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in Banach spaces
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Abstract. We show several characterizations of weakly compact sets in Banach
spaces. Given a bounded closed convex set C of a Banach space X, the following state-
ments are equivalent: (i) C is weakly compact; (ii) C can be affinely uniformly embedded
into a reflexive Banach space; (iii) there exists an equivalent norm on X which has the
w2R-property on C; (iv) there is a continuous and w∗-lower semicontinuous seminorm p
on the dual X∗ with p ≥ supC such that p2 is everywhere Fréchet differentiable in X∗;
and as a consequence, the space X is a weakly compactly generated space if and only if
there exists a continuous and w∗-l.s.c. Fréchet smooth (not necessarily equivalent) norm
on X∗.

1. Introduction. Because of the importance of weak compactness in
both Banach space theory and its applications, the study of properties of
weakly compact sets has been continued for over 80 years. A large num-
ber of achievements, such as the Choquet integral representation theorem,
the Eberlein–Smulian theorem, James’ characterization of weakly compact
sets [J], the Davis–Figiel–Johnson–Pełczyński theorem [DFJP], the Orlicz–
Pettis theorem, the Krein–Milman theorem, the Krein–Smulian theorem and
Rainwater’s theorem (see, for instance, [D2], [Fl], [L] and the references
therein), have been obtained in both the theory and applications.

The study of topological and renorming properties of their relatives—
reflexive Banach spaces and weakly compactly generated (WCG) spaces, has
also attracted attention of many mathematicians. Amir and Lindenstrauss
[AL] first introduced the notion of weakly compactly generated Banach space
and proved that for every WCG space X there is a continuous one-to-one
mapping T : X → c0(Γ ) for some set Γ . Troyanski’s renorming theorem
[T] says that every WCG space admits an equivalent locally uniformly ro-
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tund (LUR) norm. This theorem, combined with Asplund’s averaging tech-
nique [As], implies that every reflexive space has an equivalent norm such
that both the norm and its dual are LUR (hence, both are Fréchet smooth).
We should mention that Fabian, Godefroy, Montesinos and Zizler [FGMZ]
showed a number of fine characterizations of WCG spaces and their sub-
spaces. Fabian, Montesinos and Zizler further proved some new characteri-
zations of weakly compact sets [FMZ1] and new renorming characterizations
of subspaces of WCG spaces in terms of ε-M smooth norms, ε-M LUR norms
and σ-Asplund generated spaces [FMZ2].

Let us mention that a recent renorming theorem of Odell and Schlump-
recht [OS] presents a new renorming characterization of reflexive spaces: a
sufficient and necessary condition for a separable Banach space X to be
reflexive is that X admits an equivalent norm with the 2R-property, i.e., for
any bounded sequence (xn) ⊂ X, the condition

(1) lim
m

lim
n
‖xm + xn‖ = lim

n
2‖xn‖

implies that (xn) converges. More recently, Hájek and Johanis [HJ] gave
a similar renorming characterization of general reflexive Banach spaces: a
Banach space X is reflexive if and only if it admits an equivalent norm with
the w2R-property, i.e., if a bounded sequence (xn) ⊂ X satisfies (1), then
(xn) converges weakly.

The aim of this paper is to present some new characterizations of weakly
compact sets in Banach spaces. Our main results are the following.

Theorem 1.1. For a nonempty bounded closed convex set C of a Banach
space X, the following statements are equivalent:

(i) C is weakly compact;
(ii) C can be affinely uniformly embedded into a reflexive Banach space;
(iii) there exists an equivalent norm on X which has the w2R-property

on C (2R-property on C, if C is separable);
(iv) there is a continuous and w∗-lower semicontinuous (l.s.c.) seminorm

p on the dual X∗ with p ≥ supC such that p2 is everywhere Fréchet
differentiable in X∗.

As a consequence of (iv) above, we have

Corollary 1.2. The space X is a weakly compactly generated space
if and only if there exists a continuous and w∗-l.s.c. Fréchet smooth (not
necessarily equivalent) norm on X∗.

