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Abstract. The characteristic function for a contraction is a classical complete unitary
invariant devised by Sz.-Nagy and Foiaş. Just as a contraction is related to the Szegö kernel
kS(z, w) = (1 − zw)−1 for |z|, |w| < 1, by means of (1/kS)(T, T ∗) ≥ 0, we consider an
arbitrary open connected domain Ω in Cn, a complete Pick kernel k on Ω and a tuple
T = (T1, . . . , Tn) of commuting bounded operators on a complex separable Hilbert space
H such that (1/k)(T, T ∗) ≥ 0. For a complete Pick kernel the 1/k functional calculus
makes sense in a beautiful way. It turns out that the model theory works very well and a
characteristic function can be associated with T . Moreover, the characteristic function is
then a complete unitary invariant for a suitable class of tuples T .

1. Introduction. Dilation of a contraction to an isometry and further
to a unitary operator is a classical result of Sz.-Nagy [19]. Attempts to
generalize the results to higher dimensions beyond a pair quickly run into
difficulty (see Varopoulos [20]), and hence dilation of a tuple of bounded
operators has needed new approaches. While the theory is highly successful
for the Euclidean unit ball, little has been done for other domains.

For a contractive tuple or a row contraction, commuting or not, dilation
theory has been worked out in great detail in the last two decades (see
Arveson [6], Popescu [14] and [15], Müller and Vasilescu [13], and [8] and [9]).
For other domains, Ambrozie, Englǐs and Müller in [4] and Arazy and Englǐs
in [5] construct dilations under several conditions on the kernel function. The
aim of this note is to show that the theory goes through smoothly for certain
complete Pick kernels.

1.1. Kernels and multipliers. Consider a domainΩ in Cm. Let k(z, w)
be a positive definite kernel in Ω which is a holomorphic function in z and
an anti-holomorphic function in w, and let Hk be the corresponding Hilbert
space of holomorphic functions on Ω. A kernel k is called irreducible if
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(1) the functions kw, defined by kw(z) = k(z, w) for w ∈ Ω are indepen-
dent, and

(2) k(x, y) is never zero for x, y ∈ Ω with x 6= y.

All the reproducing kernels will be assumed to be irreducible.
If E is a Banach space, denote by O(Ω, E) the class of all E-valued holo-

morphic functions on Ω and by Hk(E) the Hilbert space of E-valued holo-
morphic functions on Ω that has the operator valued reproducing kernel
k(z, w)IE . For two Hilbert spaces E and E∗, the multiplier space Mk(E , E∗)
consists of those ϕ ∈ O(Ω,B(E , E∗)) such that

Mϕ : Hk(E)→ Hk(E∗), f 7→ ϕf,

is a continuous linear operator. With the operator norm, the space of mul-
tipliers becomes a Banach space, and a Banach algebra if E = E∗. If E = E∗
= C, then we just write Mk.

1.2. Pick kernels. The Pick problem for the reproducing kernel Hilbert
space Hk is the following. Given w1, . . . , wn ∈ Ω and numbers λ1, . . . , λn,
is there a ϕ ∈ Mk of norm at most one which interpolates the data, i.e.,
satisfies ϕ(wi) = λi for i = 1, . . . , n? It is easy to see that a necessary
condition for the Pick problem to be solvable is that

(1.1) (1− λiλj)k(wi, wj)

is a non-negative definite matrix.

Definition 1.1. The kernel k is called a Pick kernel if the non-negativity
of (1.1) is also sufficient to solve the Pick problem.

For the Pick kernels, irreducibility can be assumed without loss of gen-
erality by virtue of Lemma 7.2 of [2].

1.3. Complete Pick kernels. Let α and β be natural numbers. Given
n points w1, . . . , wn in Ω and n matrices Λ1, . . . , Λn of size α×β, the matrix
Pick problem (of order α × β) is that of finding ϕ ∈ Mk(Cβ,Cα) of norm
at most 1 which satisfies ϕ(wi) = Λi for i = 1, . . . , n. Again a necessary
condition for solvability of the matrix Pick problem is that the Pick matrix

(1.2) [(I − ΛiΛ∗j )k(wi, wj)]

is positive (see Theorem 5.8 in [2]).

