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Best possible sufficient conditions for the Fourier transform
to satisfy the Lipschitz or Zygmund condition

by

FERENC MORICZ (Szeged)

Abstract. We consider complex-valued functions f € L'(R), and prove sufficient
conditions in terms of f to ensure that the Fourier transform f belongs to one of the
Lipschitz classes Lip(a) and lip(«) for some 0 < a < 1, or to one of the Zygmund classes
Zyg(a) and zyg(a) for some 0 < a < 2. These sufficient conditions are best possible in the
sense that they are also necessary in the case of real-valued functions f for which either
zf(xz) > 0or f(z) > 0 almost everywhere.

1. Introduction. We consider complex-valued functions f : R — C
which are integrable in Lebesgue’s sense over R := (—o00,00), in symbols:
f € L*(R). As is well known, the Fourier transform of f defined by

1

(1.1) f(t) = By S f(x)e ™ de, teR,
R

is a continuous function and f(t) — 0 as || — oo. For more information
see, e.g., [2, Chapter I].

We recall that f is said to satisfy the Lipschitz condition of order o > 0,
in symbols: f € Lip(«), if
(1.2) |f(t+h) — f(t)] < Ch® forallte R and h > 0,

where the constant C does not depend on ¢ or h. Furthermore, f is said to
belong to the little Lipschitz class lip(«) for some o > 0 if

}llinr(l) h=[f(t+h) — f(t)] =0 uniformly in ¢ € R,

Since f is bounded on R and vanishes at +00, it is enough to require the
fulfillment of (1.2) for 0 < h < 1.
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We recall that the Fourier transform f is said to satisfy the Zygmund
condition of order o > 0, in symbols: f € Zyg(a), if

(1.3)  [f(t+h)—2f(t)+ f(t—h)| < Ch™ forallt € R and h >0,

where the constant C does not depend on t or h. Furthermore, f is said to
belong to the little Zygmund class zyg(«) for some a > 0 if

}llimoh_a[f(t—i— h) —2f(t)+ f(t—h)] =0 uniformly in ¢ € R.

Again, it is enough to require the fulfillment of (1.3) for 0 < h < 1.

It is well known (see, e.g., [1, Chapter 2] or [3, Chapter 2, §3]) that
if fe lip(1), in particular if fe Lip(a) for some a > 1, then f=o.
Furthermore, if f € zyg(2), in particular if fe Zyg(a) for some o > 2, then

f=o.

2. Main results. Our main results are formulated in the following four
theorems.

THEOREM 1.
(i) Suppose f:R — C is such that f € LL (R). If for some 0 < a < 1,
(2.1) \ |2f(z)|dz=0@y'"*) for all y>0,
|z|<y

then f € L*(R) and f € Lip(a).
(ii) Conwversely, suppose f € L'(R) and zf(z) > 0 for almost every
x € R. If f € Lip(a) for some 0 < o < 1, then condition (2.1)

holds.
THEOREM 2.
(i) Suppose f:R — C is such that f € LL (R). If for some 0 < a < 2,
(2.2) S 22| f(x)| dz = O(y*~®) for all y >0,

lz|<y

then f € L*(R) and f € Zyg(c).
(ii) Conversely, suppose f€ L' (R) and f(z)>0 for almost every x €R.
If f € Zyg(a) for some 0 < o < 2, then condition (2.2) holds.

Modifying the proofs of Theorems 1 and 2, in Section 4 we obtain the
following two theorems.

THEOREM 3. In case 0 < a < 1, both statements in Theorem 1 remain
valid if the right-hand side in (2.1) is replaced by o(y'~%) as y — oo, and
f € Lip(«) is replaced by f € lip(«).
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THEOREM 4. In case 0 < a < 2, both statements in Theorem 2 remain
valid if the right-hand side in (2.2) is replaced by o(y*>~%) as y — oo, and
f € Zyg(a) is replaced by f € zyg(a).

3. Auxiliary results. In this section, we consider nonnegative-valued,
measurable functions g defined on R4 := [0, 00). We will prove two lemmas,
which are of interest in themselves.

LEMMA 1.

(i) If6 >~y >0 and
(3.1) ?iu‘sg(u) du=0(y") for all y >0,
0
then g € L(y, o) and
(3.2) Oxog(u) du=0(y"%)  for all y > 0.
y
(ii) Conwversely, if § > v > 0 and condition (3.2) holds, then condition
(3.1) also holds.

We note that Lemma 1 fails in the endpoint cases not included above.
For example, if 6 = v > 0 in (i), then for g(u) := u~! condition (3.1) is
satisfied, while (3.2) is not. If § > v = 0 in (ii), then for g(u) := u~!79
condition (3.2) is satisfied, while (3.1) is not.

Proof of Lemma 1. (i) By (3.1), there exists a constant C' = C(g) such
that for all y > 0,

2y 2y
Y0 S g(u) du < S ug(u) du < C(2y)7,
y y
whence it follows that
2y
(3.3) S g(u) du < 27Cy" 9,
y

and since v < §, we conclude that

0o 00 2m+1y
(3.4) S g(u) du < 20Cy" 0 Z S g(u) du
Yy m=0 2my

<20y 0N "2 = 0(y %),y > 0.

m=0

This proves (3.2).
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(ii) By (3.2), there exists another constant C' = C(g) such that for all
y >0,

y y
(3.5) S ulg(u) du < y° S g(u) du < 2°77Cy7,
y/2 y/2

and since v > 0, we conclude that

y 0 2™y
(3.6) Su‘sg(u) du = Z S u g(u) du
0 m=—00 gm—1y
0
<2770y Y 2™ =0(y"), y>0.

This proves (3.1). =
Modifying the proof of Lemma 1, we obtain
LEMMA 2.

