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Geometric, spectral and asymptotic properties of
averaged products of projections in Banach spaces

by

Catalin Badea (Lille) and Yuri I. Lyubich (Haifa)

Abstract. According to the von Neumann–Halperin and Lapidus theorems, in a
Hilbert space the iterates of products or, respectively, of convex combinations of ortho-
projections are strongly convergent. We extend these results to the iterates of convex
combinations of products of some projections in a complex Banach space. The latter is
assumed uniformly convex or uniformly smooth for the orthoprojections, or reflexive for
more special projections, in particular, for the hermitian ones. In all cases the proof of
convergence is based on a known criterion in terms of the boundary spectrum.

1. Introduction and background

1.1. What this paper is about. Let H be a Hilbert space, and let
M1, . . . ,MN be closed subspaces of H. Denote by Pk the orthoprojection
onto Mk, and let T = P1 · · ·PN . It was proved by von Neumann [29] for
N = 2 and by Halperin [16] for any N that Tn converges strongly as
n→∞ to the orthoprojection onto M1 ∩ · · · ∩MN . The same was proved
by Lapidus [21] for T =

∑N
k=1 αkPk with αk > 0, 1 ≤ k ≤ N , and

∑N
k=1 αk

= 1. Some different proofs of these results were recently given in [20]. The
von Neumann–Halperin and Lapidus theorems were generalized to uniformly
convex Banach spaces by Bruck and Reich [7] and Reich [30], respectively.
For a survey see [10, Chapter 9].

In the present paper we consider the situation when T is a convex combi-
nation of products of some projections in a complex Banach space. Assum-
ing some concordance between its geometry (uniform convexity or uniform
smoothness, or reflexivity) and a class of projections (orthoprojections, her-
mitian projections, etc.) we establish a spectral property of T which implies
the strong convergence of Tn as n → ∞. The necessary background is pre-
sented below.
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1.2. Spaces and operators. From now on we denote by X a complex
Banach space and by B(X) the Banach algebra of bounded linear operators
on X. The identity operator will be denoted by I.

Recall that a space X is said to be uniformly convex if for every ε ∈ (0, 1)
there exists δ ∈ (0, 1) such that for any two vectors x and y with ‖x‖ ≤ 1 and
‖y‖ ≤ 1 the inequality ‖x+ y‖/2 > 1− δ implies ‖x− y‖ < ε. Accordingly,
the nondecreasing function

δX(ε) = inf{1− ‖x+ y‖/2 : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}

is called the modulus of convexity of the space X. This classical definition,
due to Clarkson [8], can be formally applied to all Banach spaces, so the
uniformly convex spaces are just those which satisfy δX(ε) > 0 for all ε.
Every Hilbert space H is uniformly convex, its modulus of convexity is

δH(ε) = 1−
√

1− ε2/4.

For more information on the modulus of convexity see e.g. [5], [15] and the
references therein.

A space X is called uniformly smooth if for every ε > 0 there exists δ > 0
such that the inequality ‖x + y‖ + ‖x − y‖ < 2 + ε‖y‖ holds for any two
vectors x and y with ‖x‖ = 1 and ‖y‖ ≤ δ. A relevant modulus of smoothness
was introduced by Day [9]. However, for the purposes of this paper we only
need to know that all uniformly convex and all uniformly smooth spaces are
reflexive and a space X is uniformly smooth if and only if its dual X∗ is
uniformly convex (see e.g. [23]).

Let H be a Hilbert space. An operator T ∈ B(H) is hermitian (≡ self-
adjoint) if and only if ‖exp(itT )‖ = 1 for all real t. In any Banach space X
the latter property is a definition of a hermitian operator. (In [26] such
operators were called conservative. This is just the case when T and −T are
dissipative, i.e. generate semigroups of contractions [25].)

Note that every real combination of pairwise commuting hermitian op-
erators is hermitian as well. In particular, the operator T − αI is hermitian
for any hermitian T and any real α.

