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Köthe coechelon spaces as locally convex algebras

by

José Bonet (Valencia) and Paweł Domański (Poznań)

Abstract. We study those Köthe coechelon sequence spaces kp(V ), 1 ≤ p ≤ ∞ or
p = 0, which are locally convex (Riesz) algebras for pointwise multiplication. We charac-
terize in terms of the matrix V = (vn)n when an algebra kp(V ) is unital, locally m-convex,
a Q-algebra, has a continuous (quasi)-inverse, all entire functions act on it or some tran-
scendental entire functions act on it. It is proved that all multiplicative functionals are
continuous and a precise description of all regular and all degenerate maximal ideals is
given even for arbitrary solid algebras of sequences with pointwise multiplication. In par-
ticular, it is shown that all regular maximal ideals are solid.

The aim of this paper is to present a thorough investigation of those
Köthe coechelon sequence spaces kp(V ), 1 ≤ p ≤ ∞ or p = 0, which are
commutative algebras for pointwise multiplication. Let us recall that

kp(V ) := ind
n
`p(vn), p ∈ [1,∞], and k0(V ) := ind

n
c0(vn),

where `p(vn) ⊆ CI and c0(vn) ⊆ CI are the usual (weighted) Banach spaces
of all scalar sequences x = (xi)i with ‖x‖n,p = (

∑
i∈I(vn(i)|xi|)p)1/p < ∞

and with the corresponding supremum norm in the cases p = 0 and p =∞.
Here V = (vn)n∈N is a decreasing sequence of functions vn : I → ]0,∞[.

These spaces appear naturally as coefficient spaces for some classical
Schauder orthogonal bases in certain classical spaces, for instance, the space
of distributions on the compact interval [−1, 1] with the Chebyshev polyno-
mials as a basis or the space of tempered distributions on the real line with
the Hermite functions as a basis. In some cases kp(V ) are sequential repre-
sentations of convolution algebras of functions or distributions defined on a
compact group, where the unit basis corresponds to the basis of characters
(see, for instance, spaces of distributions or ultradistributions over the unit
circle, [32, Lemma 8.1]). In that case convolution corresponds to pointwise
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multiplication in kp(V ). Coechelon sequence spaces are not always closed
with respect to pointwise multiplication (but they are for the above exam-
ples); that is why our first task will be to characterize which kp(V ) spaces are
algebras—it turns out that in that case they are automatically topological
algebras with jointly continuous multiplication (see Proposition 2.1).

Surprisingly, in the literature one cannot find papers devoted exactly to
kp(V ) algebras although many results can be deduced from investigations
of more general classes of algebras. However, the picture has been far from
complete.

Algebras kp(V ) are Riesz algebras [1, Def. 2.53] or even f -algebras, ex-
tensively studied, for instance, in [20], [15], [16]. Coechelon sequence algebras
are also `∞-submodules of the algebra of all sequences; this type of algebras
was considered in [28]. If p 6= ∞, kp(V ) even has an orthogonal uncondi-
tional basis (formed by the unit vectors); such algebras were studied in [5],
[6], [13], [17], [18], [19]. In case p =∞ the space kp(V ) is algebraically equal
to some space of sequences equipped with a family of weighted sup-norms
(but topologically they may differ) [8, Th. 15]. Analogously for p = 1, kp(V )
is (even topologically) equal to a space of sequences equipped with a family
of weighted `1-norms [8, Th. 15]. These types of algebras were studied in [26],
[27] and [4], [5], respectively. Finally, since the classical work of Michael [25]
and Arens [2], several authors have investigated countable inductive limits
of Banach algebras (see, for instance, [3], [23], [12], [14], [21], [29], [33], [34]
etc.). Unfortunately, even if kp(V ) is a topological algebra it need not be an
inductive limit of a sequence of Banach algebras although it is by definition
an inductive limit of a sequence of Banach spaces.

Let us summarize our main results and comment what has been known so
far in this respect. The results are formulated and proved over the complex
field but all of them (except those in Section 3) remain valid with the same
proof for spaces and algebras over the real field.

In Section 2 we characterize when kp(V ) is an algebra (Prop. 2.1), when
it is unital (Prop. 2.5, 2.6, Cor. 2.7), locally m-convex, Q-algebra or an
inductive limit of a sequence of Banach algebras (Theorem 2.8)—the last
three conditions turn out to be equivalent. The implication that existence
of a unit implies nuclearity for 1 ≤ p < ∞ was known for algebras with
absolute orthogonal basis (i.e., for instance for k1(V )); see [5, Cor. 2.6]. The
characterization of Q-algebras was known only for p =∞ for unital algebras
(for the non-unital case a necessary condition was known); see [26, Prop. 3].
A characterization of local m-convexity was known only for p = ∞ [26,
Prop. 2]. The fact that the inductive limit of a sequence of Banach algebras is
locally m-convex and a Q-algebra is known ([12], [33] and references therein;
for the unital case see [3, Prop. 12, Th. 2]). Let us emphasize that after
adding a unit to a non-unital algebra kp(V ) the result is not a kp(V ) algebra
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any more—that is why it makes sense to consider the general not necessarily
unital case.

In Section 3 we characterize when all entire functions vanishing at zero
act on an algebra kp(V ) (Theorem 3.1) and when there is a transcendental
function acting on kp(V ) (Theorem 3.2).

In Section 4 we describe all maximal regular ideals in an arbitrary `∞-
module (the class of algebras including algebras kp(V ) for 1 ≤ p ≤ ∞ or
p = 0), explaining which of them have codimension 1 and which are of
infinite codimension (these are the only possibilities); see Theorem 4.2 and
Proposition 4.3. As a consequence we prove that they are all solid. Moreover,
we characterize which ideals are contained in some regular maximal proper
ideal (Corollary 4.8). So far the descriptions of multiplicative functionals
were given in [28, Cor. 14] or [26, Th. 1] for p = ∞; the description of
maximal proper ideals in the unital case was given for spaces with orthogonal
unconditional basis [18, Th. 1] (so for p 6=∞) but the same proof works for
all `∞-modules (so also for p = ∞). Nevertheless our proof seems to be
easier also in the unital case. Some hint on the form of such maximal proper
ideals in the unital case is given in [15, Th. 2.5]. For the general non-unital
case a description of maximal closed ideals was given in [19, Th. 2.1] again
for p 6= ∞. On the other hand the description of continuous multiplicative
functionals was given for p =∞ in [26, Th. 3].

In Section 5 we show that in algebras kp(V ) all multiplicative functionals
are continuous (Theorem 5.1), we clarify which maximal proper ideals are
closed (Theorem 5.4) and show that all ideals in kp(V ) are solid if and only if
kp(V ) is unital (Prop. 5.17). Finally we describe the ideal (kp(V ))2 essential
for the description of all maximal proper degenerate ideals (Prop. 5.6) and
we characterize when kp(V ) = (kp(V ))2 (Prop. 5.10). As a consequence we
find that in some dual power series algebras there exist proper ideals not
contained in any maximal proper ideal. In this respect only a description of
closed ideals for p 6=∞ has been known [19, Th. 2.2].

1. Notation and preliminaries. In this article we always denote by
I a fixed countable index set and by V = (vn)n∈N a decreasing sequence of
functions vn : I → ]0,∞[. So, kp(V ) is the increasing union of Banach spaces⋃∞
n=1 `p(vn) (resp.

⋃∞
n=1 c0(vn)) endowed with the strongest locally convex

topology under which the natural injection of each of the Banach spaces
`p(vn) (resp. c0(vn)), for n ∈ N, is continuous. The norm of `p(vn) is denoted
by ‖ · ‖n,p (resp. ‖ · ‖n,0). The spaces kp(V ) are called coechelon spaces of
order p. The natural map k0(V )→ k∞(V ) is clearly continuous, and even a
topological isomorphism into k∞(V ); see [10].