Definition 1.2. The kernel k is called a complete Pick kernel if posi-
tivity of the Pick matrix (1.2) is a sufficient condition for the matrix Pick
problem to be solvable for every α and β.

1.4. Examples

(1) Drury–Arveson space. This space, denoted by H2
d , is defined to be

the Hilbert space of holomorphic functions on the Euclidean unit ball in Cd
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with reproducing kernel

kd(z, w) = (1− 〈z, w〉)−1.

For more on the space H2
d and the multipliers, see the seminal paper of

Arveson [6]. The space H2
d was first used by Drury [12] who generalized von

Neumann’s inequality to operator tuples. This kernel is universal among the
complete Pick kernels (see [2, Chapter 8]).

(2) Weighted `2 spaces. Consider a weight sequence (wn)n≥0 satisfying

w2
n+1 ≥ wnwn+2

and the space of functions f(z) =
∑

n≥0 anz
n on D with

‖f‖2 :=
∑
n≥0

|an|2wn <∞.

Thus Dirichlet space is a special case, corresponding to wn = n + 1. These
spaces have complete Pick kernels (see [18]).

(3) Dirichlet type spaces. Let µ be a finite positive measure supported
in D. Define

D(µ) =
{
f :

f is holomorphic in D and
‖f‖2 := ‖f‖2H2 +

	
D |f

′(ζ)|2Uµ(ζ) dm2(ζ) <∞

}
where dm2 is the normalized Lebesgue area measure in D, and Uµ is defined
as

Uµ(ζ) =
�

D
log
∣∣∣∣1− zζζ − z

∣∣∣∣2 dµ(z)
1− |z|2

+
�

T

1− |ζ|2

|ζ − z|2
dµ(z), ζ ∈ D.

These spaces were introduced by Richter [17] and Aleman [3] and were shown
to have complete Pick kernel by Shimorin [18].

(4) Weighted Sobolev spaces. Given positive functions w0 ∈ C[x0, x1] and
w1 ∈ C1[x0, x1], consider the space

W 1
2 = {f : [x0, x1]→ C : f is absolutely continuous with |f ′|2 integrable}

with the norm

‖f‖2 :=
x1�

x0

|f(x)|2w0(x) dx+
x1�

x0

|f ′(x)|2w1(x) dx.

Then W 1
2 with this norm has a complete Pick kernel. See [16] and [18].

In this note, we shall deal only with complete Pick kernels.

1.5. A complete unitary invariant. In [8], an operator valued holo-
morphic function on the open Euclidean unit ball Bm in Cm was constructed.
This function, called the characteristic function, corresponded to a commut-
ing row contraction, i.e., a tuple of bounded operators T = (T1, . . . , Tm) on
a Hilbert space H such that

∑
TiT

∗
i ≤ I. The function has the property that
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if two commuting row contractions are unitarily equivalent then their char-
acteristic functions coincide. The converse holds for a class of commuting
row contractions. Although in this note we shall consider analogues of what
Sz.-Nagy and Foiaş called C·0 contractions, in full generality, the converse
mentioned above holds for what are called the completely non-coisometric
commuting row contractions as was shown in [9].

The aim of this note is to find such a complete unitary invariant as
a holomorphic function on Ω for a much larger class of commuting tuples,
viz., those for which (1/k)(T, T ∗) ≥ 0. These will be called the (1/k)-positive
tuples. For how to define (1/k)(T, T ∗), see Section 2.

