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A Hankel matrix acting on Hardy and
Bergman spaces

by

Petros Galanopoulos and José Ángel Peláez (Málaga)

Abstract. Let µ be a finite positive Borel measure on [0, 1). Let Hµ = (µn,k)n,k≥0 be
the Hankel matrix with entries µn,k =

	
[0,1)

tn+k dµ(t). The matrix Hµ induces formally

an operator on the space of all analytic functions in the unit disc by the fomula

Hµ(f)(z) =

∞X
n=0

“ ∞X
k=0

µn,kak
”
zn, z ∈ D,

where f(z) =
P∞
n=0 anz

n is an analytic function in D.

We characterize those positive Borel measures on [0, 1) such that Hµ(f)(z) =	
[0,1)

f(t)
1−tz dµ(t) for all f in the Hardy space H1, and among them we describe those

for which Hµ is bounded and compact on H1. We also study the analogous problem for
the Bergman space A2.

1. Introduction. We denote by D = {z ∈ C : |z| < 1} the unit disc
and by T the unit circle. Let Hol(D) be the space of analytic functions in D
and let Hp (0 < p ≤ ∞) be the classical Hardy space of analytic functions
in D (see [D]).

If 0 < p < ∞ the Bergman space Ap is the set of all f ∈ Hol(D) such
that

‖f‖pAp :=
�

D
|f(z)|p dA(z) <∞,

where dA(z) = π−1dx dy is the normalized Lebesgue area measure on D.
For the theory of these spaces we refer to [DS] and [Zh].

Let µ be a finite positive Borel measure on [0, 1) and letHµ = (µn,k)n,k≥0

be the Hankel matrix with entries µn,k =
	
[0,1) t

n+k dµ(t). The matrix Hµ
induces formally an operator (which will also be denoted Hµ) on Hol(D) in
the following sense. If f(z) =

∑
n≥0 anz

n ∈ Hol(D), by multiplication of the
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matrix with the sequence of Taylor coefficients of the function,

{an}n≥0 7→
{∑
k≥0

µn,kak

}
n≥0

,

we can formally define

(1.1) Hµ(f)(z) =
∞∑
n=0

( ∞∑
k=0

µn,kak

)
zn, z ∈ D.

If µ is the Lebesgue measure on the interval [0, 1) we get the classical
Hilbert matrix H =

{
1

n+k+1

}
n,k≥0

. This matrix induces, in the same way
as above, a bounded operator on Hp, p ∈ (1,∞) (see [DiS]), and on Ap,
p ∈ (2,∞) (see [Di]); estimates on the norms have also been obtained.
Recently in [DJV], a further progress has been achieved in this direction.

In this paper we shall focus our attention on the limit cases H1 and A2,
that is, we shall study the boundedness, compactness, and other related
properties of Hµ on these spaces in terms of µ. Similar investigations have
previously been conducted by several authors in different spaces of analytic
functions in D (see e.g. [W], [Po]).

The classical Hilbert matrix H is well defined but it is not bounded
on H1 (see [DiS]). It is known that the operator induced by the Hilbert
matrix is not even well defined on A2. Indeed, f(z) =

∑∞
n=1

1
log(n+1)z

n ∈ A2

but Hf(0) =
∑∞

n=1
1

(n+1) log(n+1) = ∞ (see [DJV]). Thus, it is natural to
study under which conditions on the measure µ the corresponding matrix
Hµ induces a well defined and bounded operator on H1 and on A2.

The structure of the paper is as follows. In Section 2 we deal with the
case of the Hardy space H1. Let µ be a positive Borel measure in D. For
α ≥ 0 and s > 0, we say that µ is an α-logarithmic s-Carleson measure,
resp. a vanishing α-logarithmic s-Carleson measure, if

sup
a∈D

µ(S(a))
(
log 2

1−|a|2
)α

(1− |a|2)s
<∞, resp. lim

|a|→1−

µ(S(a))
(
log 2

1−|a|2
)α

(1− |a|2)s
= 0.

By S(a) we denote the Carleson box with vertex at a, that is,

S(a) =
{
z ∈ D : 1− |z| ≤ 1− |a|,

∣∣∣∣arg(az̄)
2π

∣∣∣∣ ≤ 1− |a|
2

}
.

The above definition is a generalization of the fundamental notion of
classical Carleson measure introduced by Carleson (see [C]). These are mea-
sures that occur for α = 0 and s = 1.

We shall prove that any classical Carleson measure induces a well defined
operator on H1, and conversely being Carleson is necessary in the following
sense.
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Proposition 1.1. Suppose that µ is a finite positive Borel measure on
[0, 1).

(i) If µ is a classical Carleson measure then the power series Hµ(f)(z)
represents a function in Hol(D) for any f ∈ H1, and moreover

(1.2) Hµ(f)(z) =
�

[0,1)

f(t)
1− tz

dµ(t), f ∈ H1.

(ii) If the integral in (1.2) converges for each z ∈ D and f ∈ H1, then µ
is a classical Carleson measure.

The hope that any classical Carleson measure µ induces a bounded op-
erator Hµ on H1 is unjustified, because the Lebesgue measure does not. The
next result describes the appropriate subclass of classical Carleson measures.

Theorem 1.2. Suppose that µ is a classical Carleson measure on [0, 1).