The letter X will always denote a Banach space and X∗ its dual. For a
subset A ⊂ X, we denote by A, coA, σA ≡ supA(·) and A0 ≡ {x∗ ∈ X∗ :
〈x∗, x〉 ≤ 1, ∀x ∈ A} the closure of A, the convex hull of A, the support
function of A on X∗ and the polar of A, respectively.
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2. A characterization of weakly compact sets by affine uniform
embedding. In this section we show an embedding condition for a bounded
closed convex set in a Banach space X to be weakly compact, or to generate
a reflexive subspace of X. Our main tools are the Davis–Figiel–Johnson–
Pełczyński lemma [DFJP] and James’ characterization of weakly compact
sets [J].

For a Banach space X, we write densX for the density of X, that is, the
minimal cardinality of a dense set in X (see, for instance, [DGZ, p. 58]). The
following factorization theorem is due to Davis–Figiel–Johnson–Pełczyński
[DFJP] (see also [D1]).

Theorem 2.1. Suppose that (X, ‖ · ‖) is a Banach space with the closed
unit ball B. Let K be a convex symmetric bounded subset of X. For each
positive integer n, let Un = 2nK + 2−nB. Denote by ‖ · ‖n the Minkowski
functional generated by Un, i.e.

‖x‖n = inf{t > 0 : x ∈ tUn}.
For x ∈ X, let |x| = (

∑∞
n=1 ‖x‖2n)1/2 and Y = {x ∈ X : |x| < ∞}. Denote

by C the closed unit ball of (Y, | · |). Let j : Y → X be the natural inclusion
mapping. Then

(i) K ⊂ C;
(ii) (Y, | · |) is a Banach space and j is continuous;
(iii) j∗∗ : Y ∗∗ → X∗∗ is one-to-one and Y = j∗∗−1(X);
(iv) (Y, |·|) is reflexive if and only if K is relatively weakly compact in X.

The following is a consequence of the DFJP factorization theorem above.

Theorem 2.2. Under the assumptions of Theorem 2.1, j−1 is uniformly
continuous on K and dens(Y, | · |) = dens(Y, ‖ ·‖) (hence, (Y, | · |) is separable
if and only if (Y, ‖ · ‖) is).

A result similar to Theorem 2.2 is presented in [CCLZ]. Here, for the
sake of convenience, we give a simple proof.

Proof of Theorem 2.2. For every m ∈ N, let

Pm(x) =
( m∑

n=1

‖x‖2n
)1/2

.

Then Pm is uniformly ‖ · ‖-continuous, since every ‖ · ‖n is uniformly ‖ · ‖-
continuous on X. Note that ‖x‖n < 2−n for every n ∈ N and x ∈ K.
Therefore, Pm uniformly converges to | · | on K, which implies | · | is uniformly
‖ · ‖-continuous on K.

Since dens(Y, ‖·‖) = dens(Y, ‖·‖n) for all n ∈ N, the density of the direct
sum

∑
⊕(Y, ‖ · ‖n) equipped with the norm |(xn)| = (

∑∞
n=1 ‖xn‖2n)1/2, i.e.,

dens(Y, | · |), must be equal to dens(Y, ‖ · ‖).
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Proposition 2.3. Suppose that C is a closed convex set in a Banach
space X. Then the following statements are equivalent:

(i) C is weakly compact;
(ii) for every sequence (xn) ⊂ C, there is a convergent sequence (yn)

satisfying yn ∈ co {xj}j≥n for all n ∈ N;
(iii) for every sequence (xn) ⊂ C, there is a weakly convergent sequence

(yn) satisfying yn ∈ co {xj}j≥n for all n ∈ N.

Proof. (i)⇒(ii) is a classical result.
(ii)⇒(iii) is trivial.
(iii)⇒(i). We will use James’ theorem [J] to obtain the conclusion by

showing that every x∗ ∈ X∗ attains its maximum on C.
Given x∗ ∈ X∗, let xn ∈ C be such that 〈x∗, xn〉 ≥ σC(x∗) − 1/n for

all n ∈ N. By (iii), there is a sequence (yn), with yn → y0 ∈ C in the
weak topology, satisfying yn ∈ co {xj}j≥n for all n ∈ N. Clearly, 〈x∗, yn〉 ≥
σC(x∗)− 1/n for all n ∈ N and 〈x∗, y0〉 = σC(x∗).