2. The space Hk and (1/k)-positive tuples. Let Ω ⊂ Ω ⊂ Ω′ ⊂ Cm

be a domain in Cm and k : Ω×Ω → C be a holomorphic complete Pick kernel
on Ω. Recall that we assume it is irreducible. Without loss of generality, we
also make an assumption that the kernel k is normalized at a point λ0 in Ω.
This means that

k(λ0, w) = k(z, λ0) = 1 for all z, w ∈ Ω.
By virtue of general theory of holomorphic complete Pick kernels, there

is then a positive integer d (which is not the same as m in general) and a
holomorphic function b = (b1, . . . , bd) : Ω → Bd mapping λ0 to 0 such that

k(z, w) =
1

1−
∑d

i=1 bi(z)bi(w)
, z, w ∈ Ω.

See Theorem 7.31 in [2]. In general, d need not be finite, i.e., the number
of bi could be infinite. However, we make the following assumptions:

(A1) The cardinal d is finite and each bi is holomorphic on Ω′ and be-
longs to the closure of polynomials on Ω′ in the compact open
topology.

(A2) The coordinate functions z1, . . . , zm are multipliers on Hk.
(A3) The Taylor spectrum σ(Mz) is contained in Ω′ where Mz =

(Mz1 , . . . ,Mzm) is the multiplication tuple on Hk.

For a given multi-index s = (s1, . . . , sd), let us consider analogues of
monomials. Denote by bs(z) the function bs11 (z) . . . bsd

d (z). On the vector
space spanned by finite linear combinations of these monomials, we give an
inner product by setting

〈bs(z), bs′(z)〉 =
{

0 if s 6= s′,
s!/|s|! if s = s′.

It is then clear that the completion of this linear space with this inner
product is Hk. Any element g of Hk is of the form

∑
asb

s and has the norm
(
∑
|as|2/γs)1/2 where γs is the multinomial coefficient for the multi-index s.



Complete Pick positivity 153

Note that this implies that any element g of Hk is of the form

(2.1) g = f ◦ b
for some f ∈ H2

d . A straightforward norm computation immediately shows
that the bi are contractive multipliers. However, more is true.

Lemma 2.1. IH −
∑d

i=1MbiM
∗
bi
≥ 0.

Proof. Since the linear span of the functions {kw : w ∈ Ω} is the whole
space, it is enough to show the above just on kw. But then(∑

MbiM
∗
bi
kw

)
(z) =

∑
bi(z)bi(w)

1
1−

∑
bi(z)bi(w)

=
1

1−
∑
bi(z)bi(w)

− 1 = (kw − P0kw)(z),

where P0 is the one-dimensional projection onto the constants, thus showing
that IH −

∑d
i=1MbiM

∗
bi

is actually a projection and hence the result.

Lemma 2.2. Mbi = bi(Mz).

Proof. We shall show that M∗bi = (bi(Mz))∗ by showing that each mem-
ber kw of the total set is an eigenvector for M∗bi as well as (bi(Mz))∗ with the
eigenvalue bi(w). Choose, for each i, a sequence {pin} which converges to bi
uniformly on compact subsets of Ω′ as n→∞. The holomorphic functional
calculus is a continuous homomorphism (see Theorem 5.18 of Curto [10]).
Thus (pin(Mz))∗kw → (bi(Mz))∗kw in Hk. But pin(Mz) = Mpn . So

M∗bikw = bi(w)kw = lim
n→∞

pin(w)kw = lim
n→∞

M∗pi
n
kw

= lim
n→∞

(pin(Mz))∗kw = (bi(Mz))∗kw,

and that completes the proof.

Corollary 2.3. Let Mz = (Mz1 , . . . ,Mzm) be the multiplication tuple
on Hk. Then

IH −
d∑
i=1

bi(Mz)(bi(Mz))∗ ≥ 0.

Proof. This corollary follows from the two lemmas above.

Let T = (T1, . . . , Tm) denote a commuting m-tuple of bounded operators
on H such that σ(T ) ⊂ Ω. Define the following tuple via the holomorphic
functional calculus of Taylor:

b(T ) = (b1(T ), . . . , bd(T )).

