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Spectral theory and operator ergodic theory on
super-reflexive Banach spaces

by

Earl Berkson (Urbana, IL)

Abstract. On reflexive spaces trigonometrically well-bounded operators have an
operator-ergodic-theory characterization as the invertible operators U such that
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Trigonometrically well-bounded operators permeate many settings of modern analysis,
and this note highlights the advances in both their spectral theory and operator ergodic
theory made possible by a recent rekindling of interest in the R. C. James inequalities for
super-reflexive spaces. When the James inequalities are combined with Young–Stieltjes
integration for the spaces Vp(T) of functions having bounded p-variation, it transpires
that every trigonometrically well-bounded operator on a super-reflexive space X has a
norm-continuous Vp(T)-functional calculus for a range of values of p > 1, and we investi-
gate the ways this outcome logically simplifies and simultaneously expands the structure
theory, Fourier analysis, and operator ergodic theory of trigonometrically well-bounded
operators on X. In particular, on a super-reflexive space X (but not on a general relexive
space) a theorem of Tauberian type holds: the (C, 1) averages in (∗) corresponding to a
trigonometrically well-bounded operator U can be replaced by the set of all the rotated
ergodic Hilbert averages of U , which, in fact, is a precompact set relative to the strong
operator topology. This circle of ideas is facilitated by the development of a convergence
theorem for nets of spectral integrals of Vp(T)-functions. In the Hilbert space setting we
apply the foregoing to the operator-weighted shifts which are known to provide a universal
model for trigonometrically well-bounded operators on Hilbert space.

1. Introduction and notation. The set of positive integers, the set of
all integers, the real line, and the complex plane will be denoted by N, Z,
R, and C, respectively. The unit circle {z ∈ C : |z| = 1} will be designated
by T. The symbol “K” with a (possibly empty) set of subscripts will be
used to denote a constant which depends only on its subscripts, and which
can change in value from one occurrence to another. Except where other-
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wise indicated, the convergence of a bilateral series
∑∞

k=−∞ ak will mean
the convergence of its sequence of bilateral partial sums {

∑n
k=−n ak}∞n=1.

Throughout all that follows, X will be an arbitrary Banach space, and we
shall symbolize by B(X) the Banach algebra of all continuous linear oper-
ators mapping X into X, the identity operator on X being denoted by I.
A trigonometric polynomial will be a linear combination of a finite subset of
the functions en(z) ≡ zn (z ∈ T, n ∈ Z). Given a trigonometric polynomial
Q(z) ≡

∑
n anz

n and an invertible T ∈ B(X), we shall denote by Q(T ) the
operator

∑
n anT

n.
Deferring the precise details from spectral theory to §2, we use this in-

troductory section to fix some notation and to outline our considerations,
beginning with the abstract notions of spectral decomposability and spec-
tral integration. An operator U ∈ B(X) is said to be trigonometrically well-
bounded ([5]) provided that U has a “unitary-like” spectral representation

(1.1) U =
2π�

0−
eit dE(t),

where E(·) : R → B(X) is a bounded idempotent-valued function possess-
ing certain additional properties reminiscent of, but weaker than, those that
would be inherited from a countably additive Borel spectral measure in R,
and where the integral in (1.1) is a Riemann–Stieltjes integral existing in
the strong operator topology. After suitable normalization, the idempotent-
valued function E(·) in (1.1) is uniquely determined, and is called the spec-
tral decomposition of U. The spectral decomposition E(·) gives rise to a no-
tion of Riemann–Stieltjes spectral integration against the integrator E(·).
Spectral integration with respect to E(·) provides the trigonometrically
well-bounded operator U with a norm-continuous functional calculus im-
plemented by BV(T), the Banach algebra of all complex-valued functions ψ
on T having bounded variation and furnished with the BV([0, 2π])-norm of
the corresponding function ψ†(·) ≡ ψ(ei(·)).

Trigonometrically well-bounded operators abound in the structures of
modern analysis that require weakened forms of orthogonality to treat del-
icate convergence phenomena beyond the reach of the unconditional con-
vergence associated with spectral measures. For a variety of naturally oc-
curring examples of trigonometrically well-bounded operators, see, e.g., [8],
§4 of [10], and [20]. In particular, if X is a UMD space, then any invertible
U ∈ B(X) such that U is power-bounded (that is, supn∈Z ‖Un‖ < ∞) is
trigonometrically well-bounded. For some applications of trigonometrically
well-bounded operators to operator ergodic theory and transference meth-
ods, see [3], [13], [14], [15], [17], and [18].

Our starting point for this article is the following operator-ergodic-theory
characterization of trigonometrically well-bounded operators on an arbitrary



Spectral theory and operator ergodic theory 223

reflexive Banach space X0 (see the equivalence of conditions (i) and (ii) of
Theorem (2.4) in [6]).

Proposition 1.1. Let X0 be a reflexive Banach space, and let U ∈
B(X0) be an invertible operator. Then U is trigonometrically well-bounded
if and only if

(1.2) sup
{∥∥∥∥ ∑

0<|k|≤n

(
1− |k|

n+ 1

)
zk

k
Uk
∥∥∥∥ : n ∈ N, z ∈ T

}
<∞.

This article features results in both spectral theory and operator er-
godic theory made possible by a recent renewal of interest in the conse-
quences of R. C. James’ inequalities for super-reflexive Banach spaces. (For
these inequalities, see [30]; for the basic notions and fundamental features
of super-reflexive spaces, see [31] as well as the celebrated result of P. Enflo
in [26], which characterizes super-reflexivity as the property of having an
equivalent uniformly convex norm.) When the James inequalities from [30]
are combined with Young’s inequalities in [40] for the spaces of functions
having bounded p-variation on the circle (the Vp(T) spaces), 1 < p < ∞,
it transpires that for every trigonometrically well-bounded operator on a
super-reflexive Banach space, spectral integration against its spectral de-
composition extends its BV(T)-functional calculus to a norm-continuous
Vp(T)-functional calculus, for a suitable range of values of p > 1 (Theorem
3.7 below). One indicator of the scope of this extension is that, in contrast
to BV(T), every class Vp(T) contains a continuous, nowhere differentiable
function of Hardy–Weierstrass type (see Remark 2.8(ii) below).

The spectral integration of function classes of “higher variation” was
initiated in [11], but heretofore has been confined to integrating against the
spectral decompositions of: invertible power-bounded operators on classical
UMD spaces [19], or invertible operators that are separation-preserving and
modulus mean-bounded on reflexive Lebesgue spaces of sigma-finite measures
[18]. Consequently, the results below ensuring spectral integration of Vp(T)
in the wide setting of super-reflexive spaces markedly expand the scope
of spectral integration. Since functions of higher variation act as Fourier
multipliers in classical unweighted settings as well as in classical weighted
settings (see, e.g., Theorem 8 of [18], Théorème 1 and Lemme 3 of [24]),
the spectral integration of the spaces Vp(T) provided by Theorem 3.7 below
can be viewed as a mechanism for the transference to super-reflexive spaces
of a wide family of classical Fourier multipliers, with ramifications for the
Fourier analysis of operators. In this regard let us recall that in various
contexts where the left bilateral shift is a trigonometrically well-bounded
operator (with spectral decomposition E(·), say) on a sequence space, any
bounded complex-valued function f which is continuous a.e. on the circle, and
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such that the spectral integral
	
[0,2π] f(eit) dE(t) exists, will act as a Fourier

multiplier for the given sequence space, with
	
[0,2π] f(eit) dE(t) serving as the

multiplier transform of f (p. 16 of [9], Scholium (5.13) of [10], Theorem 4.3
of [16]). Theorem 5.5 below illustrates this point with a new application.