The space kp(V ) is naturally included in a minimal sequence space with
a family of `p-norms, called the projective hull of kp(V ) and denoted by
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Kp(V ) (see [9], [8], [7]). It is known that for p 6= 0,∞ the projective hull is
topologically equal to kp(V ), for p = ∞ it is algebraically equal to k∞(V )
(but the topologies may differ), while for p = 0 the projective hull contains
(in general properly) k0(V ) as a topological subspace. For more details see
[8] or [7].

The unit vectors of the sequence space will be denoted by ei := (δi,j)j∈I .
We denote by e the constant sequence whose elements are all equal to 1.
If J is a subset of I, we denote by eJ the characteristic function of J . If
J ⊂ I, the sectional subspace kp(V, J) is the subspace of kp(V ) consisting of
all x ∈ kp(V ) whose coordinates xi vanish if i /∈ J .

For an increasing sequence α = (αi)i of positive numbers tending to
infinity, the dual power series spaces Λp0(α)′ of finite type (resp. Λp∞(α)′ of
infinite type) are precisely the Köthe coechelon spaces kp(V ) of order p for
the matrix V = (vn)n, vn(i) := exp(n−1αi) (resp. vn(i) := exp(−nαi)).

For a systematic treatment of coechelon spaces (and echelon spaces) see
[7], [8], [10], [24, Ch. 27]. We refer the reader to the books by Mallios [23] and
Żelazko [35], [36] for unexplained terminology about topological algebras,
and for functional analysis and locally convex spaces to Meise and Vogt [24]
and Bonet and Pérez Carreras [30].

2. Algebras kp(V )

Proposition 2.1. The space kp(V ), 1 ≤ p ≤ ∞ or p = 0, is an algebra
with (separately continuous) pointwise multiplication if and only if for all
n there is k such that vk/v2

n ∈ `∞. Moreover, if it is an algebra then its
multiplication is automatically (jointly) continuous.

Proof. Observe that pointwise multiplication is well defined in kp(V )
if and only if it is separately continuous by the closed graph theorem for
LB-spaces. Since every LB-space is barrelled, separately continuous multi-
plication is then also a hypocontinuous bilinear form. We can now proceed as
in the proof of [30, Prop. 11.3.7] to conclude that the hypocontinuous multi-
plication is continuous, since every LB-space is also a (DF)-space. Summariz-
ing: pointwise multiplication is well defined in kp(V ) iff it is hypocontinuous,
and this, in turn, is equivalent to

(2.1) ∀n ∃k,C > 0 ‖xy‖pk,p ≤ C‖x‖
p
n,p‖y‖pn,p.

Indeed, hypocontinuity follows from (2.1) since LB-spaces are ultrabornolog-
ical and the unit balls of (‖ · ‖k,p)k form a fundamental system of Banach
discs. The converse follows from [31, Lemma 2.1].

Sufficiency. Given n ≥ m, we select k as in the assumption to conclude,
for y ∈ `p(vn),



Köthe coechelon spaces 245

‖xy‖pk,p =
∑
i

|xiyivk(i)|p(2.2)

≤ C
∑
i

(|xi|vn(i)|yi|vn(i))p ≤ ‖x‖pn,p‖y‖pn,p.

Necessity. Applying (2.1) to x = y = ei, i ∈ I, we get

∀n ∃k,C ∀i ∈ I vk(i) ≤ Cvn(i)2.

Remark 2.2. (1) As already observed, in every topological LB-algebra
multiplication is automatically jointly continuous.

(2) Analogously to (2.2) one observes that

‖xy‖pk,p ≤ C‖x‖
p
n,∞‖y‖pn,p,

which implies that if kp(V ) is an algebra it is also a k∞(V )-module.
(3) If vn(i) ≥ 1 for all i ∈ I and n ∈ N, then the condition in Proposition

2.1 always holds by taking k = n and C = 1. This implies in particular that
all the Banach step spaces are in fact Banach algebras. In this case, kp(V )
is a locally m-convex algebra [12, 14]. See below for a characterization of
locally m-convex algebras of type kp(V ) .

(4) If we take I = N× N and define vn(i, j) := 1 if i ≥ n and vn(i, j) :=
(1/j)k if i < k, then k∞ and k0 are algebras by Proposition 2.1, but k0(V )
is not equal to its projective hull K0(V ) algebraically and the topology of
k∞ is strictly finer than the topology of the projective hull K∞(V ). In fact,
the sequence V does not satisfy condition (D); cf. [8]. Another example of
an algebra k0(V ) strictly smaller than K0(V ) can be seen in [24, 27.21].

Proposition 2.3 (comp. [19, Th. 2.1]). The set of non-zero continu-
ous multiplicative functionals on an algebra kp(V ), 1 ≤ p < ∞ or p = 0,
coincides with the set of point evaluations on I.

Proof. Continuous functionals on kp(V ) are elements of λq(V −1) for
1/p + 1/q = 1 for p 6= ∞. If a functional has two non-zero coordinates,
it does not vanish on some pair of vectors x, y such that xy = 0.

Remark 2.4. If an algebra k∞(V ) is not Montel, then k∞(V ) a contains
a complemented algebra (with a projection being an algebra homomorphism)
isomorphic to l∞ as an algebra. Therefore, there exist multiplicative func-
tionals which are not point evaluations at points in I, since `∞ = C(βN) and
point evaluations on βN are multiplicative functionals. If k∞(V ) = K∞(V )
topologically, the full description was given by Oubbi [28, Th. 3]. If k∞(V )
is Montel, either it is even a (DFS)-space and coincides with k0(V ), which
happens precisely when V satisfies condition (S) (cf. [10]), or it is Montel but
V does not satisfy condition (S). In this case, k∞(V ) = K∞(V ) = K0(V )
is the completion of k0(V ); cf. [10]. In both cases, the set of non-zero con-
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tinuous multiplicative functionals on k∞(V ) coincides with the set of point
evaluations on I.

Proposition 2.5. Suppose that kp(V ), 1 ≤ p < ∞, is an algebra. The
following assertions are equivalent:

(a) kp(V ) is unital.
(b) There is m such that vm ∈ `p.
(c) There is m such that vm ∈ `1.
(d) kp(V ) is nuclear and there is m such that vm ∈ `∞.

In particular, if any of the above conditions hold then kp(V ) is isomorphic
to a quotient of s′, the dual of the space of rapidly decreasing sequences.

Proof. The equivalence of (a) and (b) and the implication (c)⇒(b) are
trivial.

(b)⇒(c): Take 2k > p; then vm ∈ `2k . By Proposition 2.1 applied k

times, there is n such that vn ≤ Cv2k

m , thus vn ∈ `1.
To see that (c) implies nuclearity of kp(V ), given n ≥ m we apply Propo-

sition 2.1 to find k such that vk/v2
n ∈ `∞. Then∑

i

vk(i)
vn(i)

≤ C
∑
i

vn(i) <∞,

since vm, and hence vn, belongs to `1. The conclusion follows by the Grothen-
dieck–Pietsch criterion (cf. [24, 28.16]).