In this note, we shall be concerned with those tuples T for which b(T ) is a
d-contraction in the sense of Arveson [6]. In other words,

IH −
∑

bi(T )(bi(T ))∗ ≥ 0.
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Since 1/k is a function which is holomorphic in z and anti-holomorphic in
w on Ω′, there is a well-known method of making sense of (1/k)(T, T ∗)
using holomorphic functional calculus (see [11], [4]), which is also related to
the hereditary functional calculus of Agler [1]. In our case, (1/k)(T, T ∗) =
IH −

∑
bi(T )(bi(T ))∗ and hence (1/k)(T, T ∗) ≥ 0. We call such a tuple T a

(1/k)-positive tuple. To summarize, our tuple T is assumed to satisfy two
conditions:

(C1) σ(T ) ⊂ Ω,
(C2) T is (1/k)-positive.

It is clear that the kernel k can be expanded as

k(z, w) =
∑

γsb
s(z)bs(w)

and hence if we define

Fs(z, w) = γs
bs(z)bs(w)
k(z, w)

for z, w ∈ Ω

then

(2.2)
∑
s∈Nd

Fs(z, w) = 1

where the sum converges uniformly over compact subsets of Ω × Ω. Note
that

Fs(T, T ∗) = γsb
s(T )

1
k

(T, T ∗)(bs(T ))∗

= γsb
s(T )

(
I −

d∑
i=1

bi(T )(bi(T ))∗
)

(bs(T ))∗.

By virtue of (2.2) and functional calculus, we have

(2.3)
∑
s∈Nd

Fs(T, T ∗) = I.

Since one of our aims here is to produce the dilation of a (1/k)-positive
tuple as a functional model, it is natural to look for the smallest space. If
v ∈ Hk denotes the constant function 1, then bs(Mz)v is orthogonal to v
for all multi-indices s 6= 0. The following lemma shows that the space Hk is
the smallest in the sense that it is contractively contained in other suitable
spaces.

Lemma 2.4. Let T be a (1/k)-positive tuple on the Hilbert space H. Let
v ∈ H be such that ‖v‖ = 1 and bs(T )v ⊥ v for all non-zero s ∈ Nd. Then
there exists a contraction R : Hk → H such that Rbs(z) = bs(T )v.
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Proof. For s ∈ Nd, we know that ‖bs(z)‖2 = s!/|s|!. Consider a polyno-
mial p(z) =

∑
|s|≤r asz

s for some r ∈ N. We need to prove that

p(b(z)) 7→ p(b(T ))v
is a contraction. In other words∥∥∥∑

|s|≤r

asb
s(z)

∥∥∥2
≥
∥∥∥∑
|s|≤r

asb
s(T )v

∥∥∥2
.

Now, ∥∥∥∑
|s|≤r

asb
s(z)

∥∥∥2
=
∑
|s|≤r

|as|2‖bs(z)‖2,

so, replacing as by as/‖bs(z)‖2, we need to prove that∥∥∥∥∑
|s|≤r

as
‖bs(z)‖

bs(T )v
∥∥∥∥2

≤
∑
|s|≤r

|as|2.

Let E0 denote the projection onto the one-dimensional subspace spanned
by the vector v∈H. Thus, our contractivity condition boils down to proving
that {

as
‖bs(z)‖

bs(T )E0

}
s

is a contractive tuple. By virtue of the fact that T is a (1/k)-positive tuple,
we see that the completely positive map

Cb(T )(X) =
d∑
i=1

bi(T )X(bi(T ))∗

is contractive, i.e., ‖Cb(T )(I)‖ ≤ 1. Thus

Cb(T )(E0) ≤ Cb(T )(I) ≤ I.
However, by assumption, 〈bi(T )E0bi(T )∗v, v〉H = 0 so that Cb(T )(E0)v = 0.
This implies that