By drawing on §3, the treatment in §4 furnishes a number of pleasant con-
sequences for the operator ergodic theory of trigonometrically well-bounded
operators that logically simplifies and expands their machinery in the super-
reflexive space setting. In particular, if U is a trigonometrically well-bounded
operator on a super-reflexive space X, then a Tauberian-type theorem holds
(Theorem 4.3 below). Specifically, the (C, 1) averages appearing in the uni-
form boundedness condition (1.2) can be replaced by the rotated ergodic
Hilbert averages of U :

(1.3) W̃ =
{ ∑

0<|k|≤n

zk

k
Uk : n ∈ N, z ∈ T

}
.

In fact, the set W̃ is precompact relative to σX , the strong operator topology
of B(X). In the general reflexive space setting, this norm-boundedness of W̃
need not hold for a trigonometrically well-bounded operator U (see Remark
2.5 below). However, thanks to Hardy’s Tauberian Theorem (see, e.g., Theo-
rem II.2.2 in [32]), in the general Banach space setting the set W̃ correspond-
ing to a power -bounded trigonometrically well-bounded operator is norm-
bounded (Theorem (3.21) of [7]). So the streamlining effect of Theorem 4.3
below is that for boundedness of W̃, the hypothesis of power-boundedness
can be dropped provided the underlying Banach space is super-reflexive.
In the realm of Fourier analysis of operators on super-reflexive spaces, this
streamlining effect is illustrated below by the strong convergence of the
operator-valued “Fourier series” associated with a trigonometrically well-
bounded operator U and BV(T)-functions (Theorem 4.4). (In this setting,
it is further shown that the operator-valued “Fourier series” associated with
a trigonometrically well-bounded operator U and Vp(T)-functions converge
(C, 1) in the strong operator topology (Theorem 4.5 below).) The foregoing
circle of ideas is facilitated by the development of a suitable convergence
theorem for the spectral integrals of Vp(T)-functions (Theorem 3.9 below).

Since, when taken as a whole, the foregoing results can fail to hold in the
general reflexive space setting, it is a pleasant surprise to find them valid
throughout the broad context furnished by super-reflexive spaces, which
include the UMD spaces ([1], [34]) properly ([22], [35]). In §5, we confine
attention to the Hilbert space context by taking up some applications of
the foregoing to operator-weighted shifts, which have been shown in [16]
to furnish a universal model for estimates regarding trigonometrically well-
bounded operators on Hilbert space.
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In the course of the exchanges during the Oberwolfach Workshop on
Spectral Theory in Banach Spaces and Harmonic Analysis (July 25–31,
2004), Nigel Kalton offered the seminal suggestion that the James inequal-
ities for super-reflexive spaces ([30]) might prove to be a useful tool for
advances in spectral integration. The author wishes to thank Nigel Kalton
for subsequently informing him of this perceptive viewpoint, which forms the
basis for the developments below. On the heels of the Oberwolfach Work-
shop on Spectral Theory in Banach Spaces and Harmonic Analysis, work
aimed in the direction of Kalton’s suggestion was carried out in a doctoral
dissertation at the University of Edinburgh [21]. This thesis work and the
present article spiritually overlap each other in two places, and this state of
affairs will be described below in Remark 3.8, where we discuss the anatomy
of the present article’s methods.

2. Background items. In this section, we recall requisite notions,
starting with the basic machinery of spectral families and their associated
spectral integration.

Definition 2.1. A spectral family in a Banach space X is an idempotent-
valued function E(·) : R→ B(X) with the following properties:

(i) E(λ)E(τ) = E(τ)E(λ) = E(λ) if λ ≤ τ ;
(ii) ‖E‖u ≡ sup{‖E(λ)‖ : λ ∈ R} <∞;
(iii) with respect to the strong operator topology, E(·) is right continu-

ous and has a left-hand limit E(λ−) at each point λ ∈ R;
(iv) E(λ) → I as λ → ∞ and E(λ) → 0 as λ → −∞, each limit being

with respect to the strong operator topology.

If, in addition, there exist a, b ∈ R with a ≤ b such that E(λ) = 0 for λ < a
and E(λ) = I for λ ≥ b then E(·) is said to be concentrated on [a, b].

Given a spectral family E(·) in the Banach space X concentrated on a
compact interval J = [a, b], an associated theory of spectral integration can
be developed as follows. For each bounded function ψ : J → C and each
partition P = (λ0, λ1, . . . , λn) of J , where we take λ0 = a and λn = b, set

(2.1) S(P;ψ,E) =
n∑
k=1

ψ(λk){E(λk)− E(λk−1)}.

If the net {S(P;ψ,E)} converges in the strong operator topology of
B(X) as P runs through the set of partitions of J directed to increase
by refinement, then the strong limit is called the spectral integral of ψ with
respect to E(·), and is denoted by

	
J ψ(λ) dE(λ) or, more briefly, by

	
J ψ dE.
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In this case, we define
	⊕
J ψ(λ) dE(λ) by writing

�⊕
J

ψ(λ) dE(λ) ≡ ψ(a)E(a) +
�

J

ψ(λ) dE(λ),

and so
	⊕
J ψ(λ) dE(λ) is the limit in the strong operator topology of the sums

(2.2) S̃(P;ψ,E) ≡ ψ(a)E(a) +
n∑
k=1

ψ(λk){E(λk)− E(λk−1)}.

It can be shown that the spectral integral
	
J ψ(λ) dE(λ) exists for each

ψ ∈ BV(J), and that the mapping

(2.3) ψ 7→
�⊕
J

ψ(λ) dE(λ)

is an identity-preserving algebra homomorphism of BV(J) into B(X) satis-
fying

(2.4)
∥∥∥ �⊕
J

ψ(t) dE(t)
∥∥∥ ≤ ‖ψ‖BV(J)‖ sup{‖E(λ)‖ : λ ∈ R},

where ‖ · ‖BV(J) denotes the usual Banach algebra norm expressed by

‖ψ‖BV(J) ≡ sup
x∈J
|ψ(x)|+ var(ψ, J).

In this connection, we recall here a key oscillation notion for the spectral
family E(·) in the arbitrary Banach space X concentrated on a compact
interval J = [a, b]. For each x ∈ X, and each partition of [a, b], P = (a =
a0 < a1 < · · · < aN = b), we put

ω(P, E, x) = max
1≤j≤N

sup{‖E(t)x− E(aj−1)x‖ : aj−1 ≤ t < aj}.

Now, as P increases through the set of all partitions of [a, b] directed to
increase by refinement, we have (see Lemma 4 of [38])

(2.5) lim
P
ω(P, E, x) = 0.

In the setting of the arbitrary Banach space X, one can establish with
the aid of (2.5) the following “workhorse” convergence theorem for spectral
integrals of BV(J)-functions taken with respect to E(·). In the setting of
super-reflexive spaces, Theorems 3.9 and 3.11 below show that this conver-
gence theorem has counterparts for functions of higher variation.

Theorem 2.2. Let {ψα}α∈A be a net in BV(J), and let ψ be a complex-
valued function on J such that

(i) supα∈A var(ψα, J) <∞,
(ii) ψα → ψ pointwise on J .
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Then ψ ∈ BV(J), and {
	⊕
J ψα dE}α∈A converges to

	⊕
J ψ dE in the strong

operator topology.