For any operator T ∈ B(X) its spectrum is usually denoted by σ(T ).
If T is hermitian then σ(T ) ⊂ R. If T is a contraction, i.e. ‖T‖ ≤ 1, then
σ(T ) ⊂ D, where D is the open unit disk in the complex plane. The intersec-
tion of σ(T ) with the unit circle ∂D is called the boundary spectrum of the
contraction T . Every point λ ∈ σ(T ) ∩ ∂D of the boundary spectrum is an
approximate eigenvalue, i.e. there is a sequence of vectors xk of norm 1 such
that Txk−λxk → 0. The boundary spectrum may be empty. This happens if
and only if there is n ≥ 1 such that Tn is a strict contraction (i.e. ‖Tn‖ < 1)
or, equivalently, ‖Tn‖ → 0 as n→∞.
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1.3. Classes of contractions. A contraction is called primitive if its
boundary spectrum is at most the singleton {1}. If the space X is reflexive
then the iterates Tn of any primitive contraction T ∈ B(X) are strongly
convergent. This fact is the key to all convergence problems studied in the
present paper. Actually, it is a purely logical combination of two known
general results:

1) If the spaceX is reflexive then every contraction T with at most count-
able boundary spectrum is almost periodic, i.e. all orbits (Tnx)n≥0 are
precompact [32].

2) In any Banach space the iterates of any primitive almost periodic
contraction are strongly convergent [18]. (See also [27] for a general
theory of almost periodic operator semigroups.)

An alternative proof (see Section 4 of the present paper) uses the Katznel-
son–Tzafriri theorem [19]: in any Banach space

lim
n→∞

‖Tn − Tn+1‖ = 0

for every primitive contraction T .
Note that all the results stated above for contractions are automatically

true for any power bounded operator T ∈ B(X) since T is a contraction in
an equivalent norm on X. On the other hand, even the weak convergence of
Tn implies the power boundedness of T .

The following geometric condition was introduced by Halperin in [16]:

(H) there is K ≥ 0 such that ‖x− Tx‖2 ≤ K(‖x‖2 − ‖Tx‖2) (x ∈ X).

Under this condition (the same as (K) in [13]), T is a contraction, and all
strict contractions satisfy (H). We denote by K(T ) the smallest value of K.
In particular, K(I) = 0.

Halperin proved that in a Hilbert space the iterates of every (H)-contrac-
tion are strongly convergent. In fact, this is true in any reflexive Banach
space. Indeed, from (H) it follows that

(S) ‖xk‖ ≤ 1, ‖Txk‖ → 1 ⇒ xk − Txk → 0 strongly.

However, every (S)-contraction is primitive. Indeed, let ‖Txk−λxk‖ → 0 for
a λ ∈ ∂D and a sequence of normalized vectors xk. Then ‖Txk‖ → 1, hence
‖Txk − xk‖ → 0 by condition (S). Therefore, λ = 1. As a result, the iterates
of every (S)-contraction in a reflexive Banach space are strongly convergent.

In Hilbert space this was proved in [3], where the condition (S) appears
together with its weak version

(W) ‖xk‖ ≤ 1, ‖Txk‖ → 1 ⇒ xk − Txk → 0 weakly,

and the corresponding convergence result. The latter was extended to the
reflexive Banach space in [12].
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Obviously, the condition (W) implies

(W′) ‖Tx‖ = ‖x‖ ⇒ Tx = x.

Conversely, (W′) implies (W) if the space is Hilbert (see [3]) or, more gener-
ally, if it is a reflexive Banach space with a weakly sequentially continuous
duality map (see [12]).

Note that for strict contractions conditions (S) and (W) are formally
fulfilled but empty in content.

In [11] Dye proved that in a Hilbert space condition (H) is equivalent to

(D) ∃r ∈ (0, 1) : ‖T − rI‖ ≤ 1− r.

Obviously, under condition (D) the operator T is a contraction. Conse-
quently, ‖T − rI‖ ≥ 1− r, so finally ‖T − rI‖ = 1− r.

Every (D)-contraction is primitive. Indeed, if λ ∈ σ(T ), then λ − r ∈
σ(T − rI), so |λ − r| ≤ ‖T − rI‖ ≤ 1 − r, whence λ = 1 for |λ| = 1. Thus,
the iterates of every (D)-contraction in a reflexive Banach space are strongly
convergent.