It is well known that a bounded linear operator between two normed
spaces is norm-to-norm continuous if and only if it is weak-to-weak continu-
ous (see, for instance, [D2, p. 12]). The following lemma is a localized version
of this result.

Lemma 2.4. Suppose that X, Y are Banach spaces and C ⊂ X and
D ⊂ Y are closed convex sets. Let ρX be the metric induced by the norm
of X. Suppose that T : (C, ρX) → (D, ρY ) is a continuous affine mapping.
If C is weakly compact in X, then TC is weakly compact in Y .

Proof. By James’ theorem again, every functional y∗ ∈ Y attains its
maximum on TC, under the hypothesis that C is weakly compact. Since
C is bounded convex and since T is a continuous affine mapping, TC is
necessarily bounded and convex. Let y∗ ∈ Y ∗, and let (yn) ⊂ TC be such that
σTC(y∗)− 1/n ≤ 〈y∗, yn〉 for all n ∈ N. Next, let xn ∈ C be such that yn =
Txn for n = 1, 2, . . . . By Theorem 2.3, the convexity and weak compactness
of C imply that there exists a sequence (zn) ⊂ C with zn ∈ co {xj}j≥n for
all n ∈ N, and z ∈ C such that zn → z. The continuity and affinity of T
yield Tzn → Tz ∈ TC. Note that Tzn ∈ T co {xj}j≥n = co {Txj}j≥n. We
observe that 〈y∗, T zn〉 → 〈y∗, T z〉 = σTC(y∗).

Let (U, dU ), (V, dV ) be two metric spaces and f : U → V be a mapping.
We denote by ωf the modulus of continuity of f defined as follows:

ωf (t) = sup{dV (f(x), f(y)) : x, y ∈ U, dU (x, y) ≤ t}, ∀t > 0,

and by Lip(f) the Lipschitz norm of f :

Lip(f) = sup
{
dV (f(x), f(y))

dU (x, y)
: x, y ∈ U, dX(x, y) 6= 0

}
.
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If limt→0 ωf (t) = 0, then f is called uniformly continuous; if Lip(f) < ∞,
then f is called a Lipschitz mapping.

Definition 2.5. With U, V and f as above,

(i) f is a uniform embedding from U to V if f is injective and both f
and f−1 are uniformly continuous;

(ii) f is a Lipschitz embedding from U to V if f is injective and both f
and f−1 are Lipschitz.

Theorem 2.6. Suppose that C is a nonempty bounded closed convex
subset of a Banach space X. Then

(i) C can be affinely uniformly embedded into a reflexive space Y if and
only if C is weakly compact in X;

(ii) C can be Lipschitz embedded into a reflexive space Y if and only if
the closure of spanC is itself a reflexive subspace of X.

Proof. (i) The sufficiency is a direct consequence of (ii) and (iii) of The-
orem 2.1.

The necessity follows immediately from Lemma 2.4.
(ii) It suffices to show the necessity. Assume that Y is a reflexive space

and f : C → Y is a Lipschitz embedding. Let XC = spanC. To show that
XC is reflexive, it suffices to prove that each separable closed subspace of
XC is reflexive. Let X0 ⊂ XC be a closed separable subspace. The density of
spanC inXC implies that there is a sequence (xn) ⊂ C such thatX0 ⊂ X1 ≡
span {xn}. Let C1 = co {xn}. Clearly, C1 is closed, convex and fundamental
inX1. Now, we consider the Lipschitz embedding f1 : C1 → Y , the restriction
of f to C1. Note that Y is reflexive (hence, it has the Radon–Nikodým
property). By a generalized Gâteaux differentiability theorem [CZ], there
exist a point x0 ∈ C1 and a bounded linear operator T : X1 → Y such that
for all x ∈ X1,

lim
t→0+

f(x0 + tx)− f(x0)
t

= Tx.