(i) Hµ : H1 → H1 is bounded if and only if µ is a 1-logarithmic 1-
Carleson measure.

(ii) Hµ : H1 → H1 is compact if and only if µ is a vanishing 1-
logarithmic 1-Carleson measure.

In many papers (see [CS], [JPS], [T], [PV] and [Pe]), another approach to
the study of Hankel operators on spaces of analytic functions is developed,
using the symbol of the operator, which in our case is essentially the function

(1.3) hµ(z) =
∑
n

µnz
n, µn =

�

[0,1)

tn dµ(t).

A characterization of the boundedness and compactness of the operator
Hµ : H1 → H1 in terms of hµ follows from [PV, Theorems 1.6 and 1.7] (see
also [CS], [JPS] and [T]). We shall provide two proofs of Theorem 1.2, a first
one based on the integral representation (1.2) and a second one which uses
the last cited result.

In the case of H2, Hµ is bounded if and only if µ is a classical Carleson
measure (see [Pe]). Power, [Po, p. 428], proved that if

	
[0,1) dµ(t)/(1− t)2<∞,

then Hµ is a Hilbert–Schmidt operator, and raised the question of a neces-
sary condition. The next result solves this problem.

Theorem 1.3. Let µ be a finite positive Borel measure on [0, 1) and
suppose that the operator Hµ is bounded on H2. Then Hµ is a Hilbert–
Schmidt operator on H2 if and only if

(1.4)
�

[0,1)

µ([t, 1))
(1− t)2

dµ(t) <∞.
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In Section 3 we turn our attention to A2. First we clarify for which
measures the operator is well defined on this space and also gets an integral
representation.

Proposition 1.4. Let µ be a finite positive Borel measure on [0, 1).

(i) If µ satisfies (1.4) then the power series Hµ(f)(z) is in Hol(D) for
any f ∈ A2 and moreover

(1.5) Hµ(f)(z) =
�

[0,1)

f(t)
1− tz

dµ(t), f ∈ A2.

(ii) If for any choice of f ∈ A2 and z ∈ D the integral in (1.5) converges,
then (1.4) is satisfied.

Unfortunately, condition (1.4) does not imply the boundedness of Hµ
on A2 (see Theorem 1.5 and Proposition 1.7 below), so we need to look for a
stronger one. Observe that (1.4) can be restated by saying that the analytic
function hµ belongs to the Dirichlet space

D =
{
f(z) =

∞∑
n=0

anz
n ∈ Hol(D) :

�

D
|f ′(z)|2 dA(z) <∞

}
,

which is a Hilbert space equipped with the inner product 〈f, g〉D = a0b0 +∑
n≥0(n + 1)an+1bn+1. We characterize in these terms the boundedness of

the operator Hµ on A2.

Theorem 1.5. Let µ be a finite positive Borel measure on [0, 1) that
satisfies (1.4). The operator Hµ is bounded in A2 if and only if the measure
|h′µ(z)|2 dA(z) is a Dirichlet Carleson measure.

We remind the reader that a finite positive Borel measure ν in D is called
a Dirichlet Carleson measure if the identity operator is bounded from the
Dirichlet space to L2(D, ν). We refer to [S] and [ARS] for descriptions of
these measures.

It would be nice to relate the boundedness of the operator directly to a
condition on the measure. In this spirit, we are able to describe the Hilbert–
Schmidt operators on A2.

Theorem 1.6. Let µ be a finite positive Borel measure on [0, 1) that
satisfies (1.4). The operator Hµ is a Hilbert–Schmidt operator on A2 if and
only if

(1.6)
�

[0,1)

µ([t, 1))
(1− t)2

log
1

1− t
dµ(t) <∞.

Obviously, (1.6) gives bounded operators Hµ on A2; maybe surprisingly,
it is sharp for the boundedness in a certain sense.
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Proposition 1.7. For each β ∈ [0, 1) there is a finite positive Borel
measure µ on [0, 1) such that

(1.7)
�

[0,1)

µ([t, 1))
(1− t)2

(
log

1
1− t

)β
dµ(t) <∞,

and Hµ is not bounded on A2.

2. The Hankel matrix Hµ acting on H1. Before we proceed to the
proofs of Proposition 1.1 and Theorem 1.2 some results and definitions must
be recalled. First, we present an equivalent description of the α-logarithmic
s-Carleson measures (see [Z]).

Lemma A. Suppose that 0 ≤ α <∞ and 0 < s <∞ and µ is a positive
Borel measure in D. Then µ is an α-logarithmic s-Carleson measure if and
only if

(2.1) sup
a∈D

(
log

2
1− |a|2

)α �

D

(
1− |a|2

|1− āz|2

)s
dµ(z) <∞.

We shall write BMOAlog,α, α ≥ 0, (see [Gi] and [PV]) for the space of
those H1 functions whose boundary values satisfy

(2.2) ‖f‖BMOAlog,α
= |f(0)|

+ sup
a∈D

(
log

2
1− |a|

)α 1
2π

2π�

0

|f(eiθ)− f(a)|Pa(eiθ) dθ <∞,

where Pa(eiθ) = (1− |a|2)/|1− ae−iθ|2 is the Poisson kernel.
We shall write VMOAlog,α for the subspace of H1 of those functions f

such that

lim
|a|→1−

(
log

2
1− |a|

)α �

T
|f(eiθ)− f(a)|Pa(eiθ) dθ = 0.

