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Best possible sufficient conditions for the Fourier transform
to satisfy the Lipschitz or Zygmund condition

by

Ferenc Móricz (Szeged)

Abstract. We consider complex-valued functions f ∈ L1(R), and prove sufficient
conditions in terms of f to ensure that the Fourier transform f̂ belongs to one of the
Lipschitz classes Lip(α) and lip(α) for some 0 < α ≤ 1, or to one of the Zygmund classes
Zyg(α) and zyg(α) for some 0 < α ≤ 2. These sufficient conditions are best possible in the
sense that they are also necessary in the case of real-valued functions f for which either
xf(x) ≥ 0 or f(x) ≥ 0 almost everywhere.

1. Introduction. We consider complex-valued functions f : R → C
which are integrable in Lebesgue’s sense over R := (−∞,∞), in symbols:
f ∈ L1(R). As is well known, the Fourier transform of f defined by

(1.1) f̂(t) :=
1

2π

�

R
f(x)e−itx dx, t ∈ R,

is a continuous function and f̂(t) → 0 as |t| → ∞. For more information
see, e.g., [2, Chapter I].

We recall that f̂ is said to satisfy the Lipschitz condition of order α > 0,
in symbols: f̂ ∈ Lip(α), if

(1.2) |f̂(t+ h)− f̂(t)| ≤ Chα for all t ∈ R and h > 0,

where the constant C does not depend on t or h. Furthermore, f̂ is said to
belong to the little Lipschitz class lip(α) for some α > 0 if

lim
h→0

h−α[f̂(t+ h)− f̂(t)] = 0 uniformly in t ∈ R.

Since f̂ is bounded on R and vanishes at ±∞, it is enough to require the
fulfillment of (1.2) for 0 < h ≤ 1.

2010 Mathematics Subject Classification: Primary 42A38; Secondary 26A16.
Key words and phrases: Fourier transform, best possible sufficient conditions, classical
function classes Lip(α), lip(α),Zyg(α) and zyg(α).

DOI: 10.4064/sm199-2-5 [199] c© Instytut Matematyczny PAN, 2010



200 F. Móricz

We recall that the Fourier transform f̂ is said to satisfy the Zygmund
condition of order α > 0, in symbols: f̂ ∈ Zyg(α), if

(1.3) |f̂(t+ h)− 2f̂(t) + f̂(t− h)| ≤ Chα for all t ∈ R and h > 0,

where the constant C does not depend on t or h. Furthermore, f̂ is said to
belong to the little Zygmund class zyg(α) for some α > 0 if

lim
h→0

h−α[f̂(t+ h)− 2f̂(t) + f̂(t− h)] = 0 uniformly in t ∈ R.

Again, it is enough to require the fulfillment of (1.3) for 0 < h ≤ 1.
It is well known (see, e.g., [1, Chapter 2] or [3, Chapter 2, §3]) that

if f̂ ∈ lip(1), in particular if f̂ ∈ Lip(α) for some α > 1, then f̂ ≡ 0.
Furthermore, if f̂ ∈ zyg(2), in particular if f̂ ∈ Zyg(α) for some α > 2, then
f̂ ≡ 0.

2. Main results. Our main results are formulated in the following four
theorems.

Theorem 1.

(i) Suppose f : R→ C is such that f ∈ L1
loc(R). If for some 0 < α ≤ 1,

(2.1)
�

|x|<y

|xf(x)| dx = O(y1−α) for all y > 0,

then f ∈ L1(R) and f̂ ∈ Lip(α).
(ii) Conversely, suppose f ∈ L1(R) and xf(x) ≥ 0 for almost every

x ∈ R. If f̂ ∈ Lip(α) for some 0 < α ≤ 1, then condition (2.1)
holds.

Theorem 2.

(i) Suppose f : R→ C is such that f ∈ L1
loc(R). If for some 0 < α ≤ 2,

(2.2)
�

|x|<y

x2|f(x)| dx = O(y2−α) for all y > 0,

then f ∈ L1(R) and f̂ ∈ Zyg(α).
(ii) Conversely, suppose f ∈L1(R) and f(x)≥0 for almost every x∈R.

If f̂ ∈ Zyg(α) for some 0 < α ≤ 2, then condition (2.2) holds.

Modifying the proofs of Theorems 1 and 2, in Section 4 we obtain the
following two theorems.

Theorem 3. In case 0 < α < 1, both statements in Theorem 1 remain
valid if the right-hand side in (2.1) is replaced by o(y1−α) as y → ∞, and
f ∈ Lip(α) is replaced by f ∈ lip(α).
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Theorem 4. In case 0 < α < 2, both statements in Theorem 2 remain
valid if the right-hand side in (2.2) is replaced by o(y2−α) as y → ∞, and
f ∈ Zyg(α) is replaced by f ∈ zyg(α).