It is easy to see that T : X1 → Y is a linear embedding. The reflexivity of
Y implies that X1 is itself reflexive. Therefore, X0 is reflexive.

3. A feature of weakly compact sets via Fréchet smooth renorm-
ing. In this section, we will discuss Fréchet smooth renorming property on
the dual X∗ with respect to a weakly compact set of a Banach space X.
First, we need some preparation.

For a convex function f defined on a Banach space X, its subdifferential
mapping ∂f : X → 2X∗ is defined by

∂f(x) = {x∗ ∈ X∗ : f(x+ y)− f(x) ≥ 〈x∗, y〉, ∀y ∈ X},
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and its conjugate function f∗ by

f∗(x∗) = sup{〈x∗, x〉 − f(x) : x ∈ X}, x∗ ∈ X∗.
We say that the convex function f is Gâteaux (resp. Fréchet) differentiable

at x if there is x∗ ∈ X∗ such that

lim
t→0+

f(x+ ty)− f(x)
t

− 〈x∗, y〉 = 0, ∀y ∈ X,

respectively,

lim
t→0+

sup
y∈BX

[
f(x+ ty)− f(x)

t
− 〈x∗, y〉

]
= 0.

In the latter case, we denote x∗ = df(x).
Suppose that C∗ ⊂ X∗ is a bounded w∗-closed convex set in the dual

X∗ of X. A point x∗ ∈ C∗ is said to be a w∗-strongly exposed point of C∗ if
there is x ∈ X such that for any sequence x∗n ⊂ C∗, 〈x∗n, x〉 → 〈x∗, x〉 implies
x∗n → x∗. In this case, x∗ is said to be strongly exposed by x.

Proposition 3.1 ([P, Prop. 5.11]). Let p be a continuous Minkowski
functional on X and let C∗ = {x∗ ∈ X∗ : x∗ ≤ p}. Then p is Fréchet
differentiable at x with dp(x) = x∗ ∈ C∗ if and only if x∗ is a w∗-strongly
exposed point of C∗ and it is strongly exposed by x.

Proposition 3.2 ([P, Lemma 5.10]). Let p be a continuous Minkowski
functional on X and let C∗ = {x∗ ∈ X∗ : x∗ ≤ p}. Then x∗ ∈ ∂p(x) if and
only if x∗ ∈ C∗ with 〈x∗, x〉 = p(x).

Proposition 3.3 ([WC1], see also [CW]). Suppose that X is a Banach
space and C ⊂ X is a bounded closed set. Denote by C∗∗ the w∗-closed convex
hull of C ⊂ X∗∗. Then every w∗-strongly exposed point of C∗∗ is in C.

Proposition 3.4 ([CLS, Prop. 2.2]). Let f be a continuous convex func-
tion on X with f(0) = −1. Let p be the Minkowski functional generated by
epi f , the epigraph of f . Then f is Fréchet differentiable at x with Fréchet
derivative df(x) = x∗ if and only if p is Fréchet differentiable at z ≡ (x, f(x))
with Fréchet derivative dp(z) = (y∗, r), where y∗ = x∗/f∗(x∗) and r =
−1/f∗(x∗).

Lemma 3.5. Suppose that f is a continuous and w∗-l.s.c. convex function
defined on the dual X∗ of X.

(i) If f is Fréchet differentiable at x∗ with Fréchet derivative df(x∗) =
x∗∗, then x∗∗ ∈ X.

(ii) If, in addition, f is sublinear, then x∗∗ ∈ C ≡ C∗∗ ∩X, where C∗∗ =
{x∗∗ ∈ X∗∗ : x∗ ≤ f}.

Proof. We first show (ii). Without loss of generality, we can assume
f ≥ 0. Therefore, f is a continuous and w∗-l.s.c. Minkowski functional onX∗.
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Let df(x∗) = x∗∗. By Proposition 3.1, x∗∗ is a w∗-strongly exposed point of
C∗∗, and it is strongly exposed by x∗. Since f is w∗-l.s.c., C∗∗ is just the
w∗-closure of C. Proposition 3.3 yields x∗∗ ∈ C.