Now suppose that condition (d) holds. We apply the Grothendieck–
Pietsch criterion to find k > m such that vk/vm ∈ `1. Since vm ∈ `∞, we get∑

i

vk(i) =
∑
i

vm(i)
vk(i)
vm(i)

≤ C
∑
i

vk(i)
vm(i)

<∞,

thus vk ∈ `1 and (c) holds.
If kp(V ) is nuclear then it is reflexive and its strong dual is a Köthe se-

quence space with a Köthe matrix (1/vk(j))k,j (comp. [24, Sec. 27]). More-
over, by (d), the sup-norm is a continuous norm on this dual space. By
Proposition 2.1,

∀n ∃k 1
v2
n

≤ C 1
vk
· 1,

which gives a (DN)-condition and, by [24, Th. 31.5], the dual of kp(V ) is
isomorphic to a subspace of s. By duality, the last claim of the proposition
follows.

Proposition 2.5 does not hold for p = 0. Indeed, it is enough to take
v(i) → 0 as i goes to ∞ such that vn(i) := v(i)n is not summable for each
n ∈ N (for example vn(i) := 1/(log i)n). However, we have the following
result.
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Proposition 2.6. Suppose that k0(V ) is an algebra. The following as-
sertions are equivalent:

(a) k0(V ) is unital.
(b) There is m such that vm ∈ c0.
(c) k0(V ) is Schwartz and there is m such that vm ∈ `∞.
Proof. The proof is similar to the one of Proposition 2.5, since k0(V ) is

Schwartz if and only if for each n there is k such that vk/vn ∈ c0; cf. [10].
Since for some V we have k∞(V ) = `∞, the above results do not hold for

p =∞. However, we have the following general result.
Corollary 2.7. An algebra kp(V ), 1 ≤ p ≤ ∞ or p = 0, has a unit if

and only if kp(V ) = k∞(V ) and there is m such that vm ∈ `∞.
Clearly the condition e ∈ k∞(V ) does not imply that k∞(V ) is Montel,

since one can take vn(i) = 1 for each n and obtain k∞(V ) = `∞.
An element x of a (not necessarily unital) commutative algebra A is called

quasi-invertible if there is y ∈ A, necessarily unique, such that x + y = xy.
The element y is called the quasi-inverse of A. An element x of an algebra
A with unit e is quasi-invertible with quasi-inverse y if and only if e − x is
invertible and e−y is its inverse. An algebra A is called a Q-algebra if the set
of quasi-invertible elements is open. For unital algebras this is equivalent to
the set of invertible elements being open. Moreover, the inverse is continuous
in a unital algebra if and only if the map sending quasi-invertible elements
to their quasi-inverses is continuous (i.e., quasi-inverse is continuous). We
refer to [23] for more information.

Now we present a theorem characterizing many basic properties of alge-
bras kp(V ).

Theorem 2.8. Suppose that kp(V ), 1 ≤ p ≤ ∞ or p = 0, is an algebra.
The following assertions are equivalent:

(a) kp(V ) is locally m-convex.
(b) kp(V ) is a Q-algebra.
(c) The map sending each quasi-invertible element of kp(V ) to its quasi-

inverse is continuous.
(d) Every sectional subspace kp(V,E) with unit coincides algebraically

(and topologically) with `∞(E).
(e) infi∈I vn(i) > 0 for each n ∈ N.
(f) kp(V ) ⊂ `∞ algebraically.
(g) Infinitely many (equivalently, all) steps are Banach algebras.
(h) kp(V ) is an inductive limit of a sequence of Banach algebras.

If p 6=∞ then the above conditions are also equivalent to

(i) No infinite-dimensional sectional subspace of kp(V ) has a unit.
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Proof. (a)⇒(i) for p finite: Suppose that a sectional subspace kp(V, J),
J ⊂ I, with J infinite, has a unit. By (a), kp(V ) is locally m-convex, so
kp(V, J) is a unital locally m-convex algebra of type kp(V ). By [35, Th. 12.3],
an element x ∈ kp(V, J) is invertible if no non-zero multiplicative continuous
functional vanishes at x. Non-zero multiplicative continuous functionals on
kp(V ) are evaluations on elements of the index set (see Prop. 2.3); thus x ∈
kp(V, J) is invertible if and only if all its coordinates are non-zero. However, if
x ∈ kp(V, J) is invertible in the unital algebra kp(V, J), there are k and C > 0
such that 1/|xj | < C/vk(j) for all j ∈ J . If yj := min(1, j−1vj(j)), j ∈ J ,
then y = (yj)j∈J ∈ kp(V, J), since kp(V, J) has a unit. On the other hand,
for each k ∈ N and each j > k, j ∈ J ,

vk(j)
1
|yj |
≥ vk(j)

j

vj(j)
≥ j,

which implies that y is not invertible, although all its coordinates are non-
zero. A contradiction.

(i)⇒(d) for p finite: Obvious.
(d)⇒(e): Assume that there exists n such that infi vn(i) = 0. Thus there

exists an infinite subset J ⊂ I such that∑
j∈J

vn(j) <∞.

The sectional subspace kp(V, J) has a unit by Propositions 2.5, 2.6 and Corol-
lary 2.7 and kp(V, J) 6= `∞.

(e)⇒(f): Obvious.
(f)⇒(e): If (e) does not hold we findm and a sequence (ij)j in I such that

vm(ij) < 2−2j for each j. The element x = (xi)i given by xij := 1/vm(ij)1/2

for j ∈ N and xi = 0 for other i, is unbounded but it belongs to `p(vm) ⊂
kp(V ).

(a)⇒(d) for p = ∞: Since k0(V ) is a topological subalgebra of k∞(V )
[10], it is a locally m-convex algebra. Thus by (a)⇒(d) for p finite and
(d)⇒(e)⇔(f) already proved we get (e) and (f). Clearly, every unital k∞(V,E)
contains `∞(E), thus (f) implies that k∞(V,E) = `∞(E).

(e)⇒(g): If infi vn(i) > 0, then
vn(i)
vn(i)2

=
1

vn(i)
is bounded and the step `p(vn) or c0(vn) is an algebra.

(g)⇒(h): Obvious.
(h)⇒(a): If infinitely many steps are commutative Banach algebras then

the inductive limit is an m-convex algebra. See e.g. [12] and [14].
(a)⇒(b): See [33], where the proof is given in the unital case. For the

non-unital case obvious changes are required.
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(b)⇒(e): Suppose that (e) does not hold. Find n and a sequence (i(k))k
in I such that vn(i(k)) < 1/k for each k. This implies that (ei(k))k tends to
0 in `p(vn), hence in kp(V ). Now, 0 is quasi-invertible but ei(k) is not, since
ei(k) + y = ei(k)y implies 1 + yi(k) = yi(k), a contradiction.

(a)⇒(c): Every locally m-convex algebra has a continuous quasi-inverse
operation by [23, II Lemma 3.1].

(c)⇒(e): Assume that (e) is not satisfied. Select n and a sequence (i(k))k
such that limk→∞ vn(i(k)) = 0. Select a sequence (νk)k ⊂ ]0, 1/2[ tend-
ing to 0 such that (vm(i(k))/νk)k is unbounded for each m. Each element
(νk − 1)ei(k) is quasi-invertible with quasi-inverse 1−νk

νk
ei(k), as a direct com-

putation shows. On the other hand, ((νk− 1)ei(k))k converges to 0 in `p(vn),
hence in kp(V ), but

(
1−νk
νk

ei(k)
)
k
is unbounded in every step of kp(V ).

For p 6= 0 this implies that
(

1−νk
νk

ei(k)
)
k
is not convergent by regularity

of kp(V ). For p = 0 we observe that
(

1−νk
νk

ei(k)
)
k
is also unbounded in every

step of k∞(V ) so it cannot be convergent to zero in k∞(V ) or in k0(V ) since
the latter space is a topological subspace of k∞(V ) [10].

This shows that the quasi-inverse operation is not continuous.

As a consequence of Propositions 2.5, 2.6, Corollary 2.7 and Theorem
2.8, we get the following corollaries.