Cb(T )(E0) + E0 ≤ I.
Repeated application of Cb(T )(·) to the above yields

E0 + Cb(T )(E0) + · · ·+ Cnb(T )(E0) ≤ I.
Now,

Cnb(T ) =
∑
|s|=n

1
‖bs(z)‖2

bs(T )E0b
s(T )∗

because ‖bs(z)‖−2 is the multinomial coefficient for the multi-index s =
(s1, . . . , sd) with |s| = n. Therefore we have∑

|s|≤n

|as|2

‖bs(z)‖2
bs(T )E2

0b
s(T )∗ ≤ I,

and our claim is proved.
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3. The characteristic function. From now, we shall work with only
those tuples which satisfy the assumptions (C1) and (C2).

Recall that a tuple of operators R = (R1, . . . , Rd) acting on a Hilbert
space L is a d-contraction if

∑
RiR

∗
i ≤ IL. In this case, there are some

standard notations:

DR∗ =
(
IL −

∑
RiR

∗
i

)1/2
, DR∗ = RanDR∗

and

DR = [δijIL −R∗iRj ]1/2 (a d× d operator matrix) and DR = RanDR.

The d-contraction b(T ), canonically associated with a commuting (1/k)-
positive tuple T , has its own characteristic function defined by

θb(T )(λ) = −b(T ) +Db(T )∗(IH − λb(T )∗)−1λDb(T )

as a B(Db(T ),Db(T )∗) valued holomorphic function defined on Bd. We define
the characteristic function of the tuple T to be the following B(Db(T ),Db(T )∗)
valued holomorphic function on Ω:

θT (z) = −b(T ) +Db(T )∗(IH − b(z)b(T )∗)−1b(z)Db(T ).

Note that θT = θb(T )|b(Ω) ◦ b.

Lemma 3.1. The characteristic function θT is a contractive multiplier
from Hk ⊗Db(T ) into Hk ⊗Db(T )∗. Also, for z, w ∈ Ω, one has the relation

I − θT (z)θ(w)∗ =
(
I −

∑
bi(z)bi(w)

)
Db(T )∗

×
(
I −

∑
bi(z)bi(T )∗

)−1(
I −

∑
bi(T )bi(w)

)−1
Db(T )∗ .

Proof. We know that the characteristic function θb(T ) of the d-contraction
b(T ) is a contractive multiplier from H2

d ⊗Db(T ) into H2
d ⊗Db(T )∗ . Also, we

have θT = θb(T ) ◦ b. Thus the first assertion follows from [7, Theorem 3.1].
The second assertion is a straightforward direct computation.

There is a natural unitary map

U : Hk → H2
d

which sends bs(z) to λs for every multi-index s. This U also intertwines
Mbi on Hk with Mzi on H2

d . So the module Hk formed by the operator
tuple (Mb1 , . . . ,Mbd) is isomorphic to the module H2

d formed by the tuple
(Mz1 , . . . ,Mzd

) of multiplication by the coordinate functions. Our aim in
this note is to study, on Hk, the m-tuple (Mz1 , . . . ,Mzm) of multiplication
by the coordinate functions.

Theorem 3.2. The multiplier MθT
is a partial isometry.
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Proof. We shall show that MθT
M∗θT

is a projection. To begin, define a
linear operator j : H → Hk ⊗Db(T )∗ by

j(h) =
∑
s∈Nd

γsb
s(z)⊗Db(T )∗b

s(T )∗h.

Using the unitary equivalence as above, it can be seen that this j is the same
as the corresponding operator in the case of the Drury–Arveson space and
it easily follows that

L = j∗ : Hk ⊗Db(T )∗ → H
is the unique bounded operator satisfying

L(p ◦ b⊗ ξ) = p(b(T ))Db(T )∗ξ

for any polynomial p in d variables.
Any f in Hk has an orthonormal expansion f =