1.4. Projections. Recall that a linear operator P ∈ B(X) is called
a projection if P 2 = P or equivalently Ker(P ) = Ran(I − P ). Obviously,
‖P‖ ≥ 1 if P 6= 0. A projection P is called an orthoprojection if it is a con-
traction, i.e. ‖P‖ = 1 or P = 0. In Hilbert space this definition is equivalent
to the standard one: the subspaces Ker(P ) and Ran(P ) are mutually orhogo-
nal. Equivalently, this means that P is hermitian. In any Banach space every
hermitian projection is an orthoprojection. Indeed, for any projection P we
have

(1.1) exp(itP ) = (I − P ) + eitP.

Hence,

P =
1
2τ

τ�

−τ
exp(itP )e−it dt,

which yields ‖P‖ ≤ 1 if P is hermitian. However, if P is a hermitian projec-
tion then so is I − P , while for orthoprojections this is not true in general.
Another specific feature of the non-Hilbert situation is that for some sub-
spaces orthoprojections do not exist. We refer the reader to [2] and [6] for
more details and references.

For our purposes it is important to note that all (D)-projections are
orthoprojections. Also note that every hermitian projection P satisfies (D)
with r = 1/2, i.e. it is a u-projection in the sense of [14]. This immediately
follows from (1.1) by taking t = π. Obviously, if P is a u-projection then so
is I − P and both are orthoprojections.
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Main Theorem. Let P1, . . . , PN be some orthoprojections in a complex
Banach space X, and let S = S(P1, . . . , PN ) be the convex multiplicative
semigroup generated by P1, . . . , PN , i.e. the convex hull of the semigroup
consisting of all products with factors from {P1, . . . , PN}. Assume that one
of the following conditions is satisfied:

(i) X is uniformly convex;
(ii) X is uniformly smooth;
(iii) X is reflexive and all Pk are of class (D).

Then for every operator T ∈ S(P1, . . . , PN ) the iterates Tn converge strongly
to an orthoprojection T∞. In addition, if the Pk are of class (W′) then

(1.2) Ran(T∞) =
⋂
k∈FT

Ran(Pk)

where FT is the set of all indices k occurring in the decomposition of T as
a member of S(P1, . . . , PN ). The formula (1.2) is true in the class of all
orthoprojections if the space X is uniformly convex or uniformly smooth and
strictly convex.

Recall that a Banach space is called strictly convex if all points of its unit
sphere are extreme.

In the case (i) the strong convergence of Tn, where T is a product or
convex combination of orthoprojections, was proved in [7] and in [30], re-
spectively. The space X in these papers is real, but the results are automati-
cally true for complex uniformly convex spaces by realification. On the other
hand, there is an example of divergence in `∞4,R, i.e. in R4 endowed with the
max-norm [7, p. 464]. Another related example is in [28]. In fact, there is an
example even in `∞2,R, a fortiori, in `∞2,C. Namely, let

P1 =
(

1 0
−1 0

)
, P2 =

(
0 1
0 1

)
.

Then

(P1P2)n =
(

0 (−1)n+1

0 (−1)n

)
,

so the iterates (P1P2)n are divergent.
The space in our example is not strictly convex. An open question is about

the existence of an example of divergence in a strictly convex space. Such
a space would have to be infinite-dimensional since every finite-dimensional
strictly convex space is uniformly convex.

For any Banach space X and its closed subspaceM , we denote by PM (x),
x ∈ X, the set of points in M whose distance to x is minimal. If X is
reflexive then the set PM (x) is nonempty for every x. If, in addition, X is
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strictly convex, then PM (x) is a singleton. In this situation PM (x) can be
considered as a point in X and PM as a mapping X → X, a nearest point
projection onto M . In general, this “projection” is nonlinear. However, in a
Hilbert space, PM coincides with the orthoprojection onto M .

For a strictly convex reflexive space X with dimX > 2, Stiles proved in
[31] that if (PMPN )n converges strongly to PM∩N for every pair (M,N) of
closed subspaces of X, then X is a Hilbert space. Thus, the von Neumann
theorem cannot be extended to the nearest point projections in a non-Hilbert
space. See however [30, Lemma 3.1] for a relation between linear nearest
point projections and orthoprojections. This makes it possible to obtain a
counterpart of the Main Theorem for linear nearest point projections. This
observation was kindly communicated to us by S. Reich.