Corollary 2.9. If 1 ≤ p < ∞ or p = 0 and kp(V ) is a unital algebra,
then kp(V ) is not a Q-algebra and inversion is not continuous on the group
of invertible elements of kp(V ).

Corollary 2.10. A unital algebra k∞(V ) is a Q-algebra if and only if
it coincides with the Banach algebra `∞.

Proof. This is a consequence of Corollary 2.7 and Theorem 2.8, since
a locally m-convex unital algebra k∞(V ) must coincide algebraically and
topologically with `∞.

The above immediately yields

Corollary 2.11. Λp0(α)′ is a non-unital locally m-convex Q-algebra.
Λp∞(α)′ is a locally convex (Riesz) algebra which is not a locally m-convex
Q-algebra and not an inductive limit of a sequence of Banach algebras. It
has a unit for p =∞ and for p = 0, while for 1 ≤ p <∞ it has a unit only
in the nuclear case.

Let us observe that Λp0(β) and Λp∞(β) for β = (βn), βn = n, are isomor-
phic as locally convex spaces to spaces of germs of holomorphic functions over
the closed unit disc or over a point, respectively. Thus they are also topolog-
ical algebras equipped with the multiplication of germs—clearly, these are
(always unital) algebras completely different from our kp(V ) algebras.
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3. Entire functions acting on algebras kp(V ). We say that an entire
function f(z) =

∑∞
n=0 αnz

n acts on the algebra A if for every x ∈ A the series∑∞
n=0 αnx

n converges to an element in A. We say that a space of entire
functions acts on an algebra if all its elements act on the algebra. In our
next results we identify the entire function f ∈ H(C), f(z) =

∑∞
n=0 αnz

n,
with the sequence (αn)∞n=0 of coefficients.

If an algebra kp(V ) is not unital, then constant functions do not act on
kp(V ). This is why we restrict our attention to entire functions vanishing
at 0.

Theorem 3.1. The space H0(C) of entire functions vanishing at 0 acts
on an algebra kp(V ), 1 ≤ p ≤ ∞ or p = 0, if and only if infi vn(i) > 0 for
all n ∈ N.

Proof. We give the details for 1 ≤ p <∞; the other cases are easier.
Assume first that there exists k such that infj vk(j) = 0. By Theorem

2.8(e)⇔(f), there is t = (tj)j ∈ kp(V )\ `∞ with a subsequence (tjk)k tending
to ∞. Take (wjk)k such that

∑
k vn(jk)|wjk |p = ∞ for all n ∈ N. It is well

known that there is f ∈ H0(C) such that f(tjk) = wjk for all k ∈ N. Clearly,
f does not act on kp(V ), as otherwise (f(tj))j ∈ kp(V ), which is not the
case.

To show the converse, first observe that, by Theorem 2.8(e)⇔(g), all
steps of kp(V ) are Banach algebras with pointwise multiplication and, as is
well known, H0(C) acts on each Banach algebra.

Theorem 3.2. Let kp(V ), 1 ≤ p ≤ ∞ or p = 0, be an algebra. The
following conditions are equivalent:

(a) Only the polynomials act on kp(V ).
(b) There is k such that for all l > k there is n with supi∈I vl(i)/vk(i)n

=∞.
(c) There is k such that for all l > k there is n such that for all m ≥ n

we have supi∈I vl(i)/vk(i)m =∞.

Proof. To prove that (a) implies (b), we assume that (b) does not hold,
and select an increasing sequence (l(k))k ⊂ N and Ck,n ≥ 1, k, n ∈ N, such
that

sup
i∈I

vl(k+1)(i)
vl(k)(i)

≤ Ck,n, k, n ∈ N.

Find a sequence (βn)n of strictly positive numbers such that

Mk,λ := sup
n
βnCk,nλ

n <∞

for all k ∈ N and λ ∈ N. Put αn := 2−nβn > 0. Clearly f(z) :=
∑

n αnz
n,

z ∈ C, defines an entire function which is not a polynomial. If x ∈ kp(V ),
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there are l(k) and λ ∈ N such that

‖x‖l(k),p =
(∑

i

(|xi|vl(k)(i))p
)1/p

≤ λ.

For n arbitrary, we have

‖xn‖l(k+1),p =
(∑

i

(|xni |vl(k+1)(i))
p
)1/p

≤ Ck,n‖x‖nl(k),p ≤ Ck,nλ
n.

Therefore ∑
n

|αn| ‖xn‖l(k+1),p ≤
∑
n

2−nβnCk,nλn ≤Mk,λ.

Consequently,
∑

n αnx
n converges in `p(vl(k+1)), and f(z) acts on kp(V ).

The details for the cases p = 0 and p =∞ are even easier.
We now show that (b) implies the stronger condition (c). To see this,

select k as in (b), and for l > k use (b) to pick n. Clearly n ≥ 2. Observe
that

vl(i)
vk(i)n

≤ 1
vk(i)n−1

≤ 1 if vk(i) ≥ 1.

Hence, sup{i∈I:vk(i)<1} vl(i)/vk(i)n = ∞, since supi∈I vl(i)/vk(i)n = ∞. On
the other hand, if m > n we get

vl(i)
vk(i)n

≤ vl(i)
vk(i)m

if vk(i) < 1.

This yields supi∈I vl(i)/vk(i)m =∞, proving (c).
Finally, we assume that (a) does not hold but (c) does. There is an entire

function f(z) =
∑

n αnz
n, not a polynomial, acting on kp(V ). Select an

increasing sequence of natural numbers 1 < n1 < n2 < · · · such that αnj 6= 0
for each j. Proceeding by induction we select a subsequence of (nj)j as
follows. We apply (c) to select nj(1) such that supi∈I vk+1(i)/vk(i)nj(1) =∞.
Find i1 ∈ I such that

vk+1(i1)
vk(i1)nj(1)

> 22nj(1) .

Inductively, we find a subsequence nj(1) < nj(2) < · · · of (nj)j and a sequence
(is) of pairwise different points in I such that, for each s ∈ N,

vk+s(is)
vk(is)nj(s)

> (s+ 1)(s+1)nj(s) .

Now we define x = (xi)i by xis := 2−s/vk(is), s ∈ N, and xi = 0 for other i.
It is easy to see that x ∈ `p(vk). By assumption

∑
n αnx

n converges in kp(V ).
In particular {αnxn : n ∈ N} is bounded in kp(V ). Since kp(V ) is a regular
inductive limit for p 6= 0, we can find l ∈ N such that {αn

j(s)
xnj(s) : s ∈ N}

is bounded in `p(vl) (for p = 0 we use the fact that k0(V ) is a topological
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subspace of k∞(V ) and we work in k∞(V ), see [8], [10]). We have found
l ∈ N such that xnj(s) ∈ `p(vl) for each s (with `∞(vl) if p = 0). This implies∑

s

(
2−snj(s)vl(is)
vk(is)nj(s)

)p
<∞

for all s. However, for s > l − k, we get

2−snj(s)vl(is)
vk(is)nj(s)

≥ 2−snj(s)vk+s(is)
vk(is)nj(s)

> 2−snj(s)(s+ 1)(s+1)nj(s) ,

which does not tend to 0 as s goes to ∞; a contradiction.

Corollary 3.3. Only the polynomials act on the algebra Λp∞(α)′, while
all entire functions vanishing at zero act on Λp0(α)′.

Corollary 3.4. There is an entire non-polynomial function which acts
on an algebra kp(V ), 1 ≤ p ≤ ∞ or p = 0, if and only if for each k there is
l > k such that for all n we have supi∈I vl(i)/vk(i)n <∞.

