with vn ∈ Hn, we have∥∥∥∑
n

(Unf(ϕ(y))U∗n)(v)
∥∥∥2

=
〈∑

n

Unf(ϕ(y))U∗n(vn),
∑
k

Ukf(ϕ(y))U∗k (vk)
〉

=
∑
n,k

〈Unf(ϕ(y))U∗n(vn), Ukf(ϕ(y))U∗k (vk)〉

=
∑
n

〈f(ϕ(y))U∗n(vn), f(ϕ(y))U∗n(vn)〉 ≤ ‖f(ϕ(y))‖2‖v‖2.

This implies ‖ψ(f)‖∞ ≤ ‖f‖∞. Similarly we show that L(ψ(f)) ≤ L(f)L(ϕ).
We conclude that ‖ψ(f)‖∗ ≤ max{1, L(ϕ)}‖f‖∗.

Remark 2.6. We observe that whenever ϕ is a contraction then ψ is
also a contraction, as for ∗-homomorphisms between C∗-algebras (cf. Theo-
rem 2.2).

Corollary 2.7. If X is a compact metric space then every ps-homeo-
morphism and ∗-isomorphism on Lip∗(X,B(H)) is continuous.

3. Multiplicative linear functionals on Lip∗(X,B(H)). In this sec-
tion we show that the ∗-algebra Lip∗(X,B(H)) has no nontrivial multiplica-
tive linear functionals. We denote by δξ the point evaluation defined by
δξ(f) = f(ξ).

We first prove that a ∗-homomorphism F : Lip∗(X,B(H))→ B(H) such
that F (IdX) = IdH is a point evaluation.

Theorem 3.1. Let X be a compact metric space. For every ∗-homo-
morphism F : Lip∗(X,B(H)) → B(H) that maps IdX to IdH, there exist
a unique ξ ∈ X and a family of orthogonally ranged partial isometries
Un : H → H, n = 1, 2, . . . , such that F (f) =

∑
n Unδξ(f)U∗n for all

f ∈ Lip∗(X,B(H)).

Proof. We consider a metric space Y equal to a single point, say Y = {y}.
We identify B(H) with Lip∗(Y,B(H)). The homomorphism F is identified
with F̃ : Lip∗(X,B(H)) → Lip∗(Y,B(H)) such that F̃ (f)(y) = F (f). The
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function F̃ is a ∗-homomorphism that satisfies the hypotheses of Theo-
rem 1.2. Therefore

F̃ (f)(y) =
∑
n

Unf(ϕ(y))U∗n for all f ∈ Lip∗(X,B(H)),

with ϕ : {y} → X. We set ξ = ϕ(y).

Theorem 3.2. The only multiplicative linear functional on the ∗-algebra
Lip∗(X,B(H)) is the zero functional.

Proof. Let F : Lip∗(X,B(H))→ C be a ∗-homomorphism. Then

F (IdX) = 0 or F (IdX) = 1.

If F (IdX) = 1, we define F̃ : Lip∗(X,B(H)) → B(H) by F̃ (f) = F (f) IdH .
Theorem 3.1 implies the existence of ξ ∈ X and a family of orthogonally
ranged partial isometries Un : H → Hn, n = 1, 2, . . . , such that

(3.1) F̃ (f) =
∑
n

Unδξ(f)U∗n

for all f ∈ Lip∗(X,B(H)). For every k we have

U∗k
∑
n

(Unδξ(f)U∗n)Uk = U∗kUkδξ(f)U∗kUk = F (f) IdH .

Therefore δξ(f) = F (f) IdH for every f ∈ Lip∗(X,B(H)). This shows that
F (IdX) = 0, and completes the proof.

4. Some remarks on algebraic reflexivity of classes of ∗-isomor-
phisms on Lip(X,B(H)). Let X be a compact metric space which supports
an injective mapping into the complex numbers. We consider the class of
continuous ∗-isomorphisms on Lip(X,B(H)) such that each isomorphism
preserves the C∗-subalgebra of constant functions. We denote this class
by CI(Lip(X,B(H))). We say that a ps-continuous ∗-homomorphism ψ on
Lip(X,B(H)) is locally in CI(Lip(X,B(H))) if for every f ∈ Lip(X,B(H))
there exists an isomorphism Tf in CI(Lip(X,B(H))) such that

ψ(f) = Tf (f).

