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A simple proof in Monge–Kantorovich duality theory

by

D. A. Edwards (Oxford)

Abstract. A simple proof is given of a Monge–Kantorovich duality theorem for a
lower bounded lower semicontinuous cost function on the product of two completely regu-
lar spaces. The proof uses only the Hahn–Banach theorem and some properties of Radon
measures, and allows the case of a bounded continuous cost function on a product of com-
pletely regular spaces to be treated directly, without the need to consider intermediate
cases. Duality for a semicontinuous cost function is then deduced via the use of an ap-
proximating net. The duality result on completely regular spaces also allows us to extend
to arbitrary metric spaces a well known duality theorem on Polish spaces, at the same
time simplifying the proof. A deep investigation by Kellerer [Z. Warsch. Verw. Gebiete 67
(1984)] yielded a wide range of conditions sufficient for duality to hold. The more limited
aims of the present paper make possible simpler, very direct, proofs which also offer an
alternative to some recent accounts of duality.

1. Introduction. This paper is inspired by Chapter 1 of Villani’s beau-
tiful book [12]. Using a minimax approach, Villani employs the Fenchel–
Rockafellar duality theorem of convexity theory to prove a version for Polish
spaces of the Monge–Kantorovich duality theorem of optimal transport the-
ory. His proof thus depends indirectly on the Hahn–Banach theorem, since
the Fenchel–Rockafellar theorem is a non-trivial consequence of the latter.
(See also [8] for another saddle-point proof, and [13] for a radically different
proof.) The object of the present paper is to show that a more direct appli-
cation of the Hahn–Banach theorem provides a simpler treatment, and also
leads to somewhat more general statements. We prove a Monge–Kantorovich
duality theorem for a lower bounded lower semicontinuous cost function on
the product of two completely regular spaces (Theorem 4.1), and use it to
extend to arbitrary metric spaces (in Theorem 5.1) a well known duality
theorem [12, Theorem 1.3] on Polish spaces, at the same time simplifying
the proof. Kellerer, in his fundamental paper [7] concerning duality, devel-
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ops an apparatus that allows him to obtain a very wide variety of duality
theorems, but his proofs are for that reason very different and also con-
siderably more difficult. For a comprehensive survey of the literature on
Monge–Kantorovich duality see [13, pp. 97–104].

The paper is organized as follows. In §2 we recall some basic facts about
Radon probability measures defined on a product Z = X ×Y of completely
regular spaces and having prescribed marginals. Using the Hahn–Banach
theorem, we obtain in §3 functionals on Cb(Z) which satisfy a certain tight-
ness condition that allows them to be represented as integrals with respect to
Radon probability measures on Z having the appropriate marginals. Exploit-
ing such functionals, we arrive immediately in §4 at the Monge–Kantorovich
duality for a cost function belonging to Cb(Z). Duality for a lower bounded
lower semicontinuous cost function is then deduced easily via the use of an
approximating net. In §5 we take X and Y to be metric spaces. Here the
approximation argument requires only sequential convergence, and with the
help of a standard generalization of convex conjugacy we obtain a sharper
result.

For technical reasons, we in general formulate everything below that
involves a cost function c(x, y) in terms of its negative h(x, y) = −c(x, y).

2. Image measures and marginal probabilities. Throughout what
follows it will be tacitly assumed that all topological spaces mentioned are
Hausdorff. Given a completely regular topological space S, we denote by
Mb(S) the space of bounded real Radon measures on S and by P(S) the set
of all probability Radon measures on S. (For the theory of Radon measures
see, for instance, [1, 2, 3, 5].) We denote by B(S) the set of all Borel subsets
of S, by K(S) the set of all compact subsets of S, and by Cb(S) the space of
bounded real continuous functions on S. The norm ‖ · ‖∞ in Cb(S) is taken
to be the supremum norm. By the weak topology for Mb(S) we mean the
topology σ(Mb(S), Cb(S)).