3. Auxiliary results. In this section, we consider nonnegative-valued,
measurable functions g defined on R+ := [0,∞). We will prove two lemmas,
which are of interest in themselves.

Lemma 1.

(i) If δ > γ ≥ 0 and

(3.1)
y�

0

uδg(u) du = O(yγ) for all y > 0,

then g ∈ L1(y,∞) and

(3.2)
∞�

y

g(u) du = O(yγ−δ) for all y > 0.

(ii) Conversely, if δ ≥ γ > 0 and condition (3.2) holds, then condition
(3.1) also holds.

We note that Lemma 1 fails in the endpoint cases not included above.
For example, if δ = γ > 0 in (i), then for g(u) := u−1 condition (3.1) is
satisfied, while (3.2) is not. If δ > γ = 0 in (ii), then for g(u) := u−1−δ

condition (3.2) is satisfied, while (3.1) is not.

Proof of Lemma 1. (i) By (3.1), there exists a constant C = C(g) such
that for all y > 0,

yδ
2y�

y

g(u) du ≤
2y�

y

uδg(u) du ≤ C(2y)γ ,

whence it follows that

(3.3)
2y�

y

g(u) du ≤ 2γCyγ−δ,

and since γ < δ, we conclude that
∞�

y

g(u) du ≤ 2γCyγ−δ
∞∑
m=0

2m+1y�

2my

g(u) du(3.4)

≤ 2γCyγ−δ
∞∑
m=0

2m(γ−δ) = O(yγ−δ), y > 0.

This proves (3.2).
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(ii) By (3.2), there exists another constant C = C(g) such that for all
y > 0,

(3.5)
y�

y/2

uδg(u) du ≤ yδ
y�

y/2

g(u) du ≤ 2δ−γCyγ ,

and since γ > 0, we conclude that
y�

0

uδg(u) du =
0∑

m=−∞

2my�

2m−1y

uδg(u) du(3.6)

≤ 2δ−γCyγ
0∑

m=−∞
2mγ = O(yγ), y > 0.

This proves (3.1).

Modifying the proof of Lemma 1, we obtain

Lemma 2.

(i) If δ > γ > 0 and

(3.7)
y�

0

uδg(u) du = o(yγ) as y →∞,

then g ∈ L1(y,∞) for large enough y and

(3.8)
∞�

y

g(u) du = o(yγ−δ) as y →∞.

(ii) Conversely, if δ > γ > 0, uδg(u) ∈ L1
loc(R+), and condition (3.8)

holds, then condition also holds.

We note that the endpoint case δ > γ = 0 in (i) makes no sense, unless
g(u) = 0 almost everywhere, since the left-hand side in (3.7) is an increasing
function of y. In the other endpoint case δ = γ ≥ 0, both (3.7) and (3.8) are
trivially satisfied if g ∈ L1(R).

Proof of Lemma 2. (i) By (3.7), for every ε > 0 there exists y0 = y0(ε)
such that for all y ≥ y0, (3.3) is satisfied with ε in place of C. Analogously
to (3.4), it follows that

∞�

y

g(u) du ≤ 2γεyγ−δ
∞∑
n=0

2m(γ−δ), y ≥ y0.

Since δ > γ and ε > 0 is arbitrary, this proves (3.8).
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(ii) By (3.8), for every ε > 0 there exists another y0 = y0(ε) such that
for all y ≥ y0, (3.5) is satisfied with ε in place of C, that is,

(3.9)
y�

y/2

uδg(u) du ≤ 2δ−γεyγ , y ≥ y0.

Due to the assumption uδg(u) ∈ L1
loc(R+), there exists y1 = y1(ε, y0) >

2y0 such that

(3.10)
y0�

0

uδg(u) du ≤ εyγ1 .

Given any y ≥ y1, there exists an integer m0 = m0(y1) ≤ −1 for which

2−m0−1y < y0 ≤ 2m0y.

Now, by (3.9) and (3.10), we conclude (cf. (3.6)) that for all y ≥ y1 we have
y�

0

uδg(u) du ≤
{y0�

0

+
0∑

m=−m0

2my�

2m−1y

}
uδg(u) du

≤ εyγ1 +
0∑

m=−m0

2δ−γε(2my)γ ≤ εyγ
(

1 + 2δ−γ
0∑

m=−m0

2mγ
)
.

Since γ > 0 and ε > 0 is arbitrary, this proves (3.7).