If α = 0, we obtain the classical space BMOA [VMOA] of H1-functions
with bounded [vanishing] mean oscillation. For simplicity, we shall write
BMOAlog [VMOAlog] for the space BMOAlog,1 [VMOAlog,1].

We shall also use Fefferman’s result (see [Gi]) that (H1)∗ ∼= BMOA and
(VMOA)∗ ∼= H1, under the Cauchy pairing

(2.3) 〈f, g〉H2 = lim
r→1−

1
2π

2π�

0

f(reiθ)g(eiθ) dθ,

f ∈ H1, g ∈ BMOA (resp. VMOA).

Proof of Proposition 1.1. (i) Let f(z) =
∑

n≥0 anz
n ∈ H1 and assume

that µ is a classical Carleson measure. This means equivalently that (see
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[Pe, p. 42]) supn∈N µn(n+1) <∞. This fact together with Hardy’s inequality
(see [D, p. 48]) implies that

∞∑
k=0

µn,k |ak| ≤ C
∞∑
k=0

|ak|
n+ k + 1

≤ C‖f‖H1 , n ∈ N,

so Hµ(f)(z) ∈ Hol(D). The above inequalities also justify that∑
k≥0

µn,kak =
�

[0,1)

tnf(t) dµ(t), n ∈ N.

Then

Hµ(f)(z) =
∑
n≥0

( �

[0,1)

tnf(t) dµ(t)
)
zn =

�

[0,1)

f(t)
1− tz

dµ(t), z ∈ D.

The last equality is true since µ is a classical Carleson measure and so∑
n≥0

( �

[0,1)

tn|f(t)| dµ(t)
)
|z|n ≤ C‖f‖H1

1
1− |z|

.

(ii) Assume that for any choice of f ∈ H1 and z ∈ D the integral (1.2)
converges. Fix f ∈ H1 and choose z = 0. This means that

	
[0,1) |f(t)| dµ(t)

< ∞. If for any β ∈ [0, 1) we define Tβ : H1 → L1(dµ) by setting Tβ(f) =
f · χ{0≤|z|<β}, then there is C > 0 such that

‖Tβ(f)‖L1(dµ) =
�

[0,β)

|f(t)| dµ(t) ≤
�

[0,1)

|f(t)| dµ(t) ≤ C

for any β ∈ [0, 1), which together with the uniform boundedness principle
gives supβ∈[0,1) ‖Tβ‖L1(dµ) < ∞, that is, the identity operator from H1 to
L1(dµ) is bounded, thus by Carleson’s result (see [D, Theorem 9.3]) µ is a
classical Carleson measure.

Now we are ready to prove our main result in this section.

Proof of Theorem 1.2.

Proof of (i): Boundedness. We observe that the duality relation
(VMOA)∗ ∼= H1, Proposition 1.1, Cauchy’s integral representation for func-
tions in H1 (see [D, Theorem 3.9]) and Fubini’s theorem imply that

(2.4) Hµ : H1 → H1 is bounded

⇔ lim
r→1−

∣∣∣∣ 1
2π

2π�

0

( 1�

0

f(t)
1− treiθ

dµ(t)
)
g(eiθ) dθ

∣∣∣∣ ≤ C‖f‖H1‖g‖BMOA

⇔ lim
r→1−

∣∣∣ 1�
0

f(t) g(rt) dµ(t)
∣∣∣ ≤ C‖f‖H1‖g‖BMOA,

for all f ∈ H1 and g ∈ VMOA.
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Suppose that Hµ : H1 → H1 is bounded and select the families of test
functions

ga(z) = log
2

1− az
, fb(z) =

1− b2

(1− bz)2
, a, b ∈ [0, 1).(2.5)

A calculation shows that {ga} ⊂ VMOA and {fb} ⊂ H1 with

(2.6) sup
a∈[0,1)

‖ga‖BMOA <∞ and sup
b∈[0,1)

‖fb‖H1 <∞.

Next, taking a = b ∈ [0, 1) and r ∈ [a, 1) we obtain∣∣∣ 1�
0

fa(t)ga(rt) dµ(t)
∣∣∣ ≥ 1�

a

1− a2

(1− at)2
log

2
1− rat

dµ(t),

≥ C
log 2

1−a2

1− a2
µ([a, 1)),

which bearing in mind (2.4) and (2.6) implies that µ is a 1-logarithmic
1-Carleson measure.

Conversely, suppose that µ is a 1-logarithmic 1-Carleson measure. Then
by Lemma A,

(2.7) Kµ := sup
a∈D

log
2

1− |a|2
�

D

1− |a|2

|1− āz|2
dµ(z) <∞.

Let us see that Hµ is bounded on H1. Using (2.4), it is enough to prove

(2.8) lim
r→1−

1�

0

|f(t)| |g(rt)| dµ(t) ≤ C‖f‖H1‖g‖BMOA

for all f ∈ H1 and g ∈ VMOA,

which together with [D, Theorem 9.3] and Lemma A is equivalent to

(2.9) lim
r→1−

sup
a∈D

�

D

1− |a|2

|1− āz|2
|g(rz)| dµ(z) ≤ C‖g‖BMOA for all g ∈VMOA.