The foregoing basic theory of spectral integration was developed in [38].
We refer the reader to §2 of [7] for a simplified account using the above
notation. We shall also consider in connection with the above matters the
Banach algebra BV(T), which consists of all ψ : T → C such that the
function ψ†(t) ≡ ψ(eit) belongs to BV([0, 2π]), furnished with the norm
‖ψ‖BV(T) ≡ ‖ψ†‖BV([0,2π]). The following notation will come in handy—
particularly whenever Fejér’s Theorem is invoked. Given any function f :
R → C which has a right-hand limit and a left-hand limit at each point
of R, we shall denote by f# : R → C the function defined for every t ∈ R
by putting

f#(t) =
1
2
{ lim
s→t+

f(s) + lim
s→t−

f(s)}.

In the case of a function φ : T → C such that φ(ei(·)) : R → C has every-
where a right-hand limit and a left-hand limit, we shall, by a slight abuse of
notation, write

(2.6) φ#(t) =
1
2
{ lim
s→t+

φ(eis) + lim
s→t−

φ(eis)} for all t ∈ R.

In particular, for each φ ∈ BV(T), it is clear that we may regard the (2π)-
periodic function φ# as an element of BV(T). (In general, when there is no
danger of confusion, we shall, as convenient, tacitly indulge in the conven-
tional practice of identifying a function Ψ defined on T with its (2π)-periodic
counterpart Ψ(ei(·)) defined on R.)

Definition 2.3. An operator U ∈ B(X) is said to be trigonometrically
well-bounded if there is a spectral family E(·) in X concentrated on [0, 2π]
such that U =

	⊕
[0,2π] e

iλdE(λ). In this case, it is possible to arrange that
E((2π)−) = I, and with this additional property the spectral family E(·) is
uniquely determined by U, and is called the spectral decomposition of U.

Remark 2.4. The above discussion regarding (2.3) and (2.4) shows
that a trigonometrically well-bounded operator on a Banach space has a
norm-continuous BV(T)-functional calculus. In the setting of super-reflexive
spaces, Theorem 3.7 below will extend this BV(T)-functional calculus to
a norm-continuous functional calculus based on functions of appropriately
higher variation.

After the development in [4] of an intimately related precursor class
(the “well-bounded operators of type (B)”), the class of trigonometrically
well-bounded operators was introduced in [5], and its fundamental struc-
tural theory further developed in [6]. In the general Banach space setting
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(resp., in the reflexive space setting described in Proposition 1.1), trigono-
metrically well-bounded operators can be characterized by the precompact-
ness in the weak operator topology (resp., the uniform boundedness) of the
(C, 1) means of their full set of rotated discrete ergodic Hilbert averages.
(For the general Banach space case, see Theorem 5.2 of [14].) In order to
discuss this recurring theme, it will be convenient to establish a notation
for the sequence of trigonometric polynomials underlying it via spectral
integration—specifically, for each n ∈ N and each z ∈ T, we write

(2.7) sn(z) =
∑

0<|k|≤n

zk

k

(thus, {sn}∞n=1 is the sequence of partial sums for the Fourier series of φ0 ∈
BV(T) defined by φ0(1) = 0 and φ0(eit) = i(π − t) for 0 < t < 2π). The
fact that var(sn,T) → ∞ as n → ∞ is a well-known consequence of the
properties of the Lebesgue constants (see, e.g., (3.9) of [14]), and renders
(2.4) incapable of bounding the sequence {‖sn(T )‖}∞n=1 in the case of an
arbitrary trigonometrically well-bounded operator on an arbitrary Banach
space X. The following remark guarantees that there is no way out of this,
even in the setting of a general reflexive Banach space, and this fact serves
to underscore the aforementioned felicitous properties which Theorem 4.3
confers on the set W̃ in (1.3) when the underlying Banach space is super-
reflexive.

Remark 2.5. Example (3.1) in [6] exhibits a reflexive Banach space X0

and a trigonometrically well-bounded operator T0 ∈ B(X0) such that for
each trigonometric polynomial Q, we have

‖Q(T0)‖B(X0) = |Q(1)|+ var(Q,T).

Hence ‖sn(T0)‖B(X0) → ∞ as n → ∞. A noteworthy feature of the reflex-
ive Banach space X0 used in this example is that, by virtue of [25] (note,
e.g., Lemma 1.e.4 in [33]), X0 cannot be made uniformly convex by equiva-
lent renorming (in view of Corollary 3 of [26], this last can be equivalently
restated by saying that the reflexive Banach space X0 is not super-reflexive).

On a more positive note, we mention here that trigonometrically well-
bounded operators do enjoy the following operator-valued variant of Fejér’s
Theorem (see Theorem (3.10)(i) of [7]). (For a marked improvement on
the conclusion of this next theorem in the presence of super-reflexivity, see
Theorem 4.4 below.)

Theorem 2.6. Suppose that U is a trigonometrically well-bounded op-
erator on a Banach space X, and E(·) is the spectral decomposition of U.
Let f ∈ BV(T), and let f# be as in (2.6). Then the series

∑∞
k=−∞ f̂(k)Uk

is (C, 1)-summable in the strong operator topology to (that is, the sequence
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k=−n

(
1− |k|

n+1

)
f̂(k)Uk

}∞
n=1

converges in the strong operator topology to)
�⊕

[0,2π]

f#(t) dE(t).

The centerpiece of our considerations in §3 will be a proof that, in the
context of super-reflexivity, spectral integration against E(·) can be ex-
tended from BV(T) to the broader classes Vp(T) consisting of the functions
of bounded p-variation, where p ranges over an appropriate subinterval of
(1,∞) (see Theorem 3.7 below). To avoid later digressions, we take up here
the definition of the p-variation of a function ψ.

Definition 2.7. Let J = [a, b] be a compact interval of R. For 1≤p<∞,
the p-variation of a function ψ : J → C is specified by writing

varp(ψ, [a, b]) = sup
{ N∑
k=1

|ψ(xk)− ψ(xk−1)|p
}1/p

,

where the supremum is extended over all partitions a = x0 < x1 < · · · <
xN = b of [a, b].

By definition, the class Vp(J) consists of all functions ψ : J → C such
that varp(ψ, [a, b]) < ∞. It is readily verified that Vp(J) becomes a unital
Banach algebra under pointwise operations when endowed with the norm
‖ · ‖Vp(J) specified by

‖ψ‖Vp(J) = sup{|ψ(x)| : x ∈ J}+ varp(ψ, J).

Moreover, if ψ ∈ Vp(J), then limx→y+ ψ(x) exists for each y ∈ [a, b) and
limx→y− ψ(x) exists for each y ∈ (a, b], and the set of discontinuities of ψ in
J is countable. It is elementary that V1(J) and BV(J) consist of the same
functions, and also that Vq(J) ⊆ Vr(J) when 1 ≤ q ≤ r <∞, since ‖ψ‖Vp(J)

is a decreasing function of p. For additional fundamental features of Vp(J),
see, e.g., §2 in [11].

For ψ : T → C, we define varp(ψ,T) to be varp(ψ(ei(·)), [0, 2π]), and we
designate by Vp(T) the class consisting of all functions ψ : T→ C such that
varp(ψ,T) <∞. With pointwise operations on T, Vp(T) likewise becomes a
unital Banach algebra when furnished with the norm

‖ψ‖Vp(T) = ‖ψ(ei(·))‖Vp([0,2π]) = sup{|ψ(z)| : z ∈ T}+ varp(ψ,T).