A measure σ ∈ Mb(S) is positive if σ(B) ≥ 0 for all B ∈ B(S); this
is the case if and only if

	
S f dσ ≥ 0 for all f ∈ C+

b (S). Suppose now that
T is another completely regular space and that φ : S → T is a continuous
surjection. Then φ−1(E) ∈ B(S) for all E ∈ B(T ). Given σ ∈ P(S), we
define the image measure φ(σ) by postulating that φ(σ)(E) = σ(φ−1(E)) for
all E ∈ B(T ), and we have φ(σ) ∈ P(T ). We shall frequently use functional
notation for integrals. For example, in the following proposition τ(f) denotes
the integral

	
T f dτ .

Proposition 2.1. Let S, T be completely regular spaces and suppose that
φ : S → T is a continuous surjection. Let σ ∈ P(S) and τ ∈ P(T ). Then
the following assertions are equivalent:
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(i) τ = φ(σ);
(ii) τ(f) = σ(f ◦ φ) for all f ∈ Cb(T );

(iii) for every Borel function f : T → [−∞,∞] in L1(τ) we have f ◦φ ∈
L1(σ) and σ(f ◦ φ) = τ(f).

Proof. The implication (i)⇒(iii) is an elementary consequence of the
definition of φ(σ). That (iii)⇒(ii) is trivial. To prove that (ii)⇒(i), let G be
an open subset of T . Then its indicator function 1G is lower semicontinuous
and by the complete regularity of T there exists an increasing net (fα) in
C+
b (T ) that converges pointwise to 1G. Passing to the limit in the equation
τ(fα) = σ(fα ◦ φ), and noting the fact that 1G ◦ φ = 1φ−1(G), we obtain
τ(G) = σ(φ−1(G)). This shows that the two measures τ and φ(σ) agree on
open sets, and hence on Borel sets, and are thus equal.

Now let X,Y be completely regular spaces, and let Z be the topological
product X × Y . Note that Z is completely regular. We denote by prX and
prY the natural projections of Z onto X and Y respectively. We suppose
given µ ∈ P(X) and ν ∈ P(Y ), and we denote by Π(µ, ν) the convex set
consisting of all π ∈ P(Z) such that prX(π) = µ and prY (π) = ν. Note that
Π(µ, ν) 6= ∅, because the product measure θ = µ ⊗ ν belongs to Π(µ, ν).
Given functions u : X → (−∞,∞] and v : Y → (−∞,∞], we shall denote by
u⊕v the function (x, y) 7→ u(x)+v(y). The following result is an immediate
consequence of Prop. 2.1

Corollary 2.2. Suppose that π ∈ P(Z). Then the following assertions
are equivalent:

(i) π ∈ Π(µ, ν);
(ii) for all A ∈ B(X) and B ∈ B(Y ) we have π(A × Y ) = µ(A) and

π(X ×B) = ν(B);
(iii) for all u ∈ Cb(X) and v ∈ Cb(Y ) we have π(u⊕ v) = µ(u) + ν(v);
(iv) whenever u : X → (−∞,∞] and v : Y → (−∞,∞] are Borel

functions in L1(µ) and L1(ν) respectively we have u ⊕ v ∈ L1(π)
and π(u⊕ v) = µ(u) + ν(v).

Now suppose that ε > 0. Since µ, ν are Radon measures, there exist
K ∈ K(X) and L ∈ K(Y ) such that

(2.1) µ(X \K) < ε/2 and ν(Y \ L) < ε/2.

Then for all π ∈ Π(µ, ν) we have

π(Z \ (K × L)) ≤ π((X \K)× Y ) + π(X × (Y \ L))
= µ(X \K) + ν(Y \ L) < ε.

Thus the (bounded) set of measures Π(µ, ν) is uniformly tight and so, by
Prokhorov’s theorem (see, for example, [3, IX, §5, No. 5, Theorem 1] or [2,
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Theorem 8.6.7]), it is relatively σ(Mb(Z), Cb(Z))-compact. Now let ρ belong
to the weak closure ofΠ(µ, ν), and let (ρα) be a net inΠ(µ, ν) that converges
weakly to ρ. Then ρ ∈ P(Z) and limα ρα(f) = ρ(f) for all f ∈ Cb(Z). In
particular, limα ρα(u ◦ prX) = ρ(u ◦ prX) for all u ∈ Cb(X). But for all
u ∈ Cb(X) and all α we have ρα(u◦prX) = µ(u), and hence ρ(u◦prX) = µ(u).
Thus prX(ρ) = µ; similarly prY (ρ) = ν. This shows that ρ ∈ Π(µ, ν), hence
that Π(µ, ν) is weakly closed and therefore weakly compact. We have thus
proved the following well known theorem.