On the other hand, for each r ∈ (0, 1), a ∈ D and g ∈ VMOA,

(2.10)
�

D

1− |a|2

|1− āz|2
|g(rz)| dµ(z)

≤ |g(ra)|
�

D

1− |a|2

|1− āz|2
dµ(z) +

�

D

1− |a|2

|1− āz|2
|g(rz)− g(ra)| dµ(z)

= I1(r, a) + I2(r, a).
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Bearing in mind that any function g in the Bloch space B (see [ACP]) has
the growth

|g(z)| ≤ 2‖g‖B log
2

1− |z|
for all z ∈ D

and BMOA ⊂ B (see Theorem 5.1 of [Gi]), by (2.7) we have

I1(r, a) ≤ C‖g‖BMOA log
2

1− |a|

�

D

1− |a|2

|1− āz|2
dµ(z)(2.11)

≤ CKµ‖g‖BMOA <∞ for all r ∈ (0, 1) and a ∈ D.

Next, combining (2.7), [D, Theorem 9.3], (2.2) and the fact that BMOA
is closed under subordination (see [Gi, Theorem 10.3]), we deduce that

I2(r, a) ≤ CKµ

�

T

1− |a|2

|1− āeiθ|2
|g(reiθ)− g(ra)| dθ

≤ CKµ‖gr‖BMOA

≤ CKµ‖g‖BMOA for all r ∈ (0, 1), a ∈ D and g ∈ VMOA,

which together with (2.10) and (2.11) implies (2.9).

Proof of (ii): Compactness. Suppose that Hµ : H1 → H1 is compact.
Let {fb} be the family of functions defined in (2.5) and let {bn} be a
sequence of points of (0, 1) such that limn→∞ bn = 1. Since {fbn} is a
bounded sequence in H1, there is a subsequence {bnk} and g ∈ H1 such
that limk→∞ ‖Hµ(fbnk ) − g‖H1 = 0. Now, as {fbnk} converges to 0 uni-
formly on compact subsets of D and µ is a 1-logarithmic 1-Carleson measure,
{Hµ(fbnk )} converges to 0 uniformly on compact subsets of D, which implies
that g = 0. Thus, combining the fact that limk→∞ ‖Hµ(fbnk )‖H1 = 0 with
the inequality (for all g ∈ VMOA)

lim
r→1−

∣∣∣ 1�
0

fbnk (t)g(rt) dµ(t)
∣∣∣ ≤ C‖Hµ(fbnk )‖H1‖g‖BMOA,

and the reasoning used in the boundedness case, we deduce that

lim
k→∞

µ([bnk , 1)) log 2
1−bnk

1− bnk
= 0.

Consequently, µ is a vanishing 1-logarithmic 1-Carleson measure.
Conversely, assume that µ is a vanishing 1-logarithmic 1-Carleson mea-

sure. The proof of the sufficiency for the boundedness yields

(2.12)
1�

0

|f(t)| |g(t)| dµ(t) ≤ CKµ‖f‖H1‖g‖BMOA

for all f ∈ H1 and g ∈ VMOA.
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So, it suffices to prove that for any sequence {fn} such that supn∈N‖fn‖H1

<∞ and limn→∞ fn = 0 on compact subsets of D,

(2.13) lim
n→∞

1�

0

|fn(t)| |g(t)| dµ(t) = 0 for all g ∈ VMOA.

Let us write dµr = χ{r<|z|<1}dµ. Since µ is a vanishing 1-logarithmic
1-Carleson measure, limr→1− Kµr = 0. This together with the fact that
limn→∞ fn = 0 on compact subsets of D, and (2.12), shows (using a standard
argument) that Hµ is compact on H1.

In order to present a second proof of Theorem 1.2 some definitions and
known results are needed. Given g(ξ) ∼

∑∞
n=−∞ ĝ(n)ξn ∈ L2(T), the asso-

ciated Hankel operator (see [Pe] or [PV]) is formally defined as

Hg(f) = P (gJf)

where P is the Riesz projection and

Jf(ξ) = ξ̄f(ξ̄) =
∞∑

n=−∞
f̂(−n− 1)ξn, ξ ∈ T.

Moreover, if µ is a classical Carleson measure, Nehari’s Theorem implies
that (see [Pe, p. 3] or [D, Theorem 6.8]) there is gµ ∈ L∞(T) with µn =
ĝµ(n+ 1), so

Hµ(f)(z) = Hgµ(f)(z̄),

and consequently Hµ is bounded on H1 if and only if Hgµ is bounded on H1.
On the other hand,

P1(gµ)(z) := P (gµ)(z)− ĝµ(0) =
∞∑
n=1

ĝµ(n)zn =
∞∑
n=0

ĝµ(n+ 1)zn+1

=
∞∑
n=0

µnz
n+1 = zhµ(z).

Thus, we have the next result joining [PV, Theorems 1.6 and 1.7] (see
also [CS], [JPS] and [T]).

Theorem A. Suppose that µ is a classical Carleson measure on [0, 1).

(i) Hµ : H1 → H1 is bounded if and only if hµ ∈ BMOAlog.
(ii) Hµ : H1 → H1 is compact if and only if hµ ∈ VMOAlog.