Note that the weak convergence of the iterates of a product or a convex
combination of orthoprojections in a uniformly smooth space follows from
[7] and [30] by duality.

1.5. Organization of the paper. The next section contains some in-
formation on the Apostol modulus ϕT (ε) and its modification ϕ̃T (ε) for a
contraction T in a Banach space. In Section 3 we apply it to prove that the
classes (H), (S) and (D) are multiplicative semigroups, furthermore, (S) and
(D) are convex. This is an important ingredient of the proof of the Main
Theorem. The latter is given in Section 4 after a proof of the convergence of
the iterates of a primitive contraction in a reflexive Banach space. We con-
clude with an Appendix (Section 5) where we study some relations between
the Apostol moduli and a geometric characteristic of the boundary spec-
trum. This yields a new look at a generalization of the Katznelson–Tzafriri
theorem obtained by Allan and Ransford [1].

2. The Apostol modulus

2.1. Definitions and basic facts. For a contraction T ∈ B(X) we
consider the Apostol modulus

ϕT (ε) = sup{‖x− Tx‖ : ‖x‖ ≤ 1, ‖x‖ − ‖Tx‖ ≤ ε}, 0 < ε ≤ 1.

This function was introduced and studied by Apostol [4] in the case of Hilbert
space. For our purposes the following modification is convenient:

ϕ̃T (ε) = sup{‖x− Tx‖ : ‖x‖ ≤ 1, 1− ‖Tx‖ ≤ ε}.

This definition is correct if and only if ‖T‖ = 1 since this is the only case
when the set {x : ‖x‖ ≤ 1, 1 − ‖Tx‖ ≤ ε} is nonempty for all ε. Thus, we
will assume ‖T‖ = 1 anytime when dealing with ϕ̃T (ε). On the other hand,
in all further applications the case ‖T‖ < 1 is trivial.



Averaged products of projections in Banach spaces 27

Obviously, both functions ϕT (ε) and ϕ̃T (ε) are nondecreasing and

(2.1) 0 ≤ ϕ̃T (ε) ≤ ϕT (ε) ≤ ‖I − T‖ ≤ 2.

Actually, the most interesting information relates to their behavior as ε→ 0.
Accordingly, we consider

ϕ0
T = lim

ε→0
ϕT (ε) = inf

ε>0
ϕT (ε) ≥ 0 and ϕ̃0

T = lim
ε→0

ϕ̃T (ε) = inf
ε>0

ϕ̃T (ε) ≥ 0.

It turns out that these limit values coincide. In this sense the difference
between the two versions of the Apostol modulus is not essential.

2.2. Lemma. If T a contraction of norm 1 and T 6= I then ϕT (ε) > 0
for all ε and

0 ≤ ϕT (ε) ≤ ϕ̃T
(
‖I − T‖ε
ϕT (ε)

+ 0
)
.

Proof. Assuming ϕT (ε) = 0 for an ε, we obtain ‖x − Tx‖ = 0 for all x
with ‖x‖ ≤ ε, so T = I. Now let T 6= I. Take q ∈ (0, 1) and find a vector x
such that

‖x‖ ≤ 1, ‖x‖ − ‖Tx‖ ≤ ε, ‖x− Tx‖ = qθ

where θ = ϕT (ε) > 0. Then for the normalized vector z = x/‖x‖ we have

1− ‖Tz‖ ≤ ε

‖x‖
, ‖z − Tz‖ =

qθ

‖x‖
≥ qθ,

whence

ϕ̃T

(
ε

‖x‖

)
≥ qθ.

On the other hand,

ϕ̃T

(
ε

‖x‖

)
≤ ϕ̃T

(
‖I − T‖ε

qθ

)
since ‖x‖ ≥ qθ/‖I − T‖. Thus,

qθ ≤ ϕ̃T
(
‖I − T‖ε

qθ

)
.

It remains to substitute θ by ϕT (ε) and pass to the limit as q → 1.

2.3. Corollary. ϕ̃0
T = ϕ0

T for all contractions T of norm 1.