Theorem 2.3. The set Π(µ, ν) is a non-empty σ(Mb(Z), Cb(Z))-compact
convex subset of P(Z).

3. Representation of certain functionals. Let F(Z) denote the set
of all upper semicontinuous functions f : Z → [−∞,∞) and, for f ∈ F(Z),
let Φ(f) be the set of pairs (u, v) of Borel functions u : X → (−∞,∞] and
v : Y → (−∞,∞] such that u ∈ L1(µ) and v ∈ L1(ν) and which satisfy

f(x, y) ≤ u(x) + v(y) for all (x, y) ∈ Z.
We define p(f) by the formula

p(f) =
{

inf{µ(u) + ν(v) : (u, v) ∈ Φ(f) } if Φ(f) 6= ∅,
∞ if Φ(f) = ∅.

It is easy to see that the map f 7→ p(f) is isotone, and that p(0) = 0,
p(−1) = −1, p(1) = 1. If f ∈ F(Z), (u, v) ∈ Φ(f), and π ∈ Π(µ, ν) then
π(f) ≤ π(u⊕ v) = µ(u) + ν(v). It follows that

(3.1) π(f) ≤ p(f) for all π ∈ Π(µ, ν) and f ∈ F(Z).

Proposition 3.1. On Cb(Z) the functional p(·) has the following prop-
erties:

(i) −‖f‖∞ ≤ inf f ≤ p(f) ≤ sup f ≤ ‖f‖∞ for all f ∈ Cb(Z);
(ii) the map Cb(Z) 3 f 7→ p(f) is sublinear;

(iii) p(u⊕ v) = µ(u) + ν(v) for all u ∈ Cb(X) and v ∈ Cb(Y ).

Proof. (i) This is obvious.
(ii) Obviously p(λf) = λp(f) for all f ∈ Cb(Z) and all constants λ ≥ 0.

Suppose next that fi ∈ Cb(Z) and (ui, vi) ∈ Φ(fi) for i = 1, 2. Then

(u1 + u2, v1 + v2) ∈ Φ(f1 + f2)
and hence

p(f1 + f2) ≤ µ(u1 + u2) + ν(v1 + v2) = (µ(u1) + ν(v1)) + (µ(u2) + ν(v2)).

Hence p(f1 + f2) ≤ p(f1) + p(f2).
(iii) Since (u, v) ∈ Φ(u⊕ v) we have, using the inequality (3.1),

µ(u) + ν(v) = θ(u⊕ v) ≤ p(u⊕ v) ≤ µ(u) + ν(v),
and so must have equality throughout.
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Let S be a completely regular space and I : Cb(S) → R a linear func-
tional. We shall say that I is tight if for each ε > 0 there exists Q(ε) ∈ K(S)
such that |I(f)| < ε for each f ∈ Cb(S) that satisfies: (i) f vanishes identi-
cally on Q(ε), and (ii) ‖f‖∞ ≤ 1. We shall need the following representation
theorem, for which see [3, IX, §5, No. 2, Proposition 5] or [2, Theorem 7.10.6].

Theorem 3.2. Let S be a completely regular space and I : Cb(S) → R
a continuous tight linear functional. Then there exists a unique measure
σ ∈Mb(S) such that I(f) =

	
S f dσ for all f ∈ Cb(S).

If σ ∈ Π(µ, ν) and I(f) =
	
Z f dσ then, as we have seen, I(f) ≤ p(f) for

all f ∈ Cb(Z). We now prove the following converse statement.

Theorem 3.3. Let I : Cb(Z)→ R be a linear functional such that I(f) ≤
p(f) for all f ∈ Cb(Z). Then there exists a unique measure σ ∈ Π(µ, ν) such
that I(f) =

	
Z f dσ.