(i) We can assume that x∗ = 0 with f(0) = −1. Let p be the Minkowski
functional generated by epi f . Then p is continuous and w∗-l.s.c. Since f is
Fréchet differentiable at 0, by Proposition 3.4, we see that p is also Fréchet
differentiable at (0,−1) and with dp(0,−1) = (df(0),−1). By (ii) just proven,
(df(0),−1) ∈ X × R, i.e., df(0) ∈ X.

Theorem 3.6. Suppose that K is a nonempty bounded subset of a Ba-
nach space (X, ‖ · ‖). Then K is relatively weakly compact if and only if X∗
admits a w∗-l.s.c. seminorm q such that

(i) q2 is Fréchet differentiable everywhere in X∗;
(ii) for some λ > 0, λ‖ · ‖ ≥ q ≥ σK on X∗.

Proof. Since K is relatively weakly compact if and only if co {K ∪−K}
is weakly compact, we can assume, without loss of generality, that K is itself
absolutely convex closed.

Sufficiency. Suppose that q is a continuous and w∗-l.s.c. seminorm on X∗
with λ‖ · ‖ ≥ q ≥ σK , for some λ > 0, such that q2 is Fréchet differentiable
on X∗. We can assume that λ = 1, and that q is actually a norm on X∗.
Indeed, otherwise let Y = {x∗ ∈ X∗ : q(x∗) = 0}. Then Y is a w∗-closed
subspace of X∗, and we turn to the quotient space Y 0∗ = X∗/Y and the
Fréchet smooth quotient norm q̃ defined by q̃(x∗ + Y ) = q(x∗) for x∗ ∈ X∗.

Let C∗∗ = {x∗∗ ∈ X∗∗ : x∗∗ ≤ q}. Then C∗∗ is a bounded w∗-closed
absolutely convex set, q(x∗) = σC∗∗(x∗) = σC(x∗) for all x∗ ∈ X∗, and
K ⊂ C ≡ C∗∗ ∩ X. Note that C∗∗ is the w∗-closure of C, and q ≥ σK

implies K ⊂ C. It suffices to show that C is weakly compact. Thanks again
to James’ characterization of weakly compact sets [J], we need only show
that every functional in X∗ attains its maximum on C. It is enough to show
this for every x∗ ∈ X∗ with q(x∗) = 1, since S(X∗,q)∪{0} is an absorbing set
of X∗. Given such an x∗, by Lemma 3.4 and Proposition 3.2, x ≡ dq(x∗) ∈ C
and 〈x∗, x〉 = q(x∗) = 1.

Necessity. Let X0 be the closure of spanK in X. Since K is also weakly
compact in X0, by Theorem 2.1 there is a reflexive space (Y, | · |) such that
K ⊂ C ≡ BY ⊂ BX0 . The reflexivity of Y allows us to assume that the
dual norm | · |∗ is both locally uniformly convex and Fréchet smooth on Y ∗.
Therefore, within the natural norm-preserving restriction to Y , we obtain
X∗0 ⊂ Y ∗ and BX∗

0
⊂ BY ∗ . These further imply that | · |∗ is a Fréchet

smooth and w∗-l.s.c. norm on X∗0 = X∗/X0
0 . Now, we define q on X∗ by

q(x∗) = |Q(x∗)|∗ for x∗ ∈ X∗, where Q : X∗ → X∗/X0
0 denotes the quotient

mapping. Then it is easy to see that q satisfies (i) and (ii) of the theorem.
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Corollary 3.7. A Banach space X is a WCG space if and only if there
is a continuous and w∗-l.s.c. norm (not necessarily equivalent) on X∗ that
is everywhere Fréchet differentiable off the origin.

Proof. Since X is WCG if and only if there is a weakly compact and
absolutely convex subset K of X such that X = spanK, by Theorem 3.6 it
suffices to note that σK is a norm on X∗.