Remark 2.8. (i) For 1 ≤ p < ∞ and ψ : T → C, there is also a
rotation-invariant notion for the p-variation of ψ on T, which serves as an
alternative to varp(ψ,T) defined above. Specifically, we can define

vp(ψ,T) = sup
{ N∑
k=1

|ψ(eitk)− ψ(eitk−1)|p
}1/p

,
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where the supremum is taken over all finite sequences −∞ < t0 < t1 < · · · <
tN = t0 + 2π <∞. It is evident that

(2.8) varp(ψ,T) ≤ vp(ψ,T) ≤ 2 varp(ψ,T),

and that v1(ψ,T) = var1(ψ,T). Moreover, for 1 ≤ p < ∞, Vp(T) is also a
unital Banach algebra under the norm ‖ · ‖vp(T) given by

‖ψ‖vp(T) = sup{|ψ(z)| : z ∈ T}+ vp(ψ,T),

which, by virtue of (2.8), is obviously equivalent to the Banach algebra norm
‖ · ‖Vp(T) defined above. (When convenient, we shall use the equivalence
of the norms ‖ · ‖vp(T) and ‖ · ‖Vp(T) without comment.) Straightforward
application of the Generalized Minkowski Inequality shows that if F ∈ L1(T)
and ψ ∈ Vp(T), then the convolution F ∗ ψ belongs to Vp(T), with

(2.9) ‖F ∗ ψ‖Vp(T) ≤ ‖F‖L1(T)‖ψ‖vp(T) ≤ 2‖F‖L1(T) ‖ψ‖Vp(T).

(ii) It is worth noting here that if 1 < q <∞, then
⋃

1≤p<q Vp(T) is not
dense in Vq(T). To see this, first note that if 1 ≤ p < ∞ and f ∈ Vp(T),
then, in the notation of [29] we have, f ∈ Λp. This is a standard inclusion,
established for p = 1 in Lemma 9 of [29], and for 1 < p <∞ on pages 259,
260 of [40] (nowadays this inclusion for 1 < p < ∞ is also transparent via,
e.g., Theorem 3.1 of [23]). Hence Lemma 11 of [29] shows that {f̂(k)}∞k=−∞,
the sequence of Fourier coefficients of f , satisfies

(2.10) sup{|k|1/p|f̂(k)| : k ∈ Z} <∞.
In view of this, we can define for 1 ≤ p < ∞ the linear mapping Tp :
Vp(T) → `∞(Z) by writing Tp(f) = {|k|1/pf̂(k)}∞k=−∞. It follows via the
Closed Graph Theorem that Tp is continuous, and so the following setNp(T),
which coincides with (Tp)−1(c0(Z)), is a closed subspace of Vp(T):

Np(T) = {g ∈ Vp(T) : |k|1/pĝ(k)→ 0 as |k| → ∞}.
It is clear from (2.10) that

⋃
1≤p<q Vp(T) ⊆ Nq(T). However, Fq, Hardy’s

(2π)-periodic, Weierstrass-type, continuous, nowhere differentiable function
from [28], which is specified by

Fq(t) =
∞∑
n=0

2−n/q cos(2nt) for all t ∈ R,

belongs to Lip1/q(R) by 1.33 of [28], and hence its restriction Fq|[0, 2π] can
be regarded as belonging to Vq(T). It is clear that for each non-negative
integer n,

2n/qF̂q(2n) =
1
2
,

whence Fq|[0, 2π] does not belong to Nq(T). (Compare (9.4) of [40].)
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If we replace absolute values by norms in the foregoing definitions of
p-variation, we arrive at the corresponding definitions for vector-valued func-
tions. Furthermore, for a vector-valued function f defined on R (including
the scalar-valued case), the standard counterpart for R of p-variation is given
by

varp(f,R) = sup
−∞<a<b<∞

varp(f, [a, b]).

If E(·) is a spectral family of projections in an arbitrary Banach space X,
and 1 ≤ p <∞, we shall also use the symbol varp(E) to denote

sup{varp(E(·)x,R) : ‖x‖ ≤ 1}.

3. Super-reflexivity and spectral integration of Vp(T) with p > 1.
For extensive details and terminology regarding the structure theory of
super-reflexive spaces, we refer the interested reader to, e.g., Part 4 of [2].
One of R. C. James’ inequalities for super-reflexive spaces (Theorem 3
of [30]) states the following.

Theorem 3.1. Let X be a super-reflexive Banach space. If φ and K are
real numbers such that

0 < 2φ < 1/K ≤ 1,

then there is q = q(X,φ,K) ∈ (1,∞) such that for any normalized basic
sequence {yj} in X with basis constant not exceeding K, we have

(3.1) φ
{∑

j

|aj |q
}1/q

≤
∥∥∥∑

j

ajyj

∥∥∥,
for all scalar sequences {aj} such that

∑
j ajyj converges.

In the context of a spectral family of projections in a super-reflexive
space, James’s Theorem 3.1 above readily specializes so as to take the fol-
lowing form.

Proposition 3.2. If E(·) is a spectral family of projections in a super-
reflexive Banach space X, and φ is a real number satisfying

(3.2) 0 < φ <
1

4‖E‖u
,

then there is a real number q = q(X,φ, ‖E‖u) ∈ (1,∞) such that

(3.3) varq(E) ≤ 2‖E‖u
φ

.

Proof. Let x ∈ X \ {0}, and suppose that −∞ < λ0 < λ1 < · · · <
λN <∞. Let {zj}Mj=1 be the basic sequence consisting of all non-zero terms
extracted from {{E(λk) − E(λk−1)}x}Nk=1, let {yj}Mj=1 be the normalized
basic sequence {zj/‖zj‖}Mj=1 (whose basis constant clearly does not exceed
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2‖E‖u), and let {aj}Mj=1 be the sequence of real numbers {‖zj‖}Mj=1. Then,
in the present context, (3.1) becomes the desired conclusion (3.3), since the
sum in the majorant of (3.1) telescopes here.

Since we shall not require any specificity for the roles played by the
constants φ, ‖E‖u, and q = q(X,φ, ‖E‖u) in Proposition 3.2, we include
here the following condensed version (which can also be derived directly
from Proposition IV.II.3 on pages 249–250 of [2] by similar reasoning to
that above after using the equivalent renorming of X specified by |||x||| ≡
sup−∞<a<b<∞ ‖{E(b)−E(a)}x‖ to convert to a monotone basic sequence).

Proposition 3.3. If E(·) is a spectral family of projections in a super-
reflexive Banach space X, then there is a constant q ∈ (1,∞) such that
varq(E) <∞.

The obvious vehicle for using Proposition 3.3 to derive the spectral in-
tegration of Vp(T) for appropriate values of p ∈ (1,∞) is the following
fundamental theorem of Young–Stieltjes integration (see §10 of [40]).

Theorem 3.4. Suppose that J = [a, b] is a compact interval, 1 < p, q
< ∞, p−1 + q−1 > 1, and f ∈ Vp(J), g ∈ Vq(J) have no common discon-
tinuities. Then the Riemann–Stieltjes integral

	b
a f(t) dg(t) exists and obeys

the estimate∣∣∣ b�
a

f(t) dg(t)
∣∣∣ ≤ {1 + ζ

(
1
p

+
1
q

)}
‖f‖Vp(J) varq(g, J).

(Here ζ designates the Riemann zeta function specified by ζ(s) =
∑∞

n=1 n
−s

for s > 1.)

Theorem 3.5. Let X be a super-reflexive Banach space, and let E(·)
be the spectral decomposition of a trigonometrically well-bounded operator
U ∈ B(X). Let q ∈ (1,∞) be the index furnished for E(·) by Proposition 3.3
so that varq(E) <∞. Let u ∈ (1, q′), where q′ = q(q − 1)−1 is the conjugate
index of q. Then, in terms of the notation of (2.6), for every f ∈ BV(T) we
have

(3.4)
∥∥∥ �⊕
[0,2π]

f#(t) dE(t)
∥∥∥ ≤ 3

{
1 + ζ

(
1
u

+
1
q

)}
‖f‖Vu(T) varq(E).

Proof. Here and henceforth we denote by {κn}∞n=0 the Fejér kernel for T,

κn(z) ≡
n∑

k=−n

(
1− |k|

n+ 1

)
zk.