Example 3.5. Wedefine exp1(z) :=exp(z) and expk(z) :=exp(expk−1(z))
for z ∈ C, k ∈ N, and vk(i) := 1/expk(i) for each i ∈ N. The coechelon space
k∞(V ) is an algebra; it is not locally m-convex by Theorem 2.8, but there
are entire non-polynomial functions which act on k∞(V ), since it is easy to
show that the sequence (vk) satisfies the condition in Corollary 3.4. In fact,
f(z) = exp(z) acts on k∞(V ), as can be directly checked.

Remark 3.6. Observe than the fact that an entire function acts on an
individual element x of an algebra kp(V ) does not imply that it acts on 2x. To
see this, consider the weights v1(i) = 1/i and vk(i) = exp

(
−2k−1

k i
)
, k ≥ 2, for

i ∈ N. It is easy to see that f(z) = exp(z) acts on x = (1, 2, 3, . . .) ∈ `∞(v1),
since

(∑∞
n=0

1
n! i

n
)
i
converges in `∞(v2). However, f(z) does not act on 2x.

Indeed, otherwise there would be k such that (exp(2i))i ∈ `∞(vk), which is
impossible.

4. Multiplicative functionals and ideals in `∞-modules. In the last
two sections we assume that I = N, which is no loss of generality, but makes
the notation cleaner. An algebra A of complex sequences with pointwise
multiplication is an `∞-module if for every x ∈ A and every y ∈ `∞ also
xy ∈ A. Of course, algebras kp(V ) are `∞-modules. Clearly every `∞-module
is a solid algebra, i.e., if a sequence x satisfies |x| ≤ |y| for some y ∈ A then
x ∈ A.

For 1 ≤ p < ∞ or p = 0, the unit vectors (ei)i form an orthogonal basis
of kp(V ), i.e. a Schauder basis such that eiej = 0 if i 6= j and eiei = ei for
each i. Thus we can apply in this case the results of [18] and [19]. Algebras
with orthogonal Schauder bases are also examples of `∞-modules.
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An ideal J in an algebra A is called regular if the algebra A/J is unital;
see [23, Chapter II]. These ideals are sometimes called modular. It is well
known that every regular ideal is contained in a maximal regular ideal.

It is also well known that maximal ideals J in an algebra A are either
regular or degenerate in the sense that the product of any two elements in
A/J equals 0. An ideal J in A is degenerate if and only if it contains the
ideal

A2 := span{xy : x, y ∈ A}.
Therefore proper maximal degenerate ideals are linear subspaces of codi-
mension one in A containing A2. Thus the description of maximal proper
ideals requires a description of maximal regular ideals and a description of
the ideal A2. We will do the first part of this task for general `∞-modules.

We say that a subset E of N is unital if the characteristic function eE of
E belongs to A. This happens if and only if the sectional subalgebra

A(E) := {x ∈ A : xi = 0 ∀i /∈ E}
has a unit. The solid hull J̃ of an ideal J ⊂ A is the set of all z ∈ A such
that |z| ≤ |x| for some x ∈ J . An ideal is called solid if J̃ = J .

Let us define, for an ideal J in an `∞-module A, the family of sets

FJ := {U ⊂ N : A(U c) ⊂ J}.
The proof of the following result is easy.

Lemma 4.1. Let A be an `∞-module. For each proper ideal J ⊂ A, the
family FJ is a filter.

On the other hand, if U is an ultrafilter on N we define an ideal in the
`∞-module A as follows:

JU := {x ∈ A : ∀y ∈ A, lim
U
xy = 0}.

Now, we are ready to present the main result of this section. In [18,
Th. 2 and Lemma 6] (comp. [15, Th. 2.5]) a version of the following theorem
is proved for unital algebras with orthogonal unconditional Schauder bases.
The same proof works for unital `∞-modules. Our proof is easier than the
original one also in those cases.

Theorem 4.2. The map J 7→ FJ is a bijection between the family of
all proper maximal regular ideals in an `∞-module A and all ultrafilters on
N containing a unital set. The inverse map is

U 7→ JU .
In particular, all maximal proper regular ideals are solid.

The proof is based on a sequence of propositions and lemmas.
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Proposition 4.3. Let A be an `∞-module.

(a) If an ultrafilter U contains no unital sets, then JU = A.
(b) If an ultrafilter U contains a unital set then JU is a proper ideal in A.

It is of codimension one if and only if

∀x ∈ A lim
U
|x| <∞.

Otherwise JU is of infinite codimension.
(c) All ideals JU for free ultrafilters U are equal to A if and only if there

is no infinite unital set.

Proof. (a) If limU x 6= 0 for some x ∈ A, then there are ε > 0 and a
set U ∈ U such that |xi| > ε for every i ∈ U . Thus U is a unital set. We
have shown that if U contains no unital set, then limU x = 0 for all x ∈ A.
Therefore limU yx = 0 for every x, y ∈ A, and JU = A.

(b) Clearly, JU is an ideal. If U is a unital set in U , then eU /∈ JU and
so JU is proper. Observe that if limU |x| <∞ for all x ∈ A, then

JU = {x : lim
U
x = 0}.

Clearly, dimA/JU = 1.
If there is x ∈ A such that

lim
U
x =∞,

then there is a decreasing sequence (Un) ⊂ U of unital sets such that
|x| > n on Un, U0 := N. Let (an,k) be a matrix of positive real numbers
such that

∀n, k 0 < an,k ≤ n, an,k+1 > an,k > an−1,k

and
∀k an,k+1/an,k →∞ as n→∞.

Thus y(k) := (y(k)
i ) ∈ A whenever y(k)

i = an,k for i ∈ Un \ Un+1 since
|y(k)| ≤ |x|. If

∑m
k=1 αky

(k) ∈ JU then for i ∈ Un we have∣∣∣m−1∑
k=1

αky
(k)
i

∣∣∣ ≤ m−1∑
k=1

|αk|an,k.

Therefore for i ∈ Un \ Un+1,∣∣∣ m∑
k=1

αky
(k)
i

∣∣∣ ≥ |αm|an,m − m−1∑
k=1

|αk|an,m−1,

and thus if αm 6= 0, then
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lim
U

m∑
k=1

αky
(k) 6= 0.

Hence (y(k) + JU )k is a linearly independent sequence in A/JU .
(c) The conclusion follows from (a) and (b).

Lemma 4.4. Let A be an `∞-module. If a proper maximal ideal J ⊂ A
is solid or regular, then FJ is an ultrafilter.

Proof. Suppose that there is a set E ⊂ N such that E and Ec do not
belong to FJ . Then J contains neither A(E) nor A(Ec).

If J is solid then J + A(E) is a proper ideal properly containing the
maximal ideal J . This implies that J + A(E) = A. Therefore, for y ∈
A(Ec)\J , there are z ∈ J and w ∈ A(E) such that z+w = y. In particular
yi = zi for each i ∈ Ec, and yi = 0 for each i ∈ E. Thus |y| ≤ |z|, which
implies y ∈ J , as J is solid. This is a contradiction and so FJ is an ultrafilter.

If J is a regular proper maximal ideal, then there is x ∈ A such that x+J
is the unit of A/J . Then for all y ∈ A(E), y − xy ∈ J . If J ⊃ (A(E))2

then xy = (xeE)y ∈ (A(E))2 and we have y ∈ J ; a contradiction. We
have proved that J 6⊃ (A(E))2. Thus there are x1, x2 ∈ A(E) such that
x1 ·x2 /∈ J . Clearly, the ideal J +A(Ec) properly contains J . By maximality,
J +A(Ec) = A, thus

x1 = v + w for some v ∈ J ,w ∈ A(Ec).