4. Proofs of theorems

Proof of Theorem 1. (i) For any t ∈ R and h > 0, by (1.1) we have

2π|f̂(t+ h)− f̂(t)| =
∣∣∣ �

R
f(x)e−itx(e−ihx − 1) dx

∣∣∣(4.1)

≤
{ �

|x|<1/h

+
�

|x|>1/h

}
|f(x)| |e−ihx − 1| =: Ih + Jh,

say. Since

|e−ihx − 1| =
∣∣∣∣2 sin

hx

2

∣∣∣∣ ≤ min{2, h|x|},

by (2.1) we estimate as follows:

(4.2) |Ih| ≤ h
�

|x|<1/h

|xf(x)| dx = hO

((
1
h

)1−α)
= O(hα).

Applying Lemma 1(i) in the case of (2.1), we find that

(4.3) |Jh| ≤ 2
�

|x|>1/h

|f(x)| dx = O

((
1
h

)−α)
= O(hα).

Combining (4.1)–(4.3) gives f̂ ∈ Lip(α).
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(ii) Assume f̂ ∈ Lip(α) for some 0 < α ≤ 1. By (1.1), we have

2π|f̂(t)− f̂(0)| =
∣∣∣ �

R
f(x)(e−itx − 1) dx

∣∣∣ ≤ Ctα, t > 0,

where the constant C does not depend on t. Taking only the imaginary part
of the integral between the absolute value bars, we even have

(4.4)
∣∣∣ �

R
f(x) sin tx dx

∣∣∣ ≤ Ctα, t > 0.

We may integrate the integral in (4.4) with respect to t over the interval
(0, h), where h > 0. By Fubini’s theorem, we obtain

(4.5)
∣∣∣∣ �

R
f(x)

1− coshx
x

dx

∣∣∣∣ =
�

R

f(x)
x

2 sin2 hx

2
dx ≤ C hα+1

α+ 1
,

where the constant C does not depend on h, and we took into account that
xf(x) ≥ 0. Using the well-known inequality

(4.6) sinu ≥ 2
π
u for 0 ≤ u ≤ π/2,

it follows from (4.5) that

2h2

π2

�

|x|<1/h

xf(x) dx ≤ C hα+1

α+ 1
,

that is,
�

|x|<1/h

xf(x) dx ≤ Cπ2

2(α+ 1)
hα−1 = O

((
1
h

)1−α)
, h > 0.

This proves (2.1) with y := 1/h, h > 0.

Proof of Theorem 3. It runs along the same lines as the proof of The-
orem 1, using Lemma 2 instead of Lemma 1. The details are left to the
reader.

Proof of Theorem 2. (i) For any t ∈ R and h > 0, by (1.1) we have

(4.7) 2π|f̂(t+ h)− 2f̂(t) + f̂(t− h)|

=
∣∣∣ �

R
f(x)e−itx(e−ihx − 2 + eihx) dx

∣∣∣
≤
{ �

|x|<1/h

+
�

|x|>1/h

}
|f(x)| |e−ihx − 2 + eihx|dx =: Ih + Jh,

say. Since

|e−ihx − 2 + eihx| = |2(coshx− 1)| = 4 sin2 hx

2
≤ min{4, h2x2},

by (2.2) we estimate as follows:
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(4.8) |Ih| ≤ h2
�

|x|<1/h

x2|f(x)| dx = h2O

((
1
h

)2−α)
= O(hα).

Applying Lemma 1(i) in the case of (2.2), we find that

(4.9) |Jh| ≤ 4
�

|x|>1/h

|f(x)| dx = O

((
1
h

)−α)
= O(hα).

Combining (4.7)–(4.9) gives f̂ ∈ Zyg(α).
(ii) Assume f̂ ∈ Zyg(α) for some 0 < α ≤ 2. By (1.1), we have

2π|f̂(h)− 2f̂(0) + f̂(−h)| =
∣∣∣ �

R
f(x)(2 coshx− 2) dx

∣∣∣(4.10)

= 4
�

R
f(x) sin2 hx

2
dx ≤ Chα, h > 0,

where the constant C does not depend on h, and we took into account that
f(x) ≥ 0. Making use of inequality (4.6), it follows from (4.10) that

4h2

π2

�

|x|<1/h

x2f(x)dx ≤ Chα,

that is,
�

|x|<1/h

x2f(x) dx ≤ Cπ2

4
hα−2 = O

((
1
h

)2−α)
, h > 0.

This proves (2.2) with y := 1/h, h > 0.

Proof of Theorem 4. It is a repetition of the proof of Theorem 2 with
appropriate modifications, using Lemma 2 instead of Lemma 1. The details
are left to the reader.
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Bolyai Institute
University of Szeged
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