Second proof of Theorem 1.2

Proof of (i): Boundedness. If Hµ : H1 → H1 is bounded, then by Theo-
rem A the function hµ is in BMOAlog. For any a ∈ (0, 1) we deduce that
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(2.14)
1

2π

2π�

0

|hµ(eiθ)− hµ(a)| 1− a2

|1− aeiθ|2
dθ

=
1

2π

2π�

0

1− a2

|1− aeiθ|

∣∣∣∣ 1�
0

t dµ(t)
(1− teiθ)(1− ta)

∣∣∣∣ dθ
≥ 1

2π

2π�

0

1− a2

|1− aeiθ|
Re
( 1�

0

t dµ(t)
(1− teiθ)(1− ta)

)
dθ

=
1

2π

2π�

0

1− a2

|1− aeiθ|

1�

0

t(1− t cos(θ))
|1− teiθ|2(1− ta)

dµ(t) dθ

=
1�

0

t(1− a2)
1− ta

(
1

2π

2π�

0

1− t cos(θ)
|1− teiθ|2|1− aeiθ|

dθ

)
dµ(t)

≥ 1
2

1�

0

t(1− a2)2

1− ta

(
1

2π

2π�

0

1− t cos(θ)
|1− teiθ|2|1− aeiθ|2

dθ

)
dµ(t).

Assume, for the moment, that

(2.15)
1

2π

2π�

0

1− t cos(θ)
|1− teiθ|2|1− aeiθ|2

dθ =
1

(1− at)(1− a2)

for any a, t ∈ [0, 1).

This together with (2.14) yields

sup
a∈[0,1)

log
2

1− a

1�

0

t(1− a2)
(1− ta)2

dµ(t) ≤ C‖hµ‖BMOAlog
<∞,

so µ is a 1-logarithmic 1-Carleson measure.
Now, (2.15) will be proved. We assume that a 6= t (if a = t a similar

calculation also gives (2.15)), and we write

F (z) =
z − t

2(z2 + 1)
(z − t)(1− tz)(z − a)(1− az)

.

Therefore, using the residue theorem we see that

1
2π

2π�

0

1− t cos(θ)
|1− teiθ|2|1− aeiθ|2

dθ = Res(F, t) + Res(F, a)

=
t
2

(t− a)(1− at)
−

a− t
2(a2 + 1)

(t− a)(1− at)(1− a2)

=
1

(1− at)(1− a2)
,

which proves (2.15).
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Conversely, suppose that µ is a 1-logarithmic 1-Carleson measure. Then
hµ has finite radial limit a.e. on T, indeed hµ ∈ H2 (see [Pe, p. 42]), and for
any a ∈ D,

(2.16)
1

2π

2π�

0

|hµ(eiθ)− hµ(a)| 1− |a|2

|1− aeiθ|2
dθ

=
1

2π

2π�

0

1− |a|2

|1− aeiθ|

∣∣∣∣ 1�
0

t dµ(t)
(1− teiθ)(1− ta)

∣∣∣∣ dθ
≤ 1

2π

2π�

0

1− |a|2

|1− aeiθ|

1�

0

dµ(t)
|1− teiθ| |1− ta|

dθ

≤ 1− |a|2

2π

1�

0

1
|1− ta|

2π�

0

dθ

|1− aeiθ| |1− teiθ|
dµ(t)

≤ 1− |a|2

2π

1�

0

1
|1− ta|

( 2π�

0

dθ

|1− aeiθ|2

)1/2( 2π�

0

dθ

|1− teiθ|2

)1/2

dµ(t)

≤ C(1− |a|2)1/2
1�

0

1
|1− ta|(1− t)1/2

dµ(t)

≤ C(1− |a|2)1/2
1�

0

1
(1− t|a|)(1− t)1/2

dµ(t).

Moreover, using that µ is a 1-logarithmic 1-Carleson measure and a stan-
dard argument (see [G] or [Z]) we conclude that

sup
a∈(0,1)

(1− a2)1/2
1�

0

1
(1− ta)(1− t)1/2

dµ(t) <∞,

which together with (2.16) shows that hµ ∈ BMOAlog, thus by Theorem A,
Hµ : H1 → H1 is bounded.

The proof of (ii) is analogous, so it will be omitted.

Proof of Theorem 1.3. We recall that Hµ is a Hilbert–Schmidt operator
on H2 if and only if

∑
k≥0 ‖Hµ(ek)‖2H2 < ∞ for any orthonormal base

{ek}∞k=0. We choose the orthonormal base ek(z) = zk. For z = reiθ ∈ D, we
observe that

	2π
0 |Hµ(ek)(reiθ)|2 dθ =

∑
n≥0 |µn,k|2 r2n. So∑

k≥0

‖Hµ(ek)‖2H2 =
∑
k≥0

∑
n≥0

|µn,k|2 =
∑
k≥0

∑
n≥0

�

[0,1)

�

[0,1)

(ts)n+k dµ(s) dµ(t)

=
�

[0,1)

�

[0,1)

1
(1− ts)2

dµ(s) dµ(t) ≈
�

[0,1)

µ([t, 1))
(1− t)2

dµ(t).

This finishes the proof.
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Finally, we shall see that althoughHµ is not bounded onH1 for a classical
Carleson measure µ, in some sense Hµ is close to having this property.

Theorem 2.1. If µ is a classical Carleson measure supported on [0, 1)
and 0 < p < 1, then Hµ : H1 → Hp is bounded.