Proof. Since ϕ̃0
I = ϕ0

I = 0, one can assume T 6= I and apply Lemma 2.2.
As ε→ 0 we get ϕ0

T ≤ ϕ̃0
T . The opposite inequality is trival.

From now on we denote by ωT the common value of ϕ0
T and ϕ̃0

T . For
instance, ωI = 0. Accordingly, (2.1) can be extended to

(2.2) 0 ≤ ωT ≤ ϕ̃T (ε) ≤ ϕT (ε) ≤ ‖I − T‖ ≤ 2.
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2.4. Theorem. ωT = 0 if and only if T is of class (S).

Proof. “If”. There is a sequence of vectors xk such that ‖xk‖ ≤ 1, 1 −
‖Txk‖ ≤ 1/k and ϕ̃T (1/k) < 2‖xk − Txk‖. The latter norm tends to zero if
T satisfies conditon (S).

“Only if”. Let ‖xk‖ ≤ 1 and ‖Txk‖ → 1. Without loss of generality one
can assume ‖Txk‖ < 1, otherwise we change xk to qkxk where all qk ∈ (0, 1)
and qk → 1 as k → ∞. Since ωT = 0 we have ϕ̃T (1 − ‖Txk‖) → 0, whence
‖xk − Txk‖ → 0 by the obvious inequality

‖x‖ − ‖Tx‖ ≤ ϕ̃T (1− ‖Tx‖) (‖x‖ ≤ 1, ‖Tx‖ < 1).

2.5. Remark. Theorem 2.4 remains in force for ‖T‖ < 1 if we set ωT = 0
in this case. The latter definition is natural. Indeed, if ‖T‖ < 1 then

ϕT (ε) ≤ ‖I − T‖ε
1− ‖T‖

,

whence ϕ0
T = 0. (Recall that ϕ̃0

T is not defined for ‖T‖ < 1.)

2.6. Remark. Let T be an isometry. Then ϕT (ε) = ‖I − T‖ for all ε,
hence ωT = ‖I − T‖, therefore ωT > 0 if T 6= I.

2.7. The Apostol modulus for orthoprojections. If P is an ortho-
projection, so that ‖P‖ ≤ 1, then

(2.3) ‖Px‖ =
1
2
‖P (x+ Px)‖ ≤ 1

2
‖x+ Px‖ ≤ ‖x‖.

Now let ‖x‖ ≤ 1, and let 1 − ‖Px‖ ≤ ε. Then ‖Px‖ ≤ 1 and 1
2‖x + Px‖ ≥

1− ε. Hence, ‖x− Px‖ ≤ βX(ε) where

βX(ε) = sup{‖x− y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x+ y‖/2 ≥ 1− ε}.
This results in the inequality

(2.4) ϕ̃P (ε) ≤ βX(ε).

The function βX was introduced and investigated in [5]. It is closely
related to the modulus of convexity. In particular, limε→0 βX(ε) = 0 if the
space X is uniformly convex, otherwise this limit is the supremum of those
ε for which δX(ε) = 0. The latter quantity (or 0 if X is uniformly convex) is
called the characteristic of convexity of the space X (see [15]).

2.8. Proposition. If P is an orthoprojection in a uniformly convex
space then ωP = 0.

Proof. This follows from (2.4) by passing to the limit as ε→ 0.

2.9. Corollary. Every orthoprojection in a uniformly convex space is
of class (S).
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2.10. Remark. This corollary can be obtained directly from (2.3). In
this way Proposition 2.8 follows from Theorem 2.4.

The uniform convexity of X is not necessary for the existence of (S)-
orthoprojections. For instance, if a projection P in X is such that ‖x‖ =
‖Px‖ + ‖x − Px‖ for all x ∈ X (an L-projection [17]) then P is an ortho-
projection and ωP = 0. Indeed, either P = I or ϕP (ε) = ε for all ε. In this
situation X may not be uniformly convex. An example is X = `1 where any
coordinate projection is an L-projection.