Clearly u−1 +q−1 > 1. For f ∈ BV(T), each trigonometric polynomial κn ∗f
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is in BV(T) ⊆ Vu(T), with

‖κn ∗ f‖BV(T) ≤ ‖f‖BV(T).

For the integral �

[0,2π]

(κn ∗ f)(eit) dx∗(E(t)x)

(which automatically exists for arbitrary x ∈ X, and x∗ in the dual space
X∗), we now apply Theorem 3.4 to the pair of functions κn ∗ f ∈ Vu(T) and
x∗(E(·)x) ∈ Vq([0, 2π]) to obtain the estimate∣∣∣ �

[0,2π]

(κn ∗ f)(eit) dx∗(E(t)x)
∣∣∣

≤
{

1 + ζ

(
1
u

+
1
q

)}
‖κn ∗ f‖Vu(T) varq(E)‖x‖ ‖x∗‖,

and consequently for each n, we see with the aid of this last estimate that

(3.5)
∥∥∥ �

[0,2π]

(κn ∗ f)(eit) dE(t)
∥∥∥
≤
{

1 + ζ

(
1
u

+
1
q

)}
‖κn ∗ f‖Vu(T) varq(E)

≤ 2
{

1 + ζ

(
1
u

+
1
q

)}
‖f‖Vu(T) varq(E).

Since {κn ∗ f}∞n=0 converges pointwise to f# on T while its terms have
uniformly bounded 1-variations, we can infer via Theorem 2.2 above that,
in the strong operator topology,�

[0,2π]

(κn ∗ f)(eit) dE(t)→
�

[0,2π]

f#(t) dE(t).

Hence (3.5) shows that (3.4) holds.

In order to pass from the estimate in (3.4) for the spectral integral of
f# when f ∈ BV(T) to the spectral integration of Vp(T)-functions, we shall
need to rely on the following exemplar of the tools which spectral integration
furnishes for such situations.

Theorem 3.6. Suppose that U is a trigonometrically well-bounded op-
erator on an arbitrary Banach space X, E(·) is the spectral decomposition
of U , and 1 < u <∞. Suppose further that there is a constant τ such that

(3.6)
∥∥∥ �⊕
[0,2π]

ψ#(eit) dE(t)
∥∥∥ ≤ τ‖ψ‖Vu(T) for all ψ ∈ BV(T).

Then if 1 ≤ p < u, the spectral integral
	
[0,2π] φ(eit) dE(t) exists for each

φ ∈ Vp(T), and the mapping φ ∈ Vp(T) 7→
	⊕
[0,2π] φ(eit) dE(t) is an identity-
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preserving algebra homomorphism of Vp(T) into B(X) such that∥∥∥ �⊕
[0,2π]

φ(eit) dE(t)
∥∥∥ ≤ τKp,u‖φ‖Vp(T) for all φ ∈ Vp(T).

Proof. A demonstration of the current theorem can readily be modeled
after the proof of Theorem 2.1 in [11] by replacing the Fourier multiplier
norm estimate in Proposition 2.3 et seq. of [11] by the present hypoth-
esis (3.6). Alternatively, one can extract key elements of a proof for the
current theorem by making suitable modifications to the reasoning for its
Marcinkiewicz power-classes counterpart in Theorem 12 of [18].

By taking u = 2−1(p+q′) in Theorem 3.5 while combining Theorems 3.5
and 3.6 we arrive at the following principal result, which guarantees spectral
integration of Vp(T) spaces in the presence of super-reflexivity, and thereby
extends to each Vp(T) space, throughout an appropriate range of p > 1, the
BV(T)-functional calculus for trigonometrically well-bounded operators.

Theorem 3.7. Let X be a super-reflexive Banach space, and let E(·)
be the spectral decomposition of a trigonometrically well-bounded operator
U ∈ B(X). Let q ∈ (1,∞) be the index furnished for E(·) by Proposition
3.3 so that varq(E) < ∞. Let p ∈ (1, q′), where q′ = q(q − 1)−1 is the
conjugate index of q. Then the spectral integral

	
[0,2π] φ(eit) dE(t) exists for

each φ ∈ Vp(T), and the mapping φ ∈ Vp(T) 7→
	⊕
[0,2π] φ(eit) dE(t) is an

identity-preserving algebra homomorphism of Vp(T) into B(X) such that∥∥∥ �⊕
[0,2π]

φ(eit) dE(t)
∥∥∥ ≤ Kp,q varq(E)‖φ‖Vp(T) for all φ ∈ Vp(T).

Remark 3.8. (i) As already indicated above, from both a conceptual
and historical standpoint, Proposition 3.2 (along with its abbreviated version
in Proposition 3.3) can best be viewed as the immediate specialization to
spectral families of James’ celebrated estimate for super-reflexive spaces here
quoted as Theorem 3.1. On the basis of extensive calculations aided by [30],
Theorem 2.1 of [21] asserts what amounts to Proposition 3.2 above. The
reasoning devoted to Theorem 2.1 in [21] occurs there on pp. 14–28, 31,
with the following description on page 23: “The proof of Theorem 2.1 is
rather involved, and requires several technical results”.

(ii) Some generic spectral integration tool for the general Banach space
setting, such as Theorem 3.6, seems to be required for the transition from
Proposition 3.2 and the fundamental theorem of Young–Stieltjes integration
reproduced in Theorem 3.4 in order to arrive at Theorem 3.7. The reasoning
offered for Theorem 4.1 in [21], which purports to establish the same result
as Theorem 3.7 above without such a transitional tool, is flawed, primarily
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because it rests on the false premise that V1(T) is norm-dense in Vp(T), if
1 < p <∞, in contradiction to the result in Remark 2.8(ii) above.

We now proceed to associate with Theorem 3.7 a useful convergence
theorem for appropriate nets of spectral integrals in the context of super-
reflexivity. This (as well as Theorem 3.11 below) furnishes the promised
extension of Theorem 2.2 to functions of higher variation.

Theorem 3.9. Assume the hypotheses on X, E(·), U , and q of Theorem
3.7, and let p ∈ (1, q′). Suppose that {gβ}β∈B is a net of mappings from T
into C satisfying

(3.7) ρ ≡ sup{varp(gβ,T) : β ∈ B} <∞,
and such that for each β ∈ B, and each t0 ∈ R,

(3.8) lim
t→t0−

gβ(eit) = gβ(eit0).

Suppose further that {gβ}β∈B converges pointwise on T to a complex-valued
function g. Then g ∈ Vp(T), and the net{ �⊕

[0,2π]

gβ(eit) dE(t)
}
β∈B

converges in the strong operator topology of B(X) to
	⊕
[0,2π] g(eit) dE(t).

Proof. Clearly, varp(g,T) ≤ ρ < ∞. Choose q1 so that 1 < q < q1 < ∞
and p−1 +q−1

1 > 1. Fix x ∈ X \{0}, let ε > 0 be given, and use (2.5) to infer
that [0, 2π] has a partition Pε = (0 = t0 < t1 < · · · < tJ = 2π) such that

(3.9) ω(U , E, x) < ε for any refinement U of Pε.
For an arbitrary pair of refinements of Pε, say P = (0 = a0 < a1 < · · · <
aN = 2π), Q = (0 = b0 < b1 < · · · < bM = 2π), and for any β ∈ B, we shall
now consider the following two sums:

S1 ≡
N∑
j=1

E(aj−1)x{gβ(eiaj )− gβ(eiaj−1)},

S2 ≡
M∑
m=1

E(bm−1)x{gβ(eibm)− gβ(eibm−1)}.