(i) If 6 >~y >0 and
y
(3.7) Su5g(u) du=o(y") asy— oo,
0
then g € L'(y, 00) for large enough y and
(3.8) S g(u)du=o(y""%) as y— oc.
y
(ii) Conversely, if § > v > 0, u®g(u) € LL _(Ry), and condition (3.8)

loc
holds, then condition also holds.

We note that the endpoint case § > v = 0 in (i) makes no sense, unless
g(u) = 0 almost everywhere, since the left-hand side in (3.7) is an increasing
function of y. In the other endpoint case 6 = v > 0, both (3.7) and (3.8) are
trivially satisfied if g € L1(R).

Proof of Lemma 2. (i) By (3.7), for every € > 0 there exists yo = yo(¢)
such that for all y > vy, (3.3) is satisfied with € in place of C. Analogously
to (3.4), it follows that

o0 o
| g(u)du < 27770 270y >y,
Y n=0

Since 0 > v and ¢ > 0 is arbitrary, this proves (3.8).
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(ii) By (3.8), for every € > 0 there exists another yo = yo(e) such that
for all y > yo, (3.5) is satisfied with e in place of C, that is,
y
(3.9) S wg(u)du < 27y, y > wo.
y/2
Due to the assumption u’g(u) € LL (Ry), there exists y1 = y1(e, o) >
2y such that

Yo
(3.10) S wg(u) du < ey
0
Given any y > y, there exists an integer mgo = mo(y1) < —1 for which

270 ly <yo < 2™y
Now, by (3.9) and (3.10), we conclude (cf. (3.6)) that for all y > y; we have
0 2my

Su‘sg(u) du < {S + Z S }u‘sg(u) du
0 0

m=—my 2m—1y

0 0
Seyl+ > 207e(@My) < eyt (1 +2077 )y 2’”’W>.
m=—mg m=—mg

Since 7 > 0 and € > 0 is arbitrary, this proves (3.7). m

4. Proofs of theorems
Proof of Theorem 1. (i) For any t € R and h > 0, by (1.1) we have

(4.1) 2x|f(t +h) — |_‘ it ‘”“‘—1)dx‘

s{ |+ § Hf@lle™™ = 1) = I+ Jn,
lz|<1/h  |z|>1/h
say. Since

; h
“the _q| = QSiH;‘ < min{2, h|z|},

e

by (2.1) we estimate as follows:

(42)  nl<h | |of@)|ds= h0<<;>1a> — O(h®).

| <1/h
Applying Lemma 1(i) in the case of (2.1), we find that
1 —Q
am <2 | vwle=o((;) ) =ow
|z|>1/h

Combining (4.1)—(4.3) gives f € Lip(c).



204 F. Mobricz

(ii) Assume f € Lip( ) for some 0 < « < 1. By (1.1), we have
2| f (1) y—‘ d:z‘<C’t°‘ t>0,

where the constant C' does not depend on t. Taking only the imaginary part
of the integral between the absolute value bars, we even have

(4.4) ‘ Sf(x) sin tx da?‘ <Ct*, t>0.

R
We may integrate the integral in (4.4) with respect to ¢ over the interval
(0, h), where h > 0. By Fubini’s theorem, we obtain

(@) o ha ot
)

1-— h
cos T 2sin“ —dxr < C ,
2 a+1

S f(z) - de| =
R

where the constant C' does not depend on h, and we took into account that
zf(x) > 0. Using the well-known inequality

(4.5)

2
(4.6) sinu > —u  for 0 <wu<m/2,
T
it follows from (4.5) that
9h2 po+l
—5 S zf(x)de < C ,
T 2| <1/h a+1
that is,
Cr? 1\'"
de < ————h* ' = = h> 0.
S zf(x) :c_2(a+1) O((h) >, >0

|z|<1/h
This proves (2.1) with y :=1/h, h > 0. =

Proof of Theorem 8. It runs along the same lines as the proof of The-
orem 1, using Lemma 2 instead of Lemma 1. The details are left to the
reader. m

Proof of Theorem 2. (i) For any t € R and h > 0, by (1.1) we have
(4.7)  2a|f(t+h) —2f( )+ f(t—h)

- ‘ (e — 24 ) da
= { S T S }!f(m)] le=he — 2 4 eth®|dy = T, + Jp,

lz|<1/h  |z|>1/h
say. Since

A A h
|€_th — 24 elhﬂ = |2(COS hx — 1)’ = 4sin2 73; < min{4, h2$2}7

by (2.2) we estimate as follows:
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1 2—a
48)  |Il<h* | 2?|f(2)de = h20<<h> ) = O(h®).
|z|<1/h
Applying Lemma 1(i) in the case of (2.2), we find that

1 —
a9 lalsa | ywle=o((;) ) =owe
|z|>1/h
Combining (4.7)-(4.9) gives f € Zyg(a).
(ii) Assume f € Zyg(«) for some 0 < a < 2. By (1.1), we have

(4.10)  27|f(h) — 2f(0) + f(—h)| = ‘ [ £(@)(2cos ha - 2) dx‘
R

= 4| f(z)sin® %dx < Ch®, h>0,
R

where the constant C' does not depend on h, and we took into account that
f(z) > 0. Making use of inequality (4.6), it follows from (4.10) that

4 2
% | 2?f(z)dz < Che,
|z|<1/h
that is,
2 2—«
S J:Qf(x)deCZThO‘_Q—O<<I11> ), h > 0.

|z|<1/h
This proves (2.2) with y :=1/h, h > 0. u
Proof of Theorem /. It is a repetition of the proof of Theorem 2 with

appropriate modifications, using Lemma 2 instead of Lemma 1. The details
are left to the reader. m
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