Now, although eE is not necessarily an element of A we have

veE = x1 and x1x2 = (veE)x2 = vx2 ∈ J ;

a contradiction. Therefore also in that case FJ is an ultrafilter.

Lemma 4.5. If J is a proper ideal in an `∞-module A such that FJ is
an ultrafilter not containing unital sets, then every element of the algebra
A/J is quasi-invertible. Thus there are no regular ideals containing J .

Proof. Pick x ∈ A\J . Since FJ contains no unital sets, limFJ x = 0 (see
the proof of Proposition 4.3(a)). Thus there is U ∈ FJ such that |xi| < 1/2
for each i ∈ U . The element y := x

x−1eU , defined pointwise, belongs to A(U).
We have

y + x− yx =
x

x− 1
eU + xeU + xeUc − x2

x− 1
eU = xeUc ∈ A(U c) ⊂ J ,

as U ∈ FJ . This implies that x+ J is quasi-invertible in A/J .

Lemma 4.6. Let J be a proper ideal in an `∞-module A, and U an
ultrafilter on N. If U ⊃ FJ then the ideal JU contains J . If U contains a
unital set then the converse holds as well.
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Proof. If J ⊂ JU then FJ ⊂ FJU . If U contains a unital set then
FJU = U . On the other hand, if J 6⊂ JU then there are x ∈ J and y ∈ A
such that limU xy 6= 0. Thus there is a set U ∈ U and ε > 0 such that
|xy| ≥ ε on U . We find z ∈ A with |z| ≤ (1/ε)y such that eU = xz ∈ J .
Clearly A(U) ⊂ J and U c ∈ FJ and U 6⊃ FJ .

Proof of Theorem 4.2. By Lemmas 4.4 and 4.5, for every proper maximal
regular ideal J the set FJ is an ultrafilter containing a unital set. On the
other hand, for every ultrafilter U containing a unital set, by Proposition
4.3, JU is a proper ideal. Obviously, FJU ⊇ U and since U is an ultrafilter,
FJU = U . If J ⊇ JU is a proper ideal then FJ ⊇ FJU and thus FJ = U .
By Lemma 4.6, JU ⊇ J ; we have proved that JU is maximal.

Observe that, by Lemma 4.6, JFJ ⊇ J . Since J is a maximal proper
ideal, we have JFJ = J .

The following result is proved in [28, Cor. 14] (cf. also [11, Lemma 2]):

Corollary 4.7. Every multiplicative functional m on an `∞-module is
of the form

m(x) = lim
U
x,

where U is an ultrafilter on N containing a unital set.

Proof. Kernels of multiplicative functionals are exactly proper maximal
regular ideals of codimension one. By Theorem 4.2 and the proof of Propo-
sition 4.3(b), they are of the form JU = {x : limU x = 0} for ultrafilters U
containing a unital set and such that for every x ∈ A we have limU |x| <∞.

Clearly, not every ultrafilter generates a multiplicative functional, since
it may happen that limU |x| =∞ for some x ∈ A and some free ultrafilter U .

Lemma 4.6 and Theorem 4.2 immediately yield

Corollary 4.8. A proper ideal J in an `∞-module A is contained in
a regular maximal proper ideal if and only if there is a unital set U which
intersects all elements of FJ .

There are proper ideals J of A with FJ containing no unital sets.

Example 4.9. Assume that A is a non-unital `∞-module and set F :=
{U ⊂ N : U c is unital}, which is clearly a filter. Let U be an ultrafilter
containing F . By construction no element of U ∈ U is unital (since otherwise
U c ∈ F ⊂ U). We define

J0 :=
⋃
U∈U

A(U c).

It is easily seen J0 is an ideal with the required properties.
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Clearly if for the algebra A we have the equality A = A2 then all maximal
ideals are regular. We clarify when there are non-solid maximal ideals.

Theorem 4.10. Let A be an `∞-module. Consider the following condi-
tions:

(a) A2 = A.
(b) For every proper ideal J in A its solid hull J̃ is also proper (i.e.,
J̃ 6= A).

(c) Every maximal proper ideal is solid.
(d) For every maximal proper ideal J the filter FJ is an ultrafilter.
(e) Either A2 = A or the filter FA2 is an ultrafilter.

Then (a)⇒(b)⇒(c)⇒(d)⇔(e). If A = kp(V ), 1 ≤ p ≤ ∞ or p = 0, then all
the above conditions are equivalent.

Proof. (a)⇒(b): Assume that J̃ = A. Let x ∈ A \J . Then x =
∑

j yjzj
for some yj , zj ∈ A. Clearly, there are wj ∈ J such that |yj | ≤ |wj |. Thus
there are sequences uj such that

|uj | ≤ |zj | and yjzj = wjuj .

Clearly uj ∈ A. We have proved that x =
∑

j wjuj ∈ J ; a contradiction.
(b)⇒(c): Obvious.
(c)⇒(d): Follows from Lemma 4.4.
(d)⇒(e): If A2 6= A and FA2 is not an ultrafilter then there is a set

E such that both A(E) 6= A(E)2 and A(Ec) 6= A(Ec)2. Thus there are
vectors x+ ∈ A(E) \ A(E)2 and x− ∈ A(Ec) \ A(Ec)2. We will find linear
functionals f+, f− ∈ A′ such that f±(A2) = f+(A(Ec)) = f−(A(E)) = 0 but
f+(x+) = f−(x−) = 1. We define

J := {x ∈ A : f+(x)− f−(x) = 0}.
Clearly, J ⊃ A2 and dimA/J = 1. Thus J is a maximal proper degenerate
ideal. Moreover, neither E nor Ec belongs to FJ since x+, x− /∈ J . In fact
J is not solid because x+ + x− ∈ J but |x+| ≤ |x+ + x−|.

(e)⇒(d): Every proper maximal ideal J is either regular, in which case
FJ is an ultrafilter by Lemma 4.4, or degenerate. In the latter case FJ ⊃ FA2

and we get the conclusion.
(e)⇒(a) for A = kp(V ): Suppose that (kp(V ))2 6= kp(V ). We use Propo-

sition 5.10 below and assume first that
∃n ∀k v2

k/vn /∈ `∞.
Then there is an increasing sequence (im) such that

vm(im)2/vn(im) ≥ m.
Clearly, for the sets

E+ := {i2m : m ∈ N}, E− := {i2m+1 : m ∈ N}
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there are elements

(4.1) x+ ∈ kp(V,E+) \ (kp(V,E+))2, x− ∈ kp(V,E−) \ (kp(V,E−))2.

Analogously, if kp(V ) is not nuclear, 1 ≤ p <∞, then

∃n ∀k
∑
i

vk
vn

=∞.

We construct inductively strictly increasing sequences (im), (jm) of numbers
such that im < jm < im+1 and

j2m∑
i=i2m

vm(i)
vn(i)

≥ m,
j2m+1∑
i=i2m+1

vm(i)
vn(i)

≥ m.

Clearly, neither kp(V,E+) nor kp(V,E−) is nuclear if

E+ := {i : ∃m, i2m ≤ i ≤ j2m}, E− := {i : ∃m, i2m+1 ≤ i ≤ j2m+1}.

Thus also in that case the condition (4.1) holds for suitable x+, x−.
In both cases FA2 is not an ultrafilter since both A(E+) 6= A(E+)2 and

A(E−) 6= A(E−)2 and a fortiori A(Ec+) 6= A(Ec+)2.

Example 5.18 below shows that the implication (d)⇒(c) in Theorem 4.10
does not hold in general.

Open problem. Does the implication (c)⇒(a) in Theorem 4.10 hold in
every `∞-module?