Proof. As µ is a classical Carleson measure,

(2.17) ‖Hµ(f)‖pHp ≤ sup
0<r<1

π�

−π

( �

[0,1)

|f(t)|
|1− treiθ|

dµ(t)
)p

dθ

≤ C(µ)‖f‖p
H1 sup

0<r<1

π�

−π
sup

0<t<1

1
|1− treiθ|p

dθ for any f ∈ H1.

On the other hand,

sup
0<r<1

sup
0<t<1

1
|1− treiθ|p

≤ 1 if |θ| ≥ π/2,(2.18)

and a straightforward calculation shows that for θ ∈ (−π/2, π/2),

sup
0<t<1

1
|1− treiθ|p

≤ max
{

1
|1− reiθ|p

,
1

sinp(θ)

}
,

which together with (2.17) and (2.18) finishes the proof.

Indeed, the previous result must be improved. We remind the reader that
f ∈ Hol(D) is a Cauchy transform if it admits a representation

f(z) =
2π�

0

dν(θ)
1− eiθz

, z ∈ D,

where ν is a finite complex valued Borel measure on T. As usual, K will
denote the space of all Cauchy transforms. It is known (see [CSi]) that⋂

0<p<1H
p ( K ( H1 and moreover K is isometrically isomorphic (under

the Cauchy pairing) to the dual space of A, the disk algebra, which consists
of all g ∈ Hol(D) such that g is continuous on D. This allows us to assert
that

‖f‖K = sup{〈f, g〉H2 : g ∈ A, ‖g‖H∞ ≤ 1}.

Theorem 2.2. If µ is a classical Carleson measure supported on [0, 1)
then Hµ : H1 → K is bounded.

Proof. Putting together the fact that µ is a classical Carleson measure,
Proposition 1.1, Cauchy’s integral representation for functions in H1 and
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Fubini’s theorem we deduce that for f ∈ H1 and g ∈ A,

(2.19) lim
r→1−

∣∣∣∣ 1
2π

2π�

0

( 1�

0

f(t)
1− treiθ

dµ(t)
)
g(eiθ) dθ

∣∣∣∣
= lim

r→1−

∣∣∣ 1�
0

f(t)g(rt) dµ(t)
∣∣∣

≤ ‖g‖H∞
1�

0

|f(t)| dµ(t) ≤ C‖f‖H1‖g‖H∞ ,

so Hµ : H1 → K is bounded.

In particular, Theorem 2.2 implies that for any f ∈ H1, Hµ(f)(eiθ) is
finite for a.e. eiθ on T. Indeed, a little more can be said.

Proposition 2.3. If µ is a classical Carleson measure supported on
[0, 1) then the operator Hµ is of weak type (1, 1) on Hardy spaces. That is,
there is a positive constant C such that

|{eiθ ∈ T : |Hµ(f)(eiθ)| ≥ λ}| ≤ C

λ
‖f‖H1 for all f ∈ H1.

Proof. Using that µ is a classical Carleson measure and Nehari’s theorem
(see [Pe, p. 3] or [D, Theorem 6.8]) we deduce that there is g ∈ L∞(T) such
that

µn =
1

2π

2π�

0

e−intg(t) dt =: ĝ(n), n = 0, 1, 2, . . . .

Then, by [DJV, Theorem 1],

Hµ(f) = PMgT (f) for all f ∈
⋃
p>1

Hp

where Tf(eit) = f(e−it) and Mg is the multiplication operator by g. Thus,
using standard techniques and well-known results we deduce that Hµ is of
weak type (1, 1) on Hardy spaces.

3. The Hankel matrix Hµ acting on A2. We recall that the Bergman
projection Pf(z) =

	
D f(w)Kz(w) dA(w) is bounded from L2( dA) to A2 (see

[Zh]), where Kz(w) = (1 − zw)−2 is the Bergman kernel of A2. It follows
that any f ∈ A2 can be represented by its Bergman projection and moreover
(A2)∗ ∼= A2 under the pairing 〈f, g〉A2 =

	
D f(z)g(z) dA(z).

Proof of Proposition 1.4. (i) Fix n ∈ N. If f(z) =
∑∞

k=0 akz
k ∈ A2, then

by the Cauchy–Schwarz inequality,
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(3.1)
∣∣∣∑
k≥0

µn,kak

∣∣∣ ≤∑
k≥0

µn,k|ak| ≤
{∑
k≥0

(k + 1)µ2
n,k

}1/2
‖f‖A2 .

But

(3.2)
∑
k≥0

(k + 1)µ2
n,k =

�

[0,1)

�

[0,1)

(ts)n

(1− ts)2
dµ(s) dµ(t)

= 2
�

[0,1)

�

[t,1)

(ts)n

(1− ts)2
dµ(s) dµ(t) ≤ 2

�

[0,1)

µ([t, 1))
(1− t)2

dµ(t).

Thus, if µ satisfies (1.4) the power series (1.1) is well defined and it represents
an analytic function in D. Under (1.4) we can also write∑

k≥0

µn,kak =
�

[0,1)

tnf(t) dµ(t).

So, for z ∈ D,

Hµ(f)(z) =
∑
n≥0

( �

[0,1)

tnf(t) dµ(t)
)
zn =

�

[0,1)

f(t)
1− tz

dµ(t).