2.11. Remark. From (2.3) it follows that every orthoprojection in a
strictly convex space is of class (W′).

3. Structure properties of the classes (H), (S) and (D). In this
section we prove the following theorem.

3.1. Theorem. In any Banach space the sets of contractions of classes
(H), (S) and (D) are multiplicative semigroups. In addition, they are convex
in the cases (S) and (D).

This theorem is an immediate consequence of the lemmas proven below.

3.2. Lemma. Let A and B be two contractions satisfying condition (H).
Then the product AB also satisfies (H) and

K(AB) ≤ 2 max(K(A),K(B)).

Proof. We have

‖x−ABx‖2 ≤ (‖x−Bx‖+‖Bx−ABx‖)2 ≤ 2(‖x−Bx‖2 +‖Bx−ABx‖2),

whence

‖x−ABx‖2 ≤ 2K(B)(‖x‖2 − ‖Bx‖2) + 2K(A)(‖Bx‖2 − ‖ABx‖2)
≤ 2 max(K(A),K(B))(‖x‖2 − ‖ABx‖2).

Thus, the set of (H)-contractions is a multiplicative semigroup.

3.3. Remark. If T is an (H)-contraction then

ϕT (ε) ≤
√

2K(T )ε.

Indeed, if ‖x‖ ≤ 1 and ‖x‖ − ‖Tx‖ ≤ ε, then

‖x− Tx‖2 ≤ K(T )(‖x‖2 − ‖Tx‖2) ≤ 2K(T )(‖x‖ − ‖Tx‖) ≤ 2K(T )ε.

In particular, if P is an orthoprojection in a Hilbert space H then

‖x− Px‖2 = ‖x‖2 − ‖Px‖2.

Thus, P satisfies (H) with constant K(P ) = 1. Hence, ϕP (ε) ≤
√

2ε.
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3.4. Lemma.

(i) Let A and B be some contractions of norm 1. Then either ‖AB‖ < 1
or

ϕ̃AB(ε) ≤ ϕ̃A(ϕ̃B(ε) + ε) + ϕ̃B(ε).

(ii) Let

T =
N∑
k=1

αkAk

be a convex combination of contractions Ak of norm 1, and let all
αk > 0. Then either ‖T‖ < 1 or

ϕ̃T (ε) ≤
N∑
k=1

αkϕ̃Ak
(α−1

k ε).

Proof. (i) Let ‖AB‖ = 1. Then ‖A‖ = ‖B‖ = 1, so the functions ϕ̃A, ϕ̃B
are well defined along with ϕ̃AB. Take any vector x such that ‖x‖ ≤ 1 and
1− ‖ABx‖ ≤ ε. Then

‖x−ABx‖ ≤ ‖x−Ax‖+ ‖Ax−ABx‖ ≤ ‖x−Ax‖+ ‖x−Bx‖.

Thus,
‖x−ABx‖ ≤ ϕ̃A(1− ‖Ax‖) + ϕ̃B(1− ‖Bx‖).

Let us estimate 1− ‖Ax‖ and 1− ‖Bx‖. We have

1− ‖Bx‖ ≤ 1− ‖ABx‖ ≤ ε

and then

1− ‖Ax‖ ≤ 1 + ‖A(x−Bx)‖ − ‖ABx‖ ≤ ‖x−Bx‖+ (1− ‖ABx‖).

Thus,
1− ‖Ax‖ ≤ ϕ̃B(ε) + ε.

As a result,
‖x−ABx‖ ≤ ϕ̃A(ϕ̃B(ε) + ε) + ϕ̃B(ε).

(ii) Let ‖T‖ = 1. Then all ‖Ak‖ are 1, so the functions ϕ̃Ak
are well

defined along with ϕ̃T . Take x such that ‖x‖ ≤ 1, 1− ‖Tx‖ ≤ ε, i.e.

1−
∥∥∥ N∑
k=1

αkAkx
∥∥∥ ≤ ε.

A fortiori,
N∑
k=1

αk(1− ‖Akx‖) ≤ ε,
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whence 1− ‖Akx‖ ≤ α−1
k ε for every k. Hence,

‖x− Tx‖ ≤
N∑
k=1

αk‖x−Akx‖ ≤
∑
k

αkϕ̃(α−1
k ε).