∑
asb

s. If

pn =
∑
|s|≤n

asb
s,

then pn converges to f in the topology of Hk. On any compact subset of Ω,
the modulus of the kernel function k(z, z) is bounded above and bounded
away from zero. It follows that pn → f uniformly on compact subsets of Ω.
Indeed, using the fact that

|pn(z)− f(z)| ≤ ‖f − pn‖Hk

1− |b1(z)|2 − · · · − |bd(z)|2

for all z in a compact set, and the fact that the image of a compact set under
b is a compact subset of Bd, we have uniform convergence of pn to f . Since
the Taylor spectrum of T is contained in Ω, functional calculus implies that
‖pn(T )− f(T )‖ → 0. Thus we have

L(f ⊗ h) = L(lim
n
pn ⊗ h) = lim

n
L(pn ⊗ h) = lim pn(T )Db(T )∗h(3.1)

= f(T )Db(T )∗h.

This operator is clearly unique. The equation (3.1) immediately gives us
that the operator L intertwines Mzi ⊗ I with Ti for every i.

There are two important properties of this operator that will be useful.
First note that

L(k(·, w)⊗ η) =
(
I −

∑
i

bi(T )bi(w)
)−1

Db(T )∗η

for all w ∈ Ω and η ∈ Db(T )∗ .

Indeed, this is obvious from (3.1) by choosing f to be k(·, w).
The second property is that L∗ is an isometry. This is a consequence

of the Taylor spectrum being contained in Ω. In detail, let {ηj} be an or-
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thonormal basis of Db(T )∗ . Then

‖L∗h‖2 =
∑
s,j

|〈L∗h,√γs bs ⊗ ηj〉|2 =
∑
s,j

|〈h,√γs L(bs ⊗ ηj)〉|2

=
∑
s,j

|〈h,√γs bs(T )Db(T )∗ηj〉|2 =
∑
s,j

|〈√γsDb(T )∗b
s(T )∗h, ηj〉|2

=
∑
s

‖√γsDb(T )∗b
s(T )∗h‖2 =

∑
s

〈γsbs(T )D2
b(T )∗b

s(T )∗h, h〉

=
∑
s

〈
γsb

s(T )
(
I −

∑
i

bi(T )bi(T )∗
)
bs(T )∗h, h

〉
=
∑
s

〈Fs(T, T ∗)h, h〉 = ‖h‖2 by (2.3).

Since L∗ is an isometry, L∗L is a projection. The final step in the proof
is to show that L∗L and MθT

M∗θT
are orthogonal projections. For z, w ∈ Ω

and ξ, η ∈ Db(T )∗ , we have

〈(L∗L+MθT
M∗θT

)k(·, z)⊗ ξ, k(·, w)⊗ η〉
= 〈L(k(·, z)⊗ ξ), L(k(·, w)⊗ η)〉+ 〈M∗θT

(k(·, z)⊗ ξ),M∗θT
(k(·, w)⊗ η)〉

=
〈(
I −

∑
i

bi(T )bi(z)
)−1

Db(T )∗ξ,
(
I −

∑
i

bi(T )bi(w)
)−1

Db(T )∗η
〉

+ 〈k(·, z)⊗ θT (z)∗ξ, k(·, w)⊗ θT (w)∗η〉
= k(w, z)〈(I − θT (w)θT (z)∗)ξ, η〉+ k(w, z)〈θT (w)θT (z)∗ξ, η〉
= k(w, z)〈ξ, η〉 = 〈k(·, z)⊗ ξ, k(·, w)⊗ η〉.

This, by virtue of the fact that {k(·, w)⊗ η : w ∈ Ω, η ∈ Db(T )∗} is a total
set in Hk⊗Db(T )∗ , shows that L∗L+MθT

M∗θT
= IHk⊗Db(T )∗ , which of course

proves the theorem.