The last equality is true since∑
n≥0

( �

[0,1)

tn|f(t)| dµ(t)
)
|z|n ≤

{
2

�

[0,1)

µ([t, 1))
(1− t)2

dµ(t)
}1/2

‖f‖A2

1
1− |z|

.

(ii) Take f ∈ A2. Assume that the integral in (1.5) converges for each
z ∈ D. We choose z = 0. So, there is C > 0 such that

(3.3)
∣∣∣ �

[0,β)

f(t) dµ(t)
∣∣∣ ≤ �

[0,β)

|f(t)| dµ(t) ≤
�

[0,1)

|f(t)| dµ(t) ≤ C

for all β ∈ (0, 1).
On the other hand, the integral representation of f ∈ A2 through the

Bergman projection, and Fubini’s theorem, imply that
�

[0,β)

f(t) dµ(t) =
�

[0,β)

�

D

f(w)
(1− w̄t)2

dA(z) dµ(t)

=
�

D
f(w)

�

[0,β)

1
(1− wt)2

dµ(t) = 〈f, gβ〉A2 ,

where gβ(w) =
	
[0,β)

1
(1−wt)2 dµ(t) ∈ A2 for every β. Then, combining (3.3),

the fact that (A2)∗ ∼= A2 under the pairing 〈·, ·〉A2 , and the uniform bound-
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edness principle, we conclude that supβ ‖gβ‖A2 < C. Thus, using that
‖gβ‖2A2 =

	
[0,β)

	
[0,β)

1
(1−ts)2 dµ(s) dµ(t), we get

C ≥
�

[0,1)

�

[0,1)

1
(1− ts)2

dµ(s) dµ(t) ≥ 1
4

�

[0,1)

µ([t, 1))
(1− t)2

dµ(t).

So condition (1.4) is true.

Proof of Theorem 1.5. It is known that (A2)∗ ∼= D and D∗ ∼= A2 un-
der the Cauchy pairing 〈f, g〉H2 =

∑
n≥0 an b̄n where f(z) =

∑
n anz

n

∈ A2 and g(z) =
∑

n bnz
n ∈ D . We observe that, under this relation,

Hµ is self-adjoint. Therefore, Hµ is bounded on A2 if and only if it is
on D.

If f, g ∈ D we shall write f1(z) =
∑

n |an|zn, g1(z) =
∑

n |bn|zn so that
‖f‖D = ‖f1‖D and ‖g‖D = ‖g1‖D. Then

|〈Hµ(f), g〉D|

≤
∑
n≥0

(n+ 1)
(∑
k≥0

µn+1,k|ak|
)
|bn+1|+ µ0|a0| |b0|+ |b0|

∞∑
k=0

µk+1|ak+1|

≤
∑
n≥0

µn+1

( n∑
k=0

(k + 1)|bk+1| |an−k|
)

+ µ0‖f‖D‖g‖D

+ ‖g‖D
�

D

(
f1(z)− f1(0)

z

)
h′µ(z) dA(z)

≤
�

D
f1(z)g′1(z)h′µ(z) dA(z) + µ0‖f‖D‖g‖D

+ ‖g‖D
�

D

(
f1(z)− f1(0)

z

)
h′µ(z) dA(z).

So, if |h′µ(z)|2 dA(z) is a Dirichlet Carleson measure, we get

|〈Hµ(f), g〉D|

≤
{ �

D
|f1(z)|2|h′µ(z)|2 dA(z)

}1/2{ �

D
|g′1(z)|2 dA(z)

}1/2
+ µ0‖f‖D‖g‖D

+
{ �

D

∣∣∣∣f1(z)− f1(0)
z

∣∣∣∣2|h′µ(z)|2 dA(z)
}1/2{ �

D
|g′1(z)|2 dA(z)

}1/2

≤ C‖f‖D‖g‖D,

and consequently Hµ is bounded.
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Conversely, assume that Hµ is bounded on D. Then∣∣∣ �
D
f(z)g′(z)h′µ(z) dA(z)

∣∣∣
≤

1�

0

∑
n≥0

(n+ 1)µn+1

( n∑
k=0

(k + 1)|bk+1| |an−k|
)
rn+1 dr

≤
∑
n≥0

(n+ 1)
(∑
k≥0

µn+1,k|ak|
)
|bn+1|

= |〈Hµ(f1), g1〉D| ≤ C‖f‖D‖g‖D.
So (exchanging also the roles of f and g) we have∣∣∣ �

D
(fg)′(z)h′µ(z) dA(z)

∣∣∣ ≤ C‖f‖D‖g‖D
for every f, g ∈ D. Finally, Theorem 1 of [ARSW] (see also [Wu]) implies
that |h′µ(z)|2 dA(z) is a Dirichlet Carleson measure.

Remark 3.1. We recall that [ARS, Theorem 1] says that a positive
Borel measure ν in D is a Dirichlet Carleson measure if and only if there is
a positive constant C such that for all a ∈ D,

(3.4)
�

S̃(a)

(ν(S(z) ∩ S(a)))2
dA(z)

(1− |z|2)2
≤ Cν(S(a)),

where

S̃(a) =
{
z ∈ D : 1− |z| ≤ 2(1− |a|),

∣∣∣∣arg(az̄)
2π

∣∣∣∣ ≤ 1− |a|
2

}
.