Furthermore we say that CI(Lip(X,B(H))) is algebraically reflexive if
every ps-continuous ∗-homomorphism on Lip(X,B(H)) that is locally in
CI(Lip(X,B(H))), is in CI(Lip(X,B(H))). For background on algebraic re-
flexivity we refer the reader to [9], [14], [16], [19], [20] and [21].

Proposition 4.1. Let X be a compact metric space. If there exists
an injective mapping λ : X → C, then CI(Lip(X,B(H))) is algebraically
reflexive.

Proof. Let ψ be a ps-continuous ∗-homomorphism on Lip(X,B(H)) that
preserves constant functions. We assume that for every f ∈ Lip(X,B(H))
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there exists Tf ∈ CI(Lip(X,B(H))) such that

ψ(f) = Tf (f).

Theorem 1.2 implies the existence of a Lipschitz function ϕ : Y → X and
a countable orthogonally ranged family of partial isometries Un : H → H,
n ∈ Λ (a countable subset of the natural numbers), such that

(4.1) ψ(f)(x) =
∑
n∈Λ

Unf(ϕ(x))U∗n, f ∈ Lip∗(X,B(H)), x ∈ X.

For each f, Corollary 2.4 implies that there exist a lipeomorphism ϕf :
X → X and a unitary Vf : H → H such that

(4.2) Tf (f)(x) = Vff(ϕf (x))V ∗f , f ∈ Lip∗(X,B(H)), x ∈ X.

Let g be given by g(x) = λ(x) IdH. We have∑
n∈Λ

Ung(ϕ(x))U∗n = Vgg(ϕg(x))V ∗g .

This implies that ϕ(x) = ϕg(x) for every x ∈ X. Therefore ϕ is a lipeo-
morphism. Now we show that the family of orthogonally ranged partial
isometries must consist of a single element, U . Consequently, U must be
unitary.

We consider an orthonormal basis for H, {ei}i∈N. We define the con-
stant function f = e1 ⊗ e1, where e1 ⊗ e1 represents the rank one operator
(e1 ⊗ e1)(v) = 〈v, e1〉e1.

Previous considerations imply that

(4.3) e1 ⊗ e1 = U∗kVfe1 ⊗ e1V ∗f Uk for k ∈ Λ.

We set Wk = V ∗f Uk. Given ej (with j 6= 1) we have

(e1 ⊗ e1)(ej) = (U∗kVfe1 ⊗ e1V ∗f Uk)(ej).

Therefore 0 = 〈Wkej , e1〉W ∗k e1. This implies that either W ∗k e1 = 0 or
〈ej ,W ∗k e1〉 = 0 for every j 6= 1.

We start by observing that W ∗k e1 6= 0. Otherwise, (4.3) would imply
that e1 = 〈Wke1, e1〉W ∗k e1 = 0. Therefore, for every k ∈ Λ, W ∗k e1 = αke1 for
some scalar αk. Since

e1 = 〈e1, αke1〉αke1,

it follows that |αk| = 1.
We have shown that U∗kVfe1 = αke1 for every k. This implies that Vfe1 =∑
k∈Λ αkUke1. Therefore,
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1 = 〈Vfe1, Vfe1〉 =
〈∑
k∈Λ

αkUke1,
∑
j∈Λ

αjUje1

〉
=
∑
k,j∈Λ

αkαj〈Uke1, Uje1〉 =
∑
k∈Λ
〈Uke1, Uke1〉.

This previous equality is only possible if Λ reduces to a single point and
the family {Uk}k∈Λ consists of a single unitary operator, U . Thus we have
ψ(f)(x) = Uf(ϕ(x))U∗ with ϕ a lipeomorphism and U unitary. This implies
that ψ is in CI(Lip(X,B(H))).
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