5. Multiplicative functionals and ideals in algebras kp(V ). In this
section we again assume that I = N, which is no loss of generality. An algebra
kp(V ), 1 ≤ p ≤ ∞ or p = 0, is clearly an `∞-module. Therefore all the
results of the preceding section remain valid. Nevertheless we can get more,
especially since kp(V ) is a locally convex space.

Theorem 5.1. Every multiplicative functional on an algebra kp(V ), 1 ≤
p ≤ ∞ or p = 0, is continuous. For p 6= ∞ it is a point evaluation at some
point in N. For p = ∞ it is either a point evaluation at a point in N or a
limit over a free ultrafilter U such that

lim
U

1
vn

<∞ for every n ∈ N.

First, we need a lemma.

Lemma 5.2. If 1 ≤ p < ∞ or p = 0 and U is an infinite unital set for
an algebra kp(V ) then there is y = (yj) ∈ kp(V,U) such that

lim
j→∞, j∈U

yj =∞.
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Proof. For 1 ≤ p < ∞, by Proposition 2.5, there exists n0 such that for
all n ≥ n0 we have

∑
i∈U |vn(i)|p < ∞. Now, it is easy to see that there is

y ∈ kp(V,U) such that

lim
j→∞, j∈U

yj =∞, yj > 0 for j ∈ U.

Proof of Theorem 5.1. Let m 6= 0 be a multiplicative functional. By
Corollary 4.7, there is an ultrafilter U on N such that m(x) = limU x and
kp(V,U) is unital for some U ∈ U .

For p 6= ∞, by Lemma 5.2, we find y such that m(y) = limU yj = ∞; a
contradiction. A similar argument works for p = 0.

For p =∞, for any n ∈ N, 1/vn ∈ k∞(V ). Therefore m(1/vn) = Cn <∞
for every n ∈ N, which implies that m is continuous on `∞(vn) for every
n ∈ N.

Corollary 5.3. If an algebra kp(V ), 1 ≤ p ≤ ∞ or p = 0, is locally
m-convex, then the set M(kp(V )) of all multiplicative functionals on kp(V )
is equicontinuous.

Proof. By Theorem 2.8, kp(V ) ⊂ `∞. The inclusion is necessarily contin-
uous by the closed graph theorem. By Theorem 5.1, every m ∈M(kp(V )) is
continuous and is of the form m(x) = limU x. This implies that M(kp(V ))
is a σ(kp(V )′, kp(V ))-bounded subset of kp(V )′. As kp(V ) is an LB-space,
hence barrelled, M(kp(V )) is equicontinuous.

We have already described maximal regular ideals in Theorem 4.2 as JU
ideals. We can identify which of them are closed in algebras kp(V ).

Theorem 5.4. Let kp(V ) be an algebra, 1 ≤ p ≤ ∞ or p = 0, and let
U be an ultrafilter containing a unital set. Then exactly one of the following
two conditions holds:

(a) JU is a closed ideal of codimension one; it is so for p 6= ∞ if and
only if U is fixed and for p = ∞ if and only if limU (1/vn) < ∞ for
every n ∈ N.

(b) JU is dense of infinite codimension; it is so for p 6=∞ if and only if U
is free and for p =∞ if and only if there is n such that limU (1/vn) =
∞.

All ideals JU are closed if and only if infi∈N vn(i) > 0 for every n ∈ N.

Proof. If U is fixed then JU is closed of codimension one. Now, for p 6=∞
if U is not fixed then it contains an infinite unital set. By Lemma 5.2 and
Proposition 4.3, JU is of infinite codimension. Since the unit vectors belong
to JU and are linearly dense, the ideal in question is also dense.

Now, we prove the result for p = ∞. Assume that limU (1/vn) < ∞ for
every n ∈ N. For every x ∈ k∞(V ) there is n such that |x| ≤ C/vn, thus
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limU x < ∞. Clearly, if x ∈ JU then limU x = 0. On the other hand, if
limU x = 0 then x ∈ JU . Indeed, for every y ∈ k∞(V ) we have limU y <∞,
thus limU yx = 0. Therefore

JU = {x : lim
U
x = 0} = kermU ,

where mU is a continuous multiplicative functional

mU (x) = lim
U
x (comp. Theorem 5.1).

Assume now that there is n ∈ N such that limU (1/vn) = ∞. By Propo-
sition 4.3, the ideal in question is of infinite codimension. Let U ∈ U be a
unital set. It suffices to show that eU belongs to the closure of JU . Let us
observe that for W ∈ U we have eU\W ∈ JU . For every m ≥ n and ε > 0,
there is W ∈ U such that vn(i) ≤ ε for i ∈W . Then

|eU (i)− eU\W (i)|vm(i) ≤ ε for i ∈ N.

We have proved that eU ∈ JU .
Corollary 5.5. In dual power series spaces of finite type, Λp0(α)′, all

regular maximal ideals are closed of codimension one (i.e., they are kernels
of point evaluations in N). In dual power series of infinite type, Λ∞∞(α)′, all
ultrafilters give proper maximal regular ideals.

Now, it is time to identify the ideal (kp(V ))2. Given a sequence V = (vn)n
of weights, we denote V 2 := (v2

n). If kp(V ), 1 ≤ p ≤ ∞ or p = 0, is an algebra
we can apply Proposition 2.1 to conclude that kp(V 2) ⊂ kp(V ). In our next
result we use the spaces `q(v), 0 < q < 1, where x = (xi)i ∈ `q(v) if and only
if
∑

i(v(i)|xi|)q <∞.

Proposition 5.6. Let kp(V ), 1 ≤ p ≤ ∞ or p = 0, be an algebra,
and define q = p/2 if p 6= ∞, and q = ∞ if p = ∞. Then (kp(V ))2 =
kp(V )kp(V ) = kq(V 2).

Remark 5.7. It follows that all degenerate ideals in algebras kp(V ) are
dense for p 6=∞.

Proof. We present the details for 1 ≤ p < ∞, the other two cases being
easier. Set q = p/2. First observe that if x, y ∈ `p(vn), then xy ∈ `q(v2

n) by the
Cauchy–Schwarz inequality. This implies kp(V )kp(V ) ⊂ kq(V 2). Conversely,
if x ∈ `q(v2

k) for some k, we can write x = uz with |u| ≤ 1 on N, z ≥ 0 on N
and z ∈ `q(v2

k). Clearly a := (z1/2
i )i satisfies a ∈ `p(vk) and b := ua ∈ `p(vk).

Thus x = ab ∈ kp(V )kp(V ). In particular, kp(V )kp(V ) = kq(V 2) is a linear
space which must coincide with (kp(V ))2.

Now, we explain when there are no degenerate ideals in an algebra kp(V ),
i.e., when kp(V ) = (kp(V ))2. The following result is a consequence of Gro-
thendieck’s factorization theorem.
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Lemma 5.8. For each s ≥ 0 or s =∞ the equality ks(V 2) = ks(V ) holds
if and only if the following two conditions are satisfied:

(1) For each n there is k ≥ n such that vk/v2
n ∈ `∞.

(2) For each n there is k ≥ n such that v2
k/vn ∈ `∞.

Lemma 5.9. An LB-space kp(V ), 1 ≤ p < ∞, is nuclear if and only if
kp(V ) = kp/2(V ) algebraically.