Proof. We shall use Theorem 3.2 for the case S = Z.
We have I(f) ≤ p(f) ≤ ‖f‖∞ for all f ∈ Cb(Z). Replacing f by −f we

see that −I(f) ≤ ‖f‖∞ and hence that |I(f)| ≤ ‖f‖∞. Thus I is continuous.
Next, we show that I is tight. To prove this, suppose that ε > 0 and

choose compact subsets K,L of X,Y respectively to satisfy the inequali-
ties (2.1). Let f ∈ Cb(Z) and suppose that f vanishes identically on the
compact set K × L and that ‖f‖∞ ≤ 1. Now let

u(x) =
{

1 if x ∈ X \K,
0 if x ∈ K,

v(y) =
{

1 if y ∈ Y \ L,
0 if y ∈ L.

Then (u, v) ∈ Φ(f), so I(f) ≤ p(f) ≤ µ(u) + ν(v) < ε. Similarly, (u, v) ∈
Φ(−f), so −I(f) = I(−f) < ε. Hence |I(f)| < ε, and thus the functional
I is tight. By Theorem 3.2, it follows that there exists a unique measure
σ ∈Mb(Z) such that I(f) =

	
Z f dσ for all f ∈ Cb(Z).

We next show that σ ∈ P(Z). Observe first that if f ∈ C+
b (Z) then

−I(f) = I(−f) ≤ p(−f) ≤ 0

and so I(f) ≥ 0. Therefore σ ∈M+
b (Z). Next,

I(1) ≤ p(1) = 1 and −I(1) = I(−1) ≤ p(−1) = −1,

So
	
Z dσ = I(1) = 1, and thus σ ∈ P(Z).
Finally, let Λ = {u ⊕ v : u ∈ Cb(X), v ∈ Cb(Y )}. Then, for all f ∈ Λ,

p(f) = θ(f), by Proposition 3.1, and hence I(f) ≤ θ(f) and I(−f) ≤ θ(−f).
Therefore I(f) = θ(f) for all f ∈ Λ; in other words

σ(u⊕ v) = µ(u) + ν(v)

for all u ∈ Cb(X) and v = Cb(Y ), and thus σ ∈ Π(µ, ν).
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4. Monge–Kantorovich duality in completely regular spaces.
We continue to suppose that X and Y are completely regular topological
spaces.

Theorem 4.1. Let h : Z → [−∞,∞) be an upper semicontinuous
function and suppose that there exist real lower semicontinuous functions
a ∈ L1(µ) and b ∈ L1(ν) such that h(x, y) ≤ a(x) + b(y) for all (x, y) ∈ Z.
Then

max
π∈Π(µ,ν)

π(h) = inf{µ(u) + ν(v) : (u, v) ∈ Φ(h)}.

(The case in which both terms equal −∞ is not excluded.)

Kellerer [7, Theorem 2.6] (see also [7, Theorem 2.19]) obtains a duality
theorem that is stronger than Theorem 4.1 in a number of respects, but
the proof is much more difficult. Note that Kellerer’s theorem, unlike The-
orem 4.1, does not stipulate that h is to satisfy an inequality of the type
h ≤ a ⊕ b. On the other hand, for lower semicontinuous h (not treated in
the present paper) duality may fail unless a⊕ b ≤ h for suitable a ∈ L1(µ)
and b ∈ L1(ν) (see [7, Theorem 2.2 and Example 2.5]).

In the optimal transport literature it is customary to reformulate state-
ments such as Theorem 4.1 in terms of the function c(x, y) = −h(x, y),
known as the cost function. The total cost of the transport plan π is then	
Z c dπ and the recast Theorem 4.1 evaluates the minimum possible total

cost, namely minπ∈Π(µ,ν)

	
Z c dπ. (See, for instance, [12, 13].)

Proof of Theorem 4.1. We treat first the case in which h ∈ Cb(Z). By
the Hahn–Banach theorem there exists a linear functional I : Cb(Z) → R
such that

I(f) ≤ p(f) for all f ∈ Cb(Z), and I(h) = p(h).