4. A characterization of weakly compact sets through renorm-
ing with the 2R-property. In this section we extend or localize the re-
cent renorming theorems of Odell–Schlumprecht [OS] and Hájek–Johanis
[HJ]. Consequently, a new characterization of weakly compact convex sets is
obtained.

Definition 4.1 ([HJ]). We say that a closed convex set C of a Banach
space X has the 2R (w2R, resp.)-property if for every bounded sequence
(xn) ⊂ C, if limm limn[2(|xm|2+ |xn|2)−|xm+xn|2] = 0, then (xn) converges
(weakly, resp.) In this case, we also say that the norm has the 2R (w2R,
resp.)-property on C.

Remark 4.2. By the definition we can easily observe that a norm | · |
of X has the 2R (w2R)-property on a closed convex set C if and only if for
every bounded sequence (xn) ⊂ C, limm limn |xm + xn| = 2 limn |xn| implies
that (xn) (weakly) converges.

Recall that a | · | norm on a Banach space X is said to be (weakly) locally
uniformly rotund if for any x, xn ∈ X with |x| = |xn| = 1 for all n ∈ N,
|x+ xn| → 2 implies that xn → x (weakly).

Note that if X has the 2R (w2R)-property then X is (weakly) locally
uniformly rotund, but the converse is not true [HJ].

The following renorming theorems are due to Odell and Schlumprecht
[OS] and Hájek and Johanis [HJ], resp.

Theorem 4.3 ([OS]). Suppose that X is a separable Banach space. Then

(i) there exists an equivalent norm | · | on X such that for any relatively
weakly compact sequence (xn) ⊂ X, limm limn |xm+xn| = 2 limn |xn|
implies that (xn) converges;

(ii) therefore, X is reflexive if and only if there is an equivalent norm on
X with the 2R-property.

Theorem 4.4 ([HJ]). Suppose that X is a Banach space. If there is a
continuous one-to-one mapping T : X → c0(Γ ) for some set Γ , then

(i) there exists an equivalent norm | · | of X such that for any relatively
weakly compact sequence (xn) ⊂ X, limm limn |xm+xn| = 2 limn |xn|
implies that (xn) converges weakly;
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(ii) therefore, X is reflexive if and only if there is an equivalent norm on
X with the w2R-property.

By applying Asplund’s averaging technique [As] (see also [D1, p. 106]),
we can show the following result without any difficulty.

Lemma 4.5. Suppose that | · |1 and | · |2 are two equivalent norms on a
Banach space X such that | · |1 has the 2R (w2R)-property, and the dual
of | · |2 has the w2R (2R)-property. Then there is an equivalent norm ‖ · ‖
such that ‖ · ‖ has the 2R (w2R)-property, and the dual of ‖ · ‖ has the w2R
(2R)-property.

Theorem 4.6. Suppose that X is a closed subspace of a WCG space.
Then there is an equivalent LUR norm | · | on X such that for each weakly
compact convex set C ⊂ X, (C, | · |) has the w2R-property.

Proof. Let Y be a WCG space such that X ⊂ Y . Then, by Troyanski’s
theorem, there is an equivalent LUR norm ||| · ||| on Y . On the other hand,
since Y is WCG, there exist a set Γ and a bounded linear one-to-one operator
T : Y → c0(Γ ) ([AL]; see also [D1]). Therefore, Y can be given an equivalent
norm | · | such that for every relatively weakly compact sequence (xn) ⊂ Y ,
if

lim
m

lim
n

[2(|xm|2 + |xn|2)− |xm + xn|2] = 0,

then (xn) weakly converges. This means that (C, | · |) has the w2R-property
for every weakly compact and convex subset C of Y . Finally, let ‖ · ‖ =
||| · ||| + | · |. Then ‖ · ‖ is both LUR and w2R on each weakly compact and
convex subset of Y . It is easy to see the restriction of ‖ · ‖ to X has the same
properties.