We note that if ν is finite, (3.4) is equivalent to the simpler condition

(3.5)
�

S(a)

(ν(S(z) ∩ S(a)))2
dA(z)

(1− |z|2)2
≤ Cν(S(a)),

because in this case
�

S̃(a)\S(a)

(ν(S(z) ∩ S(a)))2
dA(z)

(1− |z|2)2

≤ C(1− |a|)−2
�

S̃(a)\S(a)

(ν(S(z) ∩ S(a)))2 dA(z)

≤ C(1− |a|)−2ν(S(a))2
�

S̃(a)\S(a)

dA(z) ≤ Cν(S(a)).

Consequently, combining Proposition 1.4 and Theorem 1.5, if µ is a finite
positive Borel measure on [0, 1) that satisfies (1.4), Hµ is bounded in A2 if
and only if the measure ν = |h′µ(z)|2 dA(z) satisfies (3.5) for all a ∈ D.
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Proof of Theorem 1.6. Take the orthonormal basis {ek}k≥0 = (k+1)1/2zk

and observe that
∞∑
k=0

‖Hµ(ek)‖2A2 =
∞∑
k=0

(k + 1)
∞∑
n=0

(n+ 1)−1µ2
n,k(3.6)

=
∞∑
k=0

(k + 1)
1�

0

1�

0

(ts)k
1
ts

log
1

1− ts
dµ(t) dµ(s)

�
�

[0,1)

µ([t, 1))
(1− t)2

log
1

1− t
dµ(t).

So the operator is Hilbert–Schmidt if and only if (1.6) holds.

Finally we shall prove Proposition 1.7.

Proof of Proposition 1.7. We claim that if Hµ is bounded on A2 then

(3.7) sup
a∈(0,1)

	
[0,1)

µ([t,1))
(1−t)2

(
1
at log 1

1−at
)2
dµ(t)

1
a2 log 1

1−a2

<∞.

Assume (3.7) for the moment. Let β ∈ [0, 1), α ∈ ((1 + β)/2, 1) and con-
sider the measure dµα(t) =

(
1
t log 1

1−t
)−α

dt. Using that µα([t, 1)) �
(1− t)

(
1
t log 1

1−t
)−α

, we deduce

1�

0

µα([t, 1))
(1− t)2

(
1
t

log
1

1− t

)β
dµα(t) �

1�

0

1
(1− t)

(
1
t

log
1

1− t

)β−2α

dt <∞

and(
1
a2

log
1

1− a2

)−1 �

[0,1)

µα([t, 1))
(1− t)2

(
1
at

log
1

1− at

)2

dµα(t)

≥ C
(

1
a2

log
1

1− a2

)−1 �

[0,a)

1
1− t

(
1
t

log
1

1− t

)−2α( 1
t2

log
1

1− t2

)2

dt

≥ C
(

log
1

1− a

)2−2α

,

which in particular implies that

lim
a→1−

(
1
a2

log
1

1− a2

)−1 �

[0,1)

µα([t, 1))
(1− t)2

(
1
at

log
1

1− at

)2

dµα(t) =∞.

So, µα does not satisfy (3.7) and thus Hµα is not bounded.
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In order to prove (3.7), using that (A2)∗ ∼= A2 under the pairing 〈 , 〉A2 ,
we obtain

(3.8) Hµ : A2 → A2 is bounded

⇔
∣∣∣∣ �

D

( �

[0,1)

f(t)
1− tz

dµ(t)
)
g(z) dA(z)

∣∣∣∣ ≤ C‖f‖A2‖g‖A2 for all f, g ∈ A2.

Set ga(z) = 1
1−az , a ∈ (0, 1). Then ‖ga‖2A2 = 1

a2 log 1
1−a2 and

�

D

ga(z)
1− tz

dA(z) =
�

D

( ∞∑
n=0

(az)n
)( ∞∑

n=0

(tz)n
)
dA(z)

=
1
at

log
1

1−at
, a, t ∈ (0, 1).

Then, by (3.8) (with g = ga) and Fubini’s theorem, we get

(3.9) sup
a∈(0,1)

∣∣∣ 1�
0

f(t) dµa(t)
∣∣∣ ≤ C‖f‖A2 for all f ∈ A2,

where

dµa(t) =
1
at log 1

1−at(
1
a2 log 1

1−a2

)1/2 dµ(t).

So, there is C > 0 such that

(3.10) sup
a,β∈(0,1)

∣∣∣ β�
0

f(t) dµa(t)
∣∣∣ ≤ C‖f‖A2 for all f ∈ A2.

Next, arguing as in the the proof of Proposition 1.4, we obtain

(3.11) sup
a, β∈(0,1)

∥∥∥∥ β�
0

dµa(t)
(1− wt)2

∥∥∥∥
A2

<∞,

which together with the fact that∥∥∥∥ β�
0

dµa(t)
(1− wt)2

∥∥∥∥2

A2

=
∞∑
n=0

(n+ 1)
[ β�

0

tn dµa(t)
]2

≥
(

1
a2

log
1

1− a2

)−1 ∞∑
n=0

(n+ 1)
β�

0

t2n
(

1
at

log
1

1− at

)2

µ([t, β)) dµ(t)

≥ 1
4

(
1
a2

log
1

1− a2

)−1 β�

0

(
1
at log 1

1−at
)2

(1− t)2
µ([t, β)) dµ(t)

finishes the proof.
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