By Theorem 3.3 there exists σ ∈ Π(µ, ν) such that I(f) = σ(f) for all
f ∈ Cb(Z). The equation I(h) = p(h) can now be expressed as σ(h) = p(h).
But by the inequality (3.1) we have π(h) ≤ p(h) for all π ∈ Π(µ, ν). This
shows that

max
π∈Π(µ,ν)

π(h) = σ(h) = p(h) = inf{µ(u) + ν(v) : (u, v) ∈ Φ(h)}

as desired.
To deal with semicontinuous h we shall use the following lemma, a close

relative of Dini’s theorem.

Lemma 4.2. Let Ω be a compact space and let (gα)α∈A be a decreasing
net in C(Ω) with pointwise limit g : Ω → [−∞,∞). Then

lim
α

max
ω∈Ω

gα(ω) = inf
α

max
ω∈Ω

gα(ω) = max
ω∈Ω

g(ω).
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Proof. Here g is upper semicontinuous, and hence it attains its supre-
mum. Now let ∆ be a real constant such that maxω∈Ω g(ω) < ∆, and for
each α let

F (α) = {ω ∈ Ω : gα(ω) ≥ ∆}.
Then if α1, . . . , αn ∈ A we can find β ∈ A such that αr ≤ β for r = 1, . . . , n,
and hence we have

F (α1) ∩ · · · ∩ F (αn) ⊇ F (β).

It follows, if F (α) 6= ∅ for all α, that {F (α)} is a family of closed sets
with the finite intersection property, and consequently that

⋂
α F (α) 6= ∅.

In that case let ω0 ∈
⋂
α F (α). Then gα(ω0) ≥ ∆ for all α. This contradicts

the assumption that (gα(ω0)) tends to the limit g(ω0), so we are obliged to
conclude that there is some α0 for which F (α0) = ∅. Then maxω∈Ω g(ω) ≤
maxω∈Ω gα(ω) < ∆ for all α ≥ α0.

Returning to our proof of Theorem 4.1, we suppose for the time being
that h ≤ 0. We need one further lemma.

Lemma 4.3. Let z0 ∈ Z and let t be a real constant such that h(z0) < t.
Then there exists g ∈ Cb(Z) such that h ≤ g ≤ 0 and g(z0) < t.

Proof. If t > 0, let g be identically zero. If t ≤ 0, choose a constant s such
that h(z0) < s < t and let V = { z : h(z) < s }. Then V is open and, by the
complete regularity of Z, there exists a continuous function χ : Z → [0, 1]
such that χ(z0) = 1 and χ(z) = 0 for all z ∈ {V . It now suffices to take
g = sχ.

From this lemma it follows immediately that there exists a decreasing
net (hα) in Cb(Z) that has pointwise limit h and is such that hα ≤ 0 for all α.
Then (π(hα)) is for each π ∈ Π(µ, ν) a decreasing net in (−∞, 0] that, by [1,
Theorem 1.5], has the limit π(h) ∈ [−∞, 0]. Write ĥα(π) = π(hα), ĥ(π) =
π(h) and recall that Π(µ, ν) is a non-empty σ(Mb(Z), Cb(Z))-compact set.
Thus (ĥα) is a decreasing net in C(Π(µ, ν)) with pointwise limit ĥ. By
Lemma 4.2 we have

(4.1) lim
α

max
π∈Π(µ,ν)

ĥα(π) = inf
α

max
π∈Π(µ,ν)

ĥα(π) = max
π∈Π(µ,ν)

ĥ(π).

By (3.1) we have ĥ(π) ≤ p(h); and maxπ∈Π(µ,ν) ĥα(π) = p(hα) for all α by
the first part of the present proof. Thus

ĥ(π) ≤ p(h) ≤ p(hα) = max
ρ∈Π(µ,ν)

ĥα(ρ)

for all π ∈ Π(µ, ν) and all α. We deduce, using (4.1), that

max
π∈Π(µ,ν)

ĥ(π) ≤ p(h) ≤ inf
α
p(hα) = inf

α
max

ρ∈Π(µ,ν)
ĥα(ρ) = max

ρ∈Π(µ,ν)
ĥ(ρ).