Theorem 4.7. Suppose that C is a bounded closed convex and separable
subset of a Banach space X. Then

(i) C is weakly compact if and only if there exists an equivalent norm
| · | on X such that (C, | · |) has the 2R-property;

(ii) in particular, if X is separable reflexive then it admits an equivalent
2R-norm such that its dual is also 2R.

Proof. We need only show (i), since (ii) is just a combination of Theorem
4.3 and Lemma 4.5.

Sufficiency of (i). Suppose that C is a bounded closed convex set in X
and |·| is an equivalent norm onX such that (C, |·|) has the w2R-property. By
James’ theorem [J], it suffices to show that every functional x∗ ∈ X∗ attains
its maximum on C. Without loss of generality, we assume that 0 ∈ C, and
for x∗ ∈ X∗, assume that supC x

∗ ≡ sup{〈x∗, x〉 : x ∈ C} > 0. (Otherwise,
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we have supC x
∗ = 0 = 〈x∗, 0〉.) Let g : R+ → R+ be defined by

g(s) = sup{〈x∗, x〉 : x ∈ C, |x| ≤ s}.
Clearly, g is a continuous function on R+. Let r0 = min{s > 0 : g(s) =
supC x

∗}. Now, we choose (xn) ⊂ C with |xn| ≤ r0 such that limn→∞〈x∗, xn〉
= supC x

∗. By the definition of r0 we have |xn| → r0 and

lim
m,n→∞

∣∣∣∣xm + xn

2

∣∣∣∣ = r0 = lim
n
|xn|.

Therefore, (xn) is weakly convergent to some element in C, say, x0. Thus,
supC x

∗ = 〈x∗, x0〉, so x∗ attains its maximum on C. Therefore, C is weakly
compact.

Necessity of (i). Suppose that C is a separable weakly compact subset
of X ≡ (X, ‖ · ‖). Let X0 be the closure of spanC. Then X0 is a separable
space and C is again a weakly compact subset of X0. By Theorem 4.3, there
is an equivalent norm |·| on X0 such that for every relatively weakly compact
sequence (xn) ⊂ X0, if limm limn[2(|xm|2+|xn|2)−|xm+xn|2] = 0, then (xn)
converges. This shows that for every weakly compact convex set K ⊂ X0,
(K, |·|) has the 2R-property. Now, we finish our proof by extending the norm
| · | from X0 to the whole space X to be an equivalent norm of X. Indeed,
this can be done by the following procedure. Choose any N > L (where L
denotes the Lipschitz constant of the norm | · | on X0). For x ∈ X we define

‖x‖N = inf{|y|+N‖x− y‖ : y ∈ X0}.
Then ‖ · ‖N is an equivalent norm on X with the Lipschitz norm at most N
(see, for instance, [WC2] or [WCHL]) such that its restriction to X0 is just
| · |.

Theorem 4.8. Suppose that C is a bounded closed convex subset of a
Banach space X. Then

(i) C is weakly compact if and only if there exists an equivalent norm
| · | on X such that (C, | · |) has the w2R-property;

(ii) X is reflexive if and only if X admits an equivalent w2R-norm whose
dual norm is also w2R.

Proof. Sufficiency of (i). The sufficiency is completely contained in the
proof of “Sufficiency of (i)” of Theorem 4.7.

Necessity of (i). Suppose that C is a weakly compact subset of X ≡
(X, ‖ · ‖). Let X0 be the closure of spanC. Then X0 is a WCG space and
C is again a weakly compact subset of X0. By Theorem 4.4, there is an
equivalent norm | · | on X0 such that for every relatively weakly compact
sequence (xn) ⊂ X0, if 2(|xm|2+ |xn|2)−|xm+xn|2 → 0, then (xn) converges
weakly. This implies that for every weakly compact convex set K ⊂ X0,
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(K, | · |) has the w2R-property. Now, we finish our proof by extending the
norm | · | again from X0 to X to be an equivalent norm of X.

(ii) It is just a direct consequence of Theorem 4.4 and Lemma 4.5.

Corollary 4.9. A Banach space is WCG if and only if there exist a
closed convex fundamental set C ⊂ X and an equivalent norm that is w2R
on C.
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