For 1 ≤ ν ≤ J , let Iν = [yν , zν ] be the rightmost subinterval of P contained
in the subinterval [tν−1, tν ] of Pε, and let S′1 denote the sum S1 after the
replacement of the terms E(yν)x{gβ(eizν )− gβ(eiyν )}, 1 ≤ ν ≤ J , by corre-
sponding terms E(yν)x{gβ(eiz

′
ν )−gβ(eiyν )}, where yν < z′ν < zν , 1 ≤ ν ≤ J .

Moreover, we can choose these points z′ν , 1 ≤ ν ≤ J , so that we can similarly
form S′2 from S2 by truncating to the same right end-point z′ν the rightmost
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in the string of subintervals of Q contained in each [tν−1, tν ]. In terms of
this notation, we can write

S′1 − S′2 =
J∑
ν=1

(Ων − Λν),

where, for 1 ≤ ν ≤ J , Ων (resp., Λν) represents the contribution to S′1
(resp., S′2) of the string of intervals that are contained in the subinterval
[tν−1, tν ] of Pε. Provided that the pair of reciprocal indices involved has sum
exceeding 1 (as is true here for q−1

1 , p−1), the reasoning leading up to and
including Young’s estimate (6.4) in [40] can be applied to any pair of qualify-
ing functions such that one is vector-valued, and the other is scalar-valued (a
quick way to see this is to apply temporarily an arbitrary continuous linear
functional, then invoke directly the results in [40] for a pair of scalar-valued
functions, and then revert to norms in the ultimate vector-valued expres-
sions).

Applying Young’s estimate (6.4), and then the technique in (10.8) of [40],
together with (3.9) above, we can infer that for 1 ≤ ν ≤ J we have, in terms
of the Riemann zeta function ζ,

(3.10) ‖Ων − Λν‖
≤ 2(2ε)(q1−q)/q1{1+ζ(q−1

1 +p−1)} varq/q1q (E(·)x, [tν−1, tν ]) varp(gβ, [tν−1, tν ]).

Summing the estimates in (3.10) from ν = 1 to J , and then applying Hölder’s
inequality (for the pair of indices q1, p) to the resulting majorant, we find
that
(3.11)
‖S′1−S′2‖ ≤ 2(2ε)(q1−q)/q1{1+ζ(q−1

1 +p−1)} varq/q1q (E(·)x, [0, 2π]) varp(gβ,T).

If in the sums S′1 and S′2 we now let each z′ν approach from the left the
corresponding point tν , then (3.8) gives

(3.12)∥∥∥ N∑
j=1

E(aj−1)x{gβ(eiaj )−gβ(eiaj−1)}−
M∑
m=1

E(bm−1)x{gβ(eibm)−gβ(eibm−1)}
∥∥∥

≤ 2(2ε)(q1−q)/q1{1 + ζ(q−1
1 + p−1)} varq/q1q (E(·)x, [0, 2π])ρ.

For notational convenience, let us denote by δε the majorant in (3.12), while
keeping in mind that δε → 0 as ε → 0+. After a summation by parts is
performed on each of the vector-valued sums appearing in the minorant of
(3.12), we find that, in the notation of (2.2), the estimate (3.12) can be
rewritten as follows:

(3.13) ‖S̃(P; gβ(ei(·)), E)x− S̃(Q; gβ(ei(·)), E)x‖ ≤ δε.
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Upon letting P run through all refinements of Pε in (3.13), while simultane-
ously holding fixed both the arbitrary refinement Q of Pε and the arbitrary
β ∈ B, we get

(3.14)
∥∥∥ �⊕
[0,2π]

gβ(eit) dE(t)x− S̃(Q; gβ(ei(·)), E)x
∥∥∥ ≤ δε.

Next, while holding P,Q fixed in (3.13), we let β run through B to obtain,
via the pointwise convergence on T,

‖S̃(P; g(ei(·)), E)x− S̃(Q; g(ei(·)), E)x‖ ≤ δε.
Letting P run through all refinements of Pε in this yields, for every refine-
ment Q of Pε, ∥∥∥ �⊕

[0,2π]

g(eit) dE(t)x− S̃(Q; g(ei(·)), E)x
∥∥∥ ≤ δε.

Combining this estimate with (3.14), we find that for all β ∈ B, and every
refinement Q of Pε,

(3.15)
∥∥∥ �⊕
[0,2π]

gβ(eit) dE(t)x−
�⊕

[0,2π]

g(eit) dE(t)x
∥∥∥

≤ 2δε + ‖S̃(Q; gβ(ei(·)), E)x− S̃(Q; g(ei(·)), E)x‖.
In (3.15), we now specialize Q to be Pε, and we see from the pointwise
convergence of {gβ}β∈B to g on T that for all sufficiently large β ∈ B,∥∥∥ �⊕

[0,2π]

gβ(eit) dE(t)x−
�⊕

[0,2π]

g(eit) dE(t)x
∥∥∥ ≤ 3δε.

Remark 3.10. Our treatment of the spectral integration of functions
of higher variation emphasizes applications thereof to a unified framework
of trigonometrically well-bounded operators and related periodic functions.
For this purpose [0, 2π] conveniently serves as the fundamental interval. It
is worth noting, however, that the above Theorems 3.7 and 3.9 do not need
to be tied directly to trigonometrically well-bounded operators, since they
readily imply their analogues for spectral families concentrated on arbitrary
intervals by using simple affine changes of the real variable (e.g., mapping
[0, π] onto an interval J = [a, b]). The outcome, which includes an extension
of the BV(J)-functional calculus induced by spectral families (2.3), can be
stated as follows.

Theorem 3.11. Let E(·) be a spectral family of projections in a super-
reflexive Banach space X. Suppose that E(·) is concentrated on a compact
interval J = [a, b], and let q ∈ (1,∞) be the index furnished for E(·) by
Proposition 3.3 so that varq(E) < ∞. Let p ∈ (1, q′). Then the spectral
integral

	
J ΦdE exists for each Φ ∈ Vp(J), and the mapping Φ ∈ Vp(J) 7→
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	⊕
J ΦdE is a continuous identity-preserving homomorphism of the Banach

algebra Vp(J) into the Banach algebra B(X) such that∥∥∥ �⊕
J

ΦdE
∥∥∥ ≤ Kp,q varq(E)‖Φ‖Vp(J) for all Φ ∈ Vp(J).

If {Φβ}β∈B is a net of mappings from J into C satisfying

sup{varp(Φβ, J) : β ∈ B} <∞,
and such that for each β ∈ B, and each t0 ∈ (a, b],

lim
t→t0−

Φβ(t) = Φβ(t0),

and if {Φβ}β∈B converges pointwise on J to a complex-valued function Φ,
then Φ ∈ Vp(J), and the net { �⊕

J

Φβ dE
}
β∈B

converges in the strong operator topology of B(X) to
	⊕
J ΦdE.

4. Some consequences. The stage is almost set for the main result
of this section (Theorem 4.3), which will establish the precompactness rel-
ative to the strong operator topology of the set of rotated Hilbert aver-
ages W̃ corresponding to a trigonometrically well-bounded operator U on a
super-reflexive space. In order to obtain this result, we shall also require the
following two auxiliary items from the literature.

Proposition 4.1. Suppose that 1 ≤ p < ∞. Then we have, for the
sequence of trigonometric polynomials {sn}∞n=1 in (2.7),

(4.1) sup
n∈N

varp(sn,T) <∞ if and only if p > 1.

Proof. Since, as was noted in conjunction with (2.7), var1(sn,T) → ∞
as n→∞, it suffices to have

sup
n∈N

varp(sn,T) <∞ if p > 1.

The derivation of this is included in §12 of the article [40].