4. Unitary invariance. A functional model for a tuple of commuting
bounded operators means a Hilbert space H of holomorphic (possibly vector
valued) functions and a subspace M which is invariant under the multipli-
cation operators by the coordinate functions such that the compressions of
the multiplication operators to the orthocomplement of this subspace are
simultaneously unitarily equivalent to the given tuple of operators. So let
T = (T1, . . . , Tm) be a tuple of commuting bounded operators on a Hilbert
space H. Establishing a functional model for T will mean finding an H and
an M as above and a Hilbert space isomorphism U between H and M⊥
such that

UTiU
∗ = PM⊥Mzi |M⊥ for all i = 1, . . . ,m.
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This can be achieved in the classical case of a contraction T which has the
additional property that (T ∗)n strongly goes to zero. This means m = 1,
Ω = the open unit disk and H = Hk where k is the kernel k(z, w) =
(1− zw)−1. More generally, there are functional models for completely non-
unitary contractions. In that case, the functional model is more complicated
than what is described above, but the essence remains the same. For a
detailed account of this, see [19]. In several variables, functional models
can be successfully constructed for completely non-coisometric commuting
contractive tuples, i.e., m ≥ 1 is an integer, Ω is the open Euclidean unit ball
and k is the Drury–Arveson kernel k(z, w) = (1 − 〈z, w〉)−1. The operator
tuple under consideration satisfies

(4.1)
∑

TiT
∗
i ≤ I

and is called a contractive tuple for obvious reasons. See [8] and [9]. In the
non-commuting situation, this has been done by Popescu for a contractive
tuple in [15] where the word function is interpreted in a broader sense.

Theorem 4.1. Consider the space

HT = (Hk ⊗Db(T )∗)	 RanMθT

and the operator tuple on HT defined for i = 1, . . . ,m by

T̃i = PHT
(Mzi ⊗ I)|HT

.

The given tuple T is unitarily equivalent to T̃ .

Proof. Since L∗ is an isometry, it is clear that Ti is unitarily equivalent
to L∗TiL acting on L∗H. The fact that L∗L and MθT

M∗θT
are orthogonal

projections then finishes the proof.

The notion of coincidence of operator valued holomorphic functions goes
back to Sz.-Nagy. Given two (1/k)-positive tuples T and R on Hilbert spaces
H and K, the characteristic functions of T and R are said to coincide if there
exist unitary operators τ : Db(T ) → Db(R) and τ∗ : Db(T )∗ → Db(R)∗ such that
the following diagram commutes for all z in Ω:

Db(R) Db(R)∗
θR(z)

τ τ∗

Db(T ) Db(T )∗
θT (z)

-

-

? ?

The notion is important because if T and R are unitarily equivalent,
i.e., if there is a unitary U : H → K such that UTi = RiU for all i =
1, . . . ,m, then Up(T ) = p(R)U for all polynomials p ∈ C[z1, . . . , zm]. By
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approximating each bi on compact subsets ofΩ′ by a sequence of polynomials
{pin}∞n=1, say, we have, by functional calculus,

Ubi(T ) = U lim
n
pin(T ) = lim

n
Upin(T ) = lim

n
pin(R)U = bi(R)U.

Thus the d-contractions b(T ) and b(R) are unitarily equivalent. Thus their
characteristic functions coincide (see [8, Proposition 4.2]). As θT = θb(T ) ◦ b,
we see that θT and θR coincide. It is the converse that is non-trivial and
uses the assumption (C1) crucially.

Theorem 4.2. The characteristic functions θT and θR coincide if and
only if the tuples T and R are unitarily equivalent.

Proof. Let τ ′ : Db(T ) → Db(R) and τ ′∗ : Db(T )∗ → Db(R)∗ be two unitary
operators such that

τ ′∗θT (z) = θR(z)τ ′ for all z ∈ Ω.
The operators τ ′ and τ ′∗ give rise to unitary operators

τ : Hk ⊗Db(T ) → Hk ⊗Db(R) and τ∗ : Hk ⊗Db(T )∗ → Hk ⊗Db(R)∗ .

Checking the action on elementary tensors, we get

MθR
τ = τ∗MθT

.