Proof. If p ≥ 2 this follows from [24, Th. 27.16 and 28.16]. Now suppose
that 1 ≤ p < 2. If kp(V ) is nuclear, for each n there is k such that vk/vn ∈ `1.
Using this fact again, we find l such that vl/vn ∈ `1/2. This implies k∞(V ) =
k1/2(V ) and in particular kp(V ) = kp/2(V ) if 1 ≤ p < 2. Conversely, suppose
that kp(V ) = kp/2(V ) and 1 ≤ p < 2. For each n there is k such that
`p(vn) is contained in `p/2(vk) with continuous inclusion. This implies, for
y := vk/vn, that xy ∈ `p/2 for each x ∈ `p. Therefore y is a multiplier from
`p into `p/2. Hence, by [22, Prop. 3], y = vk/vn ∈ `p and kp(V ) is nuclear by
[24, Ths. 27.16 and 28.16].

If kp(V ), 1 ≤ p ≤ ∞ or p = 0, is an algebra, Proposition 2.1 ensures that
condition (1) in Lemma 5.8 is satisfied.

Proposition 5.10. Let kp(V ), 1 ≤ p ≤ ∞ or p = 0, be an algebra.
Then

(a) (kp(V ))2 = kp(V ), 1 ≤ p < ∞, if and only if kp(V ) is nuclear and
for each n there is k ≥ n such that v2

k/vn ∈ `∞.
(b) (kp(V ))2 = kp(V ), p = 0 or p =∞, if and only if for each n there is

k ≥ n such that v2
k/vn ∈ `∞.

In particular, (Λpr(α)′)2 = Λpr(α)′ holds always for p = 0 and for p =∞, and
it holds exactly in the nuclear case for 1 ≤ p <∞.

Proof. (a) Suppose that 1 ≤ p < ∞ and set q := p/2. Since condition
(1) of Lemma 5.8 is satisfied and q < p, we have (kp(V ))2 = kp(V )kp(V ) =
kq(V 2) ⊂ kq(V ) ⊂ kp(V ), by Proposition 5.6. Thus (kp(V ))2 = kp(V ) if
and only if kq(V ) = kp(V ) and kq(V 2) ⊂ kq(V ). This is equivalent to the
nuclearity of kp(V ) by Lemma 5.9 and condition (2) of Lemma 5.8.

(b) We assume p = 0. In this case, (k0(V ))2 = k0(V 2), by Proposition 5.6,
and k0(V 2) = k0(V ) if and only if condition (2) in Lemma 5.8 is satisfied.

Corollary 5.11. In a dual power series algebra Λpr(α)′ for p =∞ and
for p = 0 all maximal proper ideals are regular but for 1 ≤ p <∞ all maximal
proper ideals are regular if and only if the space is nuclear.

For arbitrary ideals we can say much less.

Definition 5.12. Let J be an ideal. We define

V (J ) := {j ∈ N : xj = 0 ∀x = (xn)n ∈ J }.
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An ideal J contains ej if and only if j 6∈ V (J ). Indeed, clearly if ej ∈ J ,
then j /∈ V (J ). Conversely, assume that j /∈ V (J ). There is x ∈ J with
xj 6= 0. Then ej =

(
1
xj
x
)
ej ∈ J .

Since kp(V ), 1 ≤ p <∞ or p = 0, has an unconditional orthogonal basis,
[19, Th. 2.2] immediately implies

Proposition 5.13. If J is a closed ideal in an algebra kp(V ), 1 ≤ p <∞
or p = 0, then

J = {x ∈ kp(V ) : xj = 0 ∀j ∈ V (J )}.
By Corollary 5.1 and the above we get immediately:

Corollary 5.14. Every proper closed ideal in an algebra kp(V ), 1 ≤
p < ∞ or p = 0, is an intersection of closed proper maximal ideals (kernels
of continuous multiplicative functionals).

Proposition 5.15. Fix a setM ⊆ N. Among ideals J such that V (J ) =
M ⊂ N in an algebra kp(V ), 1 ≤ p ≤ ∞ or p = 0, there is the smallest one,

Jmin(M) := {x ∈ kp(V ) : xj = 0 ∀j ∈ V (J ), and
finitely many xj are non-zero}

and the maximal one,

Jmax(M) := Jmin(M) := {x ∈ kp(V ) : xj 6= 0 ∀j ∈ V (J )}.
There are plenty of ideals between these two. For instance, let M = ∅.

Let F be a free filter of subsets of N. Then we have the ideal

J (F) = {x ∈ kp(V ) : ∃U ∈ F ∀j ∈ U, xj = 0}.
Let p > 1 and assume infi vn(i) > 0 for all n. Then k1(V ) is an ideal in

kp(V ) since kp(V ) consists of bounded sequences. For p = 1 and infi vn(i) > 0
for all n, k1(V ) contains the ideal kr(V ) for any 0 < r < 1.

These examples show that non-closed ideals need not be contained in a
maximal proper closed ideal in the non-unital case.

Example 5.16. In the algebra Λ∞0 (α)′ the ideal ϕ of finitely non-zero
sequences is not contained in any maximal proper ideal. This follows from
Corollaries 4.8, 5.5 and 5.11.

We now clarify when all ideals are solid. From Theorem 5.1 and Corollary
5.14 every proper closed ideal in kp(V ), 1 ≤ p <∞ or p = 0, is solid.

Proposition 5.17. An algebra kp(V ), 1 ≤ p ≤ ∞ or p = 0, is unital if
and only if every ideal in kp(V ) is solid.

Proof. If the algebra is unital, there is n such that e ∈ `p(vn). Let J be
an ideal, and suppose that x ∈ J , y ∈ kp(V ) and |y| ≤ |x| on N. Define
z = (zi)i by zi := yi/xi if xi 6= 0, and zi := 0 otherwise. Since |z| ≤ e, we
have z ∈ kp(V ). Since J is an ideal, y = zx ∈ J .
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Conversely, suppose that kp(V ) is not unital. We can apply Propositions
2.5, 2.6 and Corollary 2.7 to find two disjoint non-unital sets A, B ⊂ N. Take
x ∈ kp(V,A ∪B) with xi 6= 0 for every i ∈ A ∪B. The set

〈x〉 := {λx+ yx : λ ∈ C, y ∈ kp(V )}
is an ideal of kp(V ), as (λx + yx)z = x(λz + yz) ∈ 〈x〉 for each z ∈ kp(V )
and each λx + yx ∈ 〈x〉. We show that 〈x〉 is not solid, which also implies
that it is a proper ideal. Take z = xeA; clearly x ∈ 〈x〉 and |z| ≤ |x| but
z 6∈ 〈x〉. Indeed, if z = λx+ yx then

yj = 1− λ for j ∈ A, yj = −λ for j ∈ B.
Depending on the choice of λ either yeA ∈ kp(V,A) is a non-zero constant
on A, or yeB ∈ kp(V,B) is a non-zero constant on B. This contradicts the
fact that A and B are non-unital in kp(V ).

Example 5.18. We show that the implication (d)⇒(c) in Theorem 4.10
does not hold in general. Let

V = (vn), vn(j) := e−nj and W = (wn), wn(j) := j/(log j)n.

Clearly, k∞(V ) and k∞(W ) are algebras. By Proposition 5.10, (k∞(V ))2 =
k∞(V ) while (k∞(W ))2 6= k∞(W ). Let U be a free ultrafilter and let

A := {x : ∃U ∈ U , xeU ∈ k∞(W,U) and xeUc ∈ k∞(V,U c)}.
It is not difficult to see that A is an `∞-module and FA2 = U , but from the
proof of Proposition 5.17 the ideal 〈x〉 is not solid for x = 1/w0. Even more,
the vector z = xeA for A the set of even integers satisfies
αx+ βz /∈ A2 = {x : ∃U ∈ U , xeU ∈ (k∞(W,U))2 and xeUc ∈ k∞(V,U c)}
for any non-zero pair of scalars (α, β). Thus there is a one-codimensional
subspace J in A such that J ⊃ x + A2 but z /∈ J . The ideal J has the
required properties.
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