In view of this, the set S consisting of all rotates of {sn : n ∈ N} must
satisfy

(4.2) sup
n∈N, z∈T

‖sn((·)z)‖Vp(T) <∞ if p > 1,

by virtue of (2.8), and because {sn}∞n=1 is the sequence of partial sums for
the Fourier series of a BV(T)-function, whence

sup
n∈N
‖sn‖L∞(T)

<∞.
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The second auxiliary item we shall rely on is the following convenient for-
mulation of the “Helly Selection Theorem for Functions of Bounded p-
Variation” (Theorem 2.4 of [36]). (Although it will not be an issue for us,
we note that in the parlance of [36], the symbol varp denotes what is, in the
sense of our notation, varpp.)

Theorem 4.2. Let F be a sequence of functions mapping a subset M of
R to a metric space Y, and such that, for some p ∈ [1,∞), F has uniformly
bounded p-variation on M (in symbols, sup{varp(F,M) : F ∈ F} < ∞).
Suppose further that for each t ∈ M, {F (t) : F ∈ F} has compact closure
in Y. Then F has a subsequence {fn}∞n=1 pointwise convergent on M to a
function f :M→ Y such that

varp(f,M) ≤ sup{varp(F,M) : F ∈ F} <∞.
Theorem 4.3. If U is a trigonometrically well-bounded operator on a

super-reflexive Banach space X, then the closure, relative to the strong op-
erator topology, of the class W̃ specified in (1.3) by

(4.3) W̃ =
{ ∑

0<|k|≤n

zk

k
Uk : n ∈ N, z ∈ T

}
is compact in the strong operator topology, and hence, in particular,

(4.4) sup{‖T‖ : T ∈ W̃} <∞.
Conversely, if X0 is a reflexive Banach space, and U ∈ B(X0) is an invertible
operator such that (4.4) holds, then U is trigonometrically well-bounded.

Proof. Let E(·) be the spectral decomposition of U , and choose q, p as
in the hypotheses of Theorem 3.7. Let x ∈ X \ {0}. We are required to
show that the set W̃x is totally bounded in the metric space defined by the
norm of X. For this purpose, let G be a sequence in W̃x. Hence for some
sequence F taken from the set of trigonometric polynomials S appearing in
the minorant of (4.2), we can express G as F(U)x. By virtue of (4.2) and
Theorem 4.2, we can extract from the sequence of trigonometric polynomials
F a subsequence {fk}∞k=1 pointwise convergent on T to a function f : T→ C
such that

varp(f,T) ≤ sup{varp(F,T) : F ∈ S} <∞.
By Theorem 3.9, applied to {fk}∞k=1, we see that {fk(U)}∞k=1 converges in
the strong operator topology to

	⊕
[0,2π] f(eit) dE(t).

The converse conclusion follows directly from Proposition 1.1, since for
each z ∈ T, the (C, 1) averages appearing in (1.2) are the means of the
corresponding discrete Hilbert averages in (4.3).

An application of Theorem 3.7 of [12] to (4.4) yields the following im-
provement of Theorem 2.6.
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Theorem 4.4. Let X be a super-reflexive Banach space, let U ∈ B(X)
be trigonometrically well-bounded, and let E(·) be the spectral decomposition
of U . Then for each f ∈ BV(T), the series

∑∞
k=−∞ f̂(k)Uk converges in the

strong operator topology to
	⊕
[0,2π] f

#(t) dE(t).

In the presence of super-reflexivity, we now also have the following ex-
tension of Theorem 2.6 from BV(T) to spaces Vp(T), for appropriate p > 1.

Theorem 4.5. Let X be a super-reflexive Banach space, and let U ∈
B(X) be a trigonometrically well-bounded operator. Denote by E(·) the spec-
tral decomposition of U , let q ∈ (1,∞) be the index furnished for E(·) by
Proposition 3.3 so that varq(E) <∞, and let p ∈ (1, q′). If φ ∈ Vp(T), then
for each x ∈ X,

(4.5)
∥∥∥∥ n∑
ν=−n

(
1− |ν|

n+ 1

)
φ̂(ν)Uνx−

{ �⊕
[0,2π]

φ#(t) dE(t)
}
x

∥∥∥∥→ 0 as n→∞.

Proof. Clearly, the sequence of trigonometric polynomials {κn ∗ φ}n≥0

has the property that supn≥0 ‖κn ∗ φ‖Vp(T) < ∞, and by Fejér’s Theorem,
(κn ∗ φ)(eit) → φ#(t) for all t ∈ R. The desired conclusion is now an im-
mediate consequence of Theorem 3.9 applied to the pointwise convergent
sequence {κn ∗ φ}n≥0.

Remark 4.6. In contrast to the situation for BV(T)-functions in The-
orem 4.4, it is an open question whether or not one can, for the general
φ ∈ Vp(T), improve the strong (C, 1)-convergence in (4.5) to strong conver-
gence of the series

∑∞
ν=−∞ φ̂(ν)Uν . In this regard, one can use Theorem 3.1

of [37] in combination with Theorem 4.5 to obtain the following partial result
in the positive direction. We omit the details for expository reasons.

Proposition 4.7. Suppose that Y is a UMD space having an uncon-
ditional basis, let U ∈ B(Y) be a trigonometrically well-bounded operator.
Denote by E(·) the spectral decomposition of U . Let q ∈ (1,∞) be the in-
dex furnished for E(·) by Proposition 3.3 so that varq(E) < ∞, and let
p ∈ (1, q′). If φ ∈ Vp(T), then for each y ∈ Y we have, for almost all z ∈ T,∥∥∥( n∑

k=−n
φ̂(k)Ukzk

)
y −

( �⊕
[0,2π]

(φz)#(t) dE(t)
)
y
∥∥∥

Y
→ 0 as n→∞.

Remark 4.8. Since the Haar system is an unconditional basis for
Lr([0, 1]), 1 < r < ∞, the space Lr(T) satisfies the hypotheses on Y of
Proposition 4.7. In particular, by specializing to the value r = 2, we see
that any separable Hilbert space (finite-dimensional or infinite-dimensional)
satisfies these hypotheses on Y.
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5. Operator-weighted Hilbert sequence spaces and trigonomet-
rically well-bounded shift operators. Henceforth, K will be an arbitrary
Hilbert space with inner product 〈·, ·〉. As shown in Theorem 2.3 of [16],
shifts on appropriate operator-weighted Hilbert sequence spaces serve as a
model for the general behavior of trigonometrically well-bounded operators
on arbitrary Hilbert spaces. More specifically, to any invertible operator
V ∈ B(K) there correspond a bilateral operator-valued weight sequence
WV⊆ B(K) and an affiliated Hilbert sequence space `2(WV ) such that V is
trigonometrically well-bounded on K if and only if the right bilateral shift R
is a trigonometrically well-bounded operator on `2(WV ); moreover, if this is
the case, then the norm properties of trigonometric polynomials of R mir-
ror the norm properties of trigonometric polynomials of V . (See (5.6) below.
For additional background facts regarding these matters, see [12].) In this
section, we shall discuss how application of the preceding sections to this
circle of ideas in Hilbert space affords some new insights into the role of the
Hilbert transform and of multiplier theory in non-commutative analysis.

We begin by describing the relevant class of operator-weighted Hilbert
sequence spaces. An operator -valued weight sequence on K will be a bilateral
sequence W = {Wk}∞k=−∞ ⊆ B(K) such that for each k ∈ Z,Wk is a positive,
invertible, self-adjoint operator. We associate with W the weighted Hilbert
space `2(W) consisting of all sequences x = {xk}∞k=−∞ ⊆ K such that

∞∑
k=−∞

〈Wkxk, xk〉 <∞,

and furnished with the inner product 〈〈·, ·〉〉 specified by

〈〈x, y〉〉 =
∞∑

k=−∞
〈Wkxk, yk〉.