As a consequence, if ωA = ωB = 0 then ωAB are 0, and if all ωAk
= 0

then ωT = 0. By Theorem 2.4, the set of (S)-contractions is a convex mul-
tiplicative semigroup.

Now for a contraction T we consider the set

R(T ) = {r ∈ (0, 1) : ‖T − rI‖ ≤ 1− r}.
By definition, T is a (D)-contraction if and only if R(T ) 6= ∅.

3.5. Lemma. For any contractions A and B, if r ∈ R(A) and s ∈ R(B)
then rs ∈ R(AB) and αr + βs ∈ R(αA + βB) with α > 0, β > 0 and
α+ β = 1.

Proof. First, we have

‖AB − rsI‖ = ‖A(B − sI) + s(A− rI)‖
≤ ‖B − sI‖+ s‖A− rI‖ ≤ 1− rs.

Secondly,

‖(αA+ βB)− (αr + βs)I‖ ≤ α‖A− rI‖+ β‖B − sI‖
≤ α(1− r) + β(1− s) = 1− (αr + βs).

Thus, the set of (D)-contractions is a convex multiplicative semigroup.
The proof of Theorem 3.1 is complete.

4. Proof of the Main Theorem. The following general result is a key
lemma in the proof of our Main Theorem.

4.1. Theorem. If X is a reflexive space and T is a primitive contrac-
tion in X then the iterates Tn converge strongly. The limit operator T∞ co-
incides with the orthoprojection ET onto the subspace L = Ker(I − T ) along
the closure M = Ran(I − T ). The convergence is uniform if and only if
Ran(I − T ) is closed.

Proof. By the classical ergodic theorem [24], the Cesàro means of (Tn)n≥0

converge strongly to the projection ET onto L along M . A part of this
statement is that X is the direct sum L⊕M . Let x = u+v where u ∈ L, i.e.
Tu = u, and v ∈M , i.e. v = limk→∞(zk−Tzk) for a sequence (zk)k≥0. Given
ε > 0, we fix k such that ‖v− (zk−Tzk)‖ < ε. Then ‖Tnv− (Tn−Tn+1)zk‖
< ε for all n. Hence, ‖Tnv‖ < ε + ‖Tn − Tn+1‖ ‖zk‖ < 2ε for large n by
the Katznelson–Tzafriri theorem [19]. Thus, limn→∞ T

nv = 0. As a result,
limn→∞ T

nx = u = ETx, i.e. T∞ = ET . The latter is an orthoprojection
since T is a contraction.
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Now suppose that Ran(I − T ) is closed, i.e. M = Ran(I − T ). The
operator I − T acts bijectively on the invariant subspace M. Since M is
closed, the inverse operator S = ((I−T )|M)−1 is bounded. Since (T |M)n =
(Tn−Tn+1)S, we obtain ‖(T |M)n‖ → 0 by the Katznelson–Tzafriri theorem
again. Conversely, if Tn converges uniformly then the same is true for the
Cesàro means, and then Ran(I − T ) is closed [22].

An alternative proof is merely a logical combination of two results proved
in [32] and [18] as we indicated in the Introduction.

4.2. Proof of the Main Theorem. Let T ∈ S(P1, . . . , PN ) where
P1, . . . , PN are some orthoprojections in a Banach space X. Obviously, T is
a contraction. By Theorem 4.1 it suffices to show that T is primitive in all
cases (i)–(iii). Recall that all contractions of classes (S) and (D) are primitive.
(See Section 1.)

(i) The space X is uniformly convex. Then by Corollary 2.9 all Pk are of
class (S). By Theorem 3.1 so is T . Therefore, T is primitive.

(ii) The space X is uniformly smooth. Then X∗ is uniformly convex and
T ∗ ∈ S(P ∗1 , . . . , P

∗
N ). All P ∗k are orthoprojections since ‖A∗‖ = ‖A‖ for any

operator A. Therefore, T ∗ is primitive like T in (i). Then T is also primitive
since σ(A) = σ(A∗) for any operator A and T = T ∗∗ by reflexivity of X.

(iii) The space X is reflexive. Since all Pk are of class (D), such is also T
by Theorem 3.1. Thus, T is primitive again.