This is the key relation which shows that τ∗|HT
: HT → HR is a unitary

operator which intertwines the model tuples T̃ and R̃. But then, by Theorem
4.1, we conclude that T and R are unitarily equivalent.

5. The Toeplitz C∗-algebra. The C∗-algebra generated by the uni-
lateral shift on H2 of the disk plays a major role in the theory of dilation
of a single contraction. Indeed, given a contraction T on a Hilbert space H,
the canonical completely positive map ϕ : C∗(S)→ B(H) which sends S to
T can be thought of as the model. Its dilation to a representation π gives
the dilation of T . This method of proof has the advantage that it is readily
applicable to the case of an operator tuple.

The Toeplitz C∗-algebra T km in m variables dependent on the kernel k
is the C∗-subalgebra of B(Hk) generated by the multiplication operators
Mz1 , . . . ,Mzm acting on Hk. By virtue of (2.1), we know that there are
m functions f1, . . . , fm ∈ H2

d defined in the unit ball of Cd such that the
coordinate function zi in Cm is given by zi = fi ◦ b.

Lemma 5.1. The functions fi are multipliers on H2
d .

Proof. Let g ∈ H2
d . Then g ◦ b ∈ Hk. Since we have assumed that zi are

multipliers on Hk, we have zi(g ◦ b) ∈ Hk. Now

zi(g ◦ b) ∈ Hk = fi ◦ b(g ◦ b) = (fig)(b(z)).

It is clear that ‖zi(g ◦ b)‖2Hk
= ‖fig‖2H2

d
and hence the conclusion.
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We end with the following result which is interesting in its own right.

Lemma 5.2. If Bd is not the domain of holomorphy for f1, . . . , fm, then
the C∗-algebra T km is isomorphic to the Toeplitz C∗-algebra T kd

d .

Remark. The isomorphism actually goes via the unitary U from the
beginning of Section 3.

Proof of Lemma 5.2. We first show that there is an isometric embedding
of the Toeplitz C∗-algebra T kd

d generated by the coordinate multipliers on
the Drury–Arveson space H2

d inside T km. This is true in general, i.e., without
the hypothesis of the lemma.

By assumption (A1), for each i, there is a sequence {pin}∞n=1 of polyno-
mials in m variables such that pin → bi as n → ∞ uniformly on compact
subsets of Ω′. Then applying the continuity of functional calculus and noting
that bi(Mz1 , . . . ,Mzm) = Mbi , we see that pin(Mz) → Mbi as n → ∞ in the
norm topology of B(Hk). Thus Mb1 , . . . ,Mbm are members of the C∗-algebra
T km. So the C∗-algebra generated by Mb1 , . . . ,Mbm is contained in T km. Since
the C∗-algebra generated by the bi is isomorphic to T kd

d , we deduce that a
copy of T kd

d is contained in T km.
For the reverse inclusion, we need the assumption that Bd is not the

domain of holomorphy for any of the fi because then we get a bigger ball
where the fi are holomorphic. Thus we have power series expansions for
them. For each i, the power series for fi converges to fi uniformly on com-
pact subsets of this bigger ball. So we get a polynomial sequence {qin}i≥1

such that qin → fi uniformly on compact subsets of this bigger ball. Re-
call that the Taylor spectrum of the Drury–Arveson shift is contained the
closed Euclidean unit ball. So we can apply holomorphic functional calculus
(in a way similar to the proof of Lemma 2.2) and find that Mqi

n
→ Mfi

in operator norm, showing that Mfi
is in T kd

d . So the C∗-algebra gener-
ated by Mf1 , . . . ,Mfm is contained in T kd

d . But the C∗-algebra generated by
Mf1 , . . . ,Mfm is isomorphic to T km. That completes the proof.

Let Akm denote the subalgebra of B(Hk) generated by Mz1 , . . . ,Mzm .
Then it is clear from the lemma above that in the case when Bd is not the
domain of holomorphy for f1, . . . , fm, we have T km = spanAkm(Akm)∗.
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