Thus, `2(W) is a generalization to non-commutative analysis of the `2-spaces
defined by scalar-valued weight sequences in the special case where K = C.
(For the continuous variable generalization from scalar-valued weights to
operator-valued weights, see [39].) Note that for each z ∈ T, there is a
natural unitary operator ∆z defined on `2(W) by writing ∆z({xk}∞k=−∞) =
{zkxk}∞k=−∞.

The links between the considerations of the previous sections and `2(W)
stem from the interplay between `2(W) and the discrete Hilbert kernel h :
Z→ R, which, in terms of the function φ0 ∈ BV(T) specified in conjunction
with (2.7), is expressed by h = φ̂0. Thus h(0) = 0, and h(k) = k−1 for
k ∈ Z \ {0}. The truncates {hN}∞N=1 of the discrete Hilbert kernel h are
defined by writing, for each N ∈ N and each k ∈ Z, hN (k) = h(k) if
|k| ≤ N , and hN (k) = 0 if |k| > N . The formal operator of convolution by
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h on `2(W) will be referred to as the discrete Hilbert transform, and will be
symbolized by D (convolution by hN on `2(W) will be denoted by DN ). If
h defines a bounded convolution operator from `2(W) into `2(W), we shall
say that W possesses the Treil–Volberg property. It was shown in [12] that
in the context of `2(W), one can define an operator-valued counterpart (the
discrete analogue of [39]) for the Muckenhoupt A2-weight condition—if this
condition is satisfied by W, we write W ∈ A2(K). Since we do not need
this A2(K) weight condition for our present considerations, we shall not
pursue it further, except to note that the condition W ∈ A2(K) is always
necessary, but, for the continuous-variable case and infinite-dimensional K,
is known not to be sufficient, for W to possess the Treil–Volberg property
(see, respectively, Proposition 4.4 of [12], and Theorem 1.1 of [27]).

The connection between the Treil–Volberg property and the right (bilat-
eral) shift R : `2(W)→ KZ specified by

R({xk}∞k=−∞) = {xk−1}∞k=−∞
is expressed as follows (Theorem 4.12 of [12]).

Proposition 5.1. Let W = {Wk}∞k=−∞ be an operator-valued weight
sequence on the arbitrary Hilbert space K. Then the following assertions are
equivalent:

(i) W has the Treil–Volberg property.
(ii) The right shift R is a trigonometrically well-bounded operator on

`2(W).
(iii) R is a bounded invertible operator on `2(W) such that

(5.1) sup
n∈N

∥∥∥∥ ∑
0<|k|≤n

(
1− |k|

n+ 1

)
Rk

k

∥∥∥∥ <∞.
Remark 5.2. If R ∈ B(`2(W)), then for each z ∈ T, ∆zR∆z = zR,

and hence the condition (1.2) reduces to (5.1) in the context of Proposition
5.1(iii).

By virtue of (4.4), we can add the following two conditions to the list of
equivalent conditions in Proposition 5.1.

Proposition 5.3. Under the hypotheses of Proposition 5.1, each of the
following two conditions is equivalent to the conditions (i)–(iii) listed therein:

(iv) R is a bounded invertible operator on `2(W) such that

(5.2) sup
n∈N

∥∥∥∥ ∑
0<|k|≤n

Rk

k

∥∥∥∥ <∞.
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(v) {DN}∞N=1 ⊆ B(`2(W)), with

(5.3) sup
N∈N
‖DN‖B(`2(W)) <∞.

Proof. It is elementary that (iv)⇒(iii). The implication (ii)⇒(iv) is a
consequence of (4.4). If (iv) holds, then for each N ∈ N,

(5.4) sN (R) = DN ,

and hence (v) holds. So the proof of Proposition 5.3 boils down to assuming
(v) in order to show any one of the conditions (i) through (iv). Since there is
no a priori reason to infer from (v) that R is a bounded invertible operator
on `2(W), we cannot make immediate use of (5.4), and so we shall sidestep
this difficulty by establishing (i) directly. Since the Hilbert space `2(W) is,
in particular, reflexive, it follows from (5.3) that the closure of

D ≡{DN : N ∈ N}

in the weak operator topology of B(`2(W)) is compact in the weak operator
topology of B(`2(W)). Consequently, there are a subnet {DNγ}γ∈Γ and an
operator H ∈ B(`2(W)) such that

(5.5) DNγ → H in the weak operator topology of B(`2(W)).

Hence it will suffice to verify that for every vector y = {yk}∞k=−∞ ∈ `2(W)
such that the support of y is a singleton, H acts on y as convolution by h. It
is a routine matter to perform this verification by using (5.5) in conjunction
with such vectors.

Remark 5.4. In classical single-variable Fourier analysis, as well as in
its generalizations to norm inequalities involving scalar-valued weights, the
boundedness of the relevant Hilbert transform goes hand-in-hand with the
boundedness of pillars like the Hardy–Littlewood maximal function and the
maximal Hilbert transform—which leave in their wake the uniform bound-
edness of the Hilbert transform’s truncates. This familiar scenario ultimately
entails the validity of the relevant version of the Marcinkiewicz Multiplier
Theorem and of the Littlewood–Paley Theorem. However, in the framework
of condition (i) of Proposition 5.1 such underpinnings as maximal oper-
ators are lacking, and moreover, Theorem 6.1 of [16] shows that there is
an operator-valued weight sequence W0 on the Hilbert space `2(N) such
that W0 enjoys the Treil–Volberg property, but the analogues of the classi-
cal Marcinkiewicz Multiplier Theorem and the Littlewood–Paley Theorem
fail to hold on `2(W0). One motivation for obtaining the above implication
(i)⇒(v) is that it, nevertheless, confirms the survival of the uniform bound-
edness for the Hilbert transform’s truncates, in an environment where so
many mainstays fail to carry over. The next theorem adds still more to the
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positive side of the ledger by extending this type of boundedness result to
appropriate function classes.

Theorem 5.5. Suppose that K is an arbitrary Hilbert space, and W =
{Wk}∞k=−∞ is an operator-valued weight sequence on K having the Treil–
Volberg property. Then there is γ ∈ (1,∞) such that for each p satisfying
1 ≤ p < γ, and each function φ ∈ Vp(T), convolution by the inverse Fourier
transform φ∨ on `2(W) is a bounded linear mapping Fφ of `2(W) into `2(W)
satisfying

‖Fφ‖B(`2(W)) ≤ KW,p‖φ‖Vp(T).

Proof. Combine Theorems 4.2 and 4.3 of [16] and Corollary 4.4 of [16]
with Theorem 3.7 above.

We finish this section with a brief sketch of how the above scene fur-
nishes a model for estimates with trigonometrically well-bounded operators
on Hilbert spaces. Suppose that V ∈ B(K) is an invertible operator, and let
WV be the operator-valued weight sequence on the Hilbert space K given
by WV = {(V k)∗ V k}∞k=−∞. Lemma 2.2 of [16] and Theorem 2.3 of [16]
guarantee that the right shift R is a bounded invertible linear mapping of
`2(WV ) onto itself such that for every trigonometric polynomial Q,

(5.6) ‖Q(R)‖B(`2(WV )) = sup
z∈T
‖Q(zV )‖B(K).

In view of Proposition 1.1 and the equivalence of conditions (ii) and (iii)
in Proposition 5.1, it follows directly from (5.6) that the right shift R is
trigonometrically well-bounded on `2(WV ) if and only if V is trigonometri-
cally well-bounded on K.
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