To complete the proof of the Main Theorem we note that the subspace
Ran(T∞) coincides with the subspace Ker(I−T ) of fixed points of the oper-
ator T . Thus, it suffices to refer to the following lemma and Remark 2.11.

4.3. Lemma.

(i) Let A and B be some (W′)-contractions. Then

Ker(I −AB) = Ker(I −A) ∩Ker(I −B).

(ii) Let T =
∑N

k=1 αkAk be a convex combination of N (W′)-contractions
with all αk > 0. Then

Ker(I − T ) =
⋂
k

Ker(I −Ak).

Proof. In both cases the inclusion of the right-hand side into the left-hand
side is trivial. The proofs of the converse inclusions are as follows.

(i) For x ∈ Ker(I −AB) we have

‖x‖ = ‖ABx‖ ≤ ‖Bx‖ ≤ ‖x‖.

Therefore, ‖Bx‖ = ‖x‖, whence Bx = x and then Ax = x by condition (W′).
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(ii) For x ∈ Ker(I − T ) we have

‖x‖ ≤
N∑
k=1

αk‖Akx‖ ≤
N∑
k=1

αk‖x‖ = ‖x‖.

Thus, ‖Akx‖ = ‖x‖, hence Akx = x for every k.

4.4. Remark. The same argument shows that the contractions of class
(W′) constitute a convex multiplicative semigroup.

5. Appendix: The amplitude of the boundary spectrum. Let T
be a contraction in a Banach space X, and let the boundary spectrum of T
be nonempty. We call the quantity

aT = max{|λ− 1| : λ ∈ σ(T ), |λ| = 1}
the amplitude of the boundary spectrum of T . Obviously, 0 ≤ aT ≤ 2, and
aT = 0 if and only if the contraction T is primitive. In view of Theorem
2.4, the fact that (S)-contractions are primitive is a particular case of the
following inequality.

5.1. Proposition. aT ≤ ωT .
Proof. Let λ ∈ σ(T ) with |λ| = 1. Then for every ε > 0 there exists a

vector x of norm 1 such that ‖Tx− λx‖ ≤ ε. Hence, 1− ‖Tx‖ ≤ ε and

|λ− 1| ≤ ‖x− Tx‖+ ‖Tx− λx‖ ≤ ϕ̃T (ε) + ε.

The result follows as ε→ 0.

5.2. Corollary. If aT = 2 then ωT = 2 and ϕ̃T (ε) = ϕT (ε) = 2 for
all ε. Also, ‖I − T‖ = 2 in this case.

Proof. We have ωT ≥ 2. Now everything follows from (2.2).

Obviously, aT = 2 if and only if −1 ∈ σ(T ). Therefore, if −1 ∈ σ(T )
then ωT = 2.

5.3. Proposition. If the space X is uniformly convex and ωT = 2 then
aT = 2.

Proof. We have ϕ̃T (ε) = 2 for every ε ∈ (0, 1). By definition, there is a
vector x = x(ε) of norm 1 such that ‖x− Tx‖ ≥ 2− 2ε. Hence, ‖x+ Tx‖ ≤
βX(ε) where βX is defined in Section 2. Since X is uniformly convex, we
have limε→0 βX(ε) = 0. A fortiori, limε→0 ‖x(ε) + Tx(ε)‖ = 0. This means
that −1 ∈ σ(T ).

The amplitude aT is the maximal deviation of the boundary spectrum
of T from the point 1 in the metric of the complex plane. Alternatively, one
can use the metric of the unit circle. This “intrinsic” amplitude is

τT = 2arcsin(aT /2).
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In [1] Allan and Ransford obtained the following quantitative version of the
Katznelson–Tzafriri theorem:

lim sup
n→∞

‖Tn − Tn+1‖ ≤ 2 tan(τT /2), τT < π.

In terms of the amplitude aT this means that

lim sup
n→∞

‖Tn − Tn+1‖ ≤ 2aT√
4− a2

T

, aT < 2.

Combining this result with Proposition 5.1 we obtain

5.4. Theorem. Let T be a contraction acting on the complex Banach
space X. If ωT < 2 then

lim sup
n→∞

‖Tn − Tn+1‖ ≤ 2ωT√
4− ω2

T

.
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