74 D. A. Edwards

We therefore have equality throughout. Reverting to our former notation,
we see in particular that

max
π∈Π(µ,ν)

π(h) = p(h) = inf{µ(u) + ν(v) : (u, v) ∈ Φ(h)}

as desired.
Finally we must consider the general case, in which the condition h ≤

a⊕ b replaces the assumption that h ≤ 0. Let us write k = h−a⊕ b. Then k
is an upper semicontinuous map Z → [−∞, 0] and, by what we have already
proved, maxπ∈Π(µ,ν) π(k) = p(k). Moreover

p(h) = p(k) + µ(a) + ν(b),

and for all π ∈ Π(µ, ν) we have

π(h) = π(k) + µ(a) + ν(b).

Hence

max
π∈Π(µ,ν)

π(h) = max
π∈Π(µ,ν)

π(k) + µ(a) + ν(b) = p(k) + µ(a) + ν(b) = p(h).

5. Monge–Kantorovich duality in metric spaces. In this section
we assume that X,Y are metric spaces with metrics dX and dY respectively.
Then Z is metrizable and we may take its metric dZ to be defined by

dZ(z, z′) = dX(x, x′) + dY (y, y′),

where z = (x, y) and z′ = (x′, y′). Given f ∈ F(Z), we define Ψ(f) to be
the set of all pairs (u, v) of functions u ∈ Cbu(X) and v ∈ Cbu(Y ) such that

f(x, y) ≤ u(x) + v(y) for all (x, y) ∈ Z,
where, for instance, Cbu(X) denotes the space of all bounded real uniformly
continuous functions on X.

Theorem 5.1. Let h : Z → [−∞,∞) be an upper semicontinuous func-
tion that is bounded above. Then

max
π∈Π(µ,ν)

π(h) = inf{µ(u) + ν(v) : (u, v) ∈ Ψ(h)}.

This theorem is proved for Polish spaces by Villani [12, Theorem 1.3].
Our proof differs from his because we use Theorem 4.1; this simplifies the
argument and allows us to drop the assumption that the metric spaces X,Y
are Polish.

Proof of Theorem 5.1. For f ∈ F(Z) we define q(f) by the formula

q(f) =
{

inf{µ(u) + ν(v) : (u, v) ∈ Ψ(f)} if Ψ(f) 6= ∅,
∞ if Ψ(f) = ∅.

Lemma 5.2. Let h be a bounded real uniformly continuous function on Z.
Then q(h) = p(h).
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Outline of proof. We are indebted here to Villani’s account (see [12,
pp. 29–30]) of a standard generalization of convex conjugacy. We can assume
that h ≤ 0. Evidently inf h ≤ p(h) ≤ q(h) ≤ 0. Suppose that 0 < ε < 1. For
suitable (u0, v0) ∈ Φ(h) we now have

p(h) ≤ µ(u0) + ν(v0) < p(h) + ε < 1.

Thus
	
Z(u0⊕v0) dθ < 1, and hence u0(x0)+v0(y0) < 1 for some (x0, y0) ∈ Z.

Since µ(u0 + t) + ν(v0 − t) = µ(u0) + ν(v0) for t ∈ R, we can suppose that

(5.1) u0(x0) < 1/2 and v0(y0) < 1/2.

Now for x ∈ X and y ∈ Y let

(5.2) u0(x) = sup
y∈Y

(h(x, y)− v0(y)), v0(y) = sup
x∈X

(h(x, y)− u0(x)).

From (5.1) and (5.2) it follows that |u0| ≤ ‖h‖∞ + 1/2 and h ≤ u0 ⊕ v0.
Moreover u0 ≤ u0, and hence u0(x0) < 1/2.

Next, we prove that u0 is uniformly continuous. Let k(x, y) = h(x, y)−
v0(y) and let N = {y ∈ Y : v0(y) = ∞}. Let Y0 = Y \N and observe that
u0(x) = supy∈Y0

k(x, y). Suppose that η > 0. By the uniform continuity of h
we can find δ > 0 such that

|k(x, y)− k(x′, y)| = |h(x, y − h(x′, y))| < η for all y ∈ Y0

whenever dX(x, x′) < δ. For such x, x′ and all y ∈ Y0 we thus have

k(x, y) < k(x′, y) + η.

Hence
u0(x) = sup

y∈Y0

k(x, y) ≤ sup
y∈Y0

k(x′, y) + η = u0(x′) + η.

By symmetry, u0(x′) ≤ u0(x) + η and hence

|u0(x)− u0(x′)| ≤ η
whenever dX(x, x′) < δ. Thus u0 is uniformly continuous, and we see that
u0 ∈ Cbu(X) and (u0, v0) ∈ Φ(h).

Starting from the pair (u0, v0), and recalling that v0(y0) < 1/2, we can
now prove, by reasoning which parallels exactly that for the pair (u0, v0),
that (i) v0 is bounded, (ii) v0 is uniformly continuous, (iii) v0 ≤ v0, and (iv)
(u0, v0) ∈ Ψ(h). We thus have u0 ⊕ v0 ≤ u0 ⊕ v0 and so

q(h) ≤ µ(u0) + ν(v0) = θ(u0 ⊕ v0)
≤ θ(u0 ⊕ v0) = µ(u0) + ν(v0) < p(h) + ε.

Hence q(h) ≤ p(h), and consequently q(h) = p(h).

Lemma 5.3. Let h be a bounded real uniformly continuous function on Z.
Then the conclusion of Theorem 5.1 is satisfied by h.
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Proof. By the preceding lemma and Theorem 4.1 we have

max
π∈Π(µ,ν)

π(h) = p(h) = q(h).

In the final part of the proof we use the following well known result.

Lemma 5.4. Let E be a metric space with metric d and let f : E → [0,∞]
be a lower semicontinuous function. Then there exists an increasing sequence
(fn) in C+

bu(E) that has pointwise limit f .

Outline of proof. If f ≡ ∞, we may take fn(x) = n for all x ∈ E and
n ≥ 1. If f 6≡ ∞, let

gn(x) = inf
y∈E

(f(y) + nd(x, y)) for all x and n.

Then (gn) is an increasing sequence of real uniformly continuous functions
that has pointwise limit f , and gn ≥ 0 for all n. Writing fn = min(n, gn),
we obtain a sequence (fn) that satisfies our requirements.

Equipped with Lemmas 5.3 and 5.4, we could now finish the proof of
Theorem 5.1 by Villani’s method (see [12, pp. 31–33]); but it is quicker for
us to argue as follows. Let h satisfy the hypotheses of Theorem 5.1. We
can assume that h ≤ 0. Then, since Z is a metric space, there exists, by
Lemma 5.4, a decreasing sequence (hn) in Cbu(Z) having pointwise limit h
and such that hn ≤ 0 for all n. Then, by Lemma 5.3, maxτ∈Π(µ,ν) ĥn(τ) =
q(hn) for all n, and so, for π ∈ Π(µ, ν),

π(h) ≤ p(h) ≤ q(h) ≤ q(hn) = max
τ∈Π(µ,ν)

ĥn(τ).

By the monotone convergence theorem or by [1, Theorem 1.5], the decreasing
sequence (ĥn) in C(Π(µ, ν)) has pointwise limit ĥ. Hence, by Lemma 4.2,

max
π∈Π(µ,ν)

π(h) ≤ p(h) ≤ q(h) ≤ inf
n
q(hn) = inf

n
max

τ∈Π(µ,ν)
ĥn(τ) = max

τ∈Π(µ,ν)
ĥ(τ).

So we must have equality throughout, and in particular maxπ∈Π(µ,ν) π(h) =
q(h), as desired.

6. Concluding remarks. The use of the Hahn–Banach theorem in the
study of measures with prescribed marginals is not new (see for instance [4,
6, 7, 8, 9, 11, 12]). From the standpoint of linear programming, the above
discussion is incomplete in that it throws no light upon the question whether
the function Φ(h) 3 (u, v) 7→ µ(u) + ν(v) attains its infimum. A number of
authors have studied the problem. Kellerer [7, Theorem 2.21], for a much
wider class of Monge–Kantorovich problems than we have considered here,
shows that under appropriate conditions the infimum is attained. See also [9,
10, 13] for the case in which the topological spaces X,Y are Polish. The three
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books [9, 12, 13] together give an extremely comprehensive account of the
very large subject that optimal transport theory has become.
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