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A Calderón–Zygmund estimate
with applications to generalized Radon transforms

and Fourier integral operators

by

Malabika Pramanik (Vancouver), Keith M. Rogers (Madrid) and
Andreas Seeger (Madison)

Abstract. We prove a Calderón–Zygmund type estimate which can be applied to
sharpen known regularity results on spherical means, Fourier integral operators, general-
ized Radon transforms and singular oscillatory integrals.

1. Introduction. The main theme in this paper is to strengthen various
sharp Lp-Sobolev regularity results for integral operators. To illustrate this
we consider the example of spherical means.

Let σ denote surface measure on the unit sphere. Since

|σ̂(ξ)| ≤ C(1 + |ξ|)−(d−1)/2

the convolution operator f 7→ f ∗ σ maps L2 to the Sobolev space L2
(d−1)/2.

By complex interpolation with an L∞-BMO estimate, Fefferman and Stein
[4] proved that the operator maps Lp to Lp(d−1)/p for 2 < p < ∞; here the
regularity parameter α = (d − 1)/p is optimal. It turns out, however, that
the Lp-Sobolev result can be improved within the scale of Triebel–Lizorkin
spaces [23] in two ways.

We recall the definition of the quasinorm

‖f‖F pα,q =
∥∥∥( ∞∑

k=0

2kαq|Πkf |q
)1/q∥∥∥

Lp

which we will use for 1 < p < ∞ and 0 < q < ∞. Here the operators
Πk are defined by the standard smooth Littlewood–Paley cutoffs, so that
Π̂kf is supported in {2k−1 ≤ |ξ| ≤ 2k+1} for k ≥ 1 and in a neighborhood
of the origin for k = 0; we assume that

∑∞
k=0Πkf = f for all Schwartz
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functions. It is well known, and immediate from Littlewood–Paley theory
and embeddings for sequence spaces, that Lp ⊂ F p0,p ≡ Bp

0,p, 2 ≤ p < ∞,
and for all p ∈ (1,∞), F pα,r ⊂ F pα,s ⊂ F pα,2 = Lpα if 0 < r ≤ s ≤ 2. Thus the
inequalities

(1.1) ‖f ∗ σ‖
F p

(d−1)/p,r

≤ Cp,r‖f‖F p0,p
, r > 0, 2 < p <∞,

strengthen the standard regularity result. The case r = 1 also implies an
F p0,∞ → F pα,p estimate for 1 < p < 2 and α = (d − 1)/p′, by duality and
composition with Bessel derivatives (I−∆)α/2. Related phenomena have re-
cently been observed in articles on space-time (or local smoothing) estimates
for Schrödinger equations [17] and wave equations [6].

In §2 we formulate a general result which covers the spherical means and
many other related applications. These are discussed in §3.

2. A Calderón–Zygmund estimate. For each k ∈ N, we consider
operators Tk defined on the Schwartz functions S(Rd) by

Tkf(x) =
�
Kk(x, y)f(y) dy,

where each Kk is a continuous and bounded kernel (this qualitative as-
sumption is made to avoid measurability questions). Let ζ ∈ S(Rd). Define
ζk = 2kdζ(2k·) and

Pkf = ζk ∗ f.
In applications the operators Pk often arise from dyadic frequency decompo-
sitions, however we emphasize that no cancellation condition on ζ is needed
in the following result.

Theorem 2.1. Let 0 < a < d, ε > 0, and 1 < q < p < ∞. Assume the
operators Tk satisfy

sup
k>0

2ka/p‖Tk‖Lp→Lp ≤ A,(2.1)

sup
k>0

2ka/q‖Tk‖Lq→Lq ≤ B0.(2.2)

Furthermore let Γ ≥ 1, and assume that for each cube Q there is a measur-
able set EQ so that

(2.3) |EQ| ≤ Γ max{|Q|1−a/d, |Q|},
and for every k ∈ N and every cube Q with 2k diam(Q) ≥ 1,

(2.4) sup
x∈Q

�

Rd\EQ

|Kk(x, y)| dy ≤ B1 max{(2k diam(Q))−ε, 2−kε}.

Let

(2.5) B := B
q/p
0 (AΓ 1/p +B1)1−q/p.
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Then there is C > 0 (depending only on d, ζ, a, ε, p, q, r) so that
(2.6)∥∥∥(∑

k

2kar/p|PkTkfk|r
)1/r∥∥∥

p
≤ CA

[
log
(

3 +
B
A

)]1/r−1/p(∑
k

‖fk‖pp
)1/p

.

In some interesting applications A � B so that the logarithmic growth
in (2.6) is helpful. The power of the logarithm is sharp (see [8], [22], [23]
for a relevant counterexample and [18], [1] for positive results on families of
translation invariant and pseudo-differential operators).

To prove Theorem 2.1 we begin with a standard L∞-bound. In what
follows the notation

	
Q f will be used for the average |Q|−1

	
Q f .

Lemma 2.2. Assuming (2.1), (2.3) and (2.4), the following statements
hold true.

(i) If 2−k ≤ diam(Q) ≤ 1, then

(2.7)
�

Q

|PkTkh| dy

≤ C(AΓ 1/p(2k diam(Q))−a/p +B1(2k diam(Q))−ε)‖h‖∞.

(ii) If diam(Q) ≥ 1, then

(2.8)
�

Q

|PkTkh| dy ≤ C(AΓ 1/p2−ka/p +B12−kε)‖h‖∞.

Proof. We split h = hχEQ + hχRd\EQ . By Hölder’s inequality, (2.1), and
then (2.3) (1),
�

Q

|Tk[hχEQ ]| dx ≤ |Q|−1/p
( �
|Tk[hχEQ ]|p dx

)1/p

. |Q|−1/pA2−ka/p
∥∥hχEQ∥∥p . A2−ka/p|Q|−1/p|EQ|1/p‖h‖∞

. AΓ 1/p2−ka/p max{diam(Q)−a/p, 1}‖h‖∞.

On the other hand, by (2.4),
�

Q

|Tk[hχRd\EQ
]| dx ≤ sup

x∈Q

�

Rd\EQ

|Kk(x, y)|h(y) dy

. B1 max{(2k diam(Q))−ε, 2−kε}‖h‖∞.

A combination of these two bounds shows that the stated estimates hold
with PkTk replaced by Tk.

(1) The expression v . w denotes v ≤ Cw, where C > 0 is independent of A, B0,
B1, Γ .
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We now use straightforward estimates to incorporate the operators Pk.
In view of the rapid decay of ζ we have

�

Q

|PkTkh(x)| dx ≤ CN
�

Q

� 2kd

(1 + 2k|x− w|)N
|Tkh(w)| dw dx.

Now for m = 0, 1, 2, . . . we let Q∗m denote the cube parallel to Q with the
same center, but with sidelength equal to 2m+1 times the sidelength of Q.
Then the last estimate (with N � d) implies

�

Q

|PkTkh(x)| dx

≤ C ′N
�

Q∗0

|Tkh(w)| dw +
∞∑
m=1

(2k diam(Q∗m))d−N
�

Q∗m

|Tkh(w)| dw.

The term corresponding to m = 0 has already been estimated and, also by
the bounds above applied to Q∗m, the mth term is controlled by

2−m(N−d)(2k diam(Q))d−N
(

AΓ 1/p2−ma/p

(2k diam(Q))a/p
+

B2−mε

(2k diam(Q))ε
)
‖h‖∞

if 2m diam(Q) ≤ 1, and by

2−m(N−d)(2k diam(Q))d−N (AΓ 1/p2−ka/p +B2−kε)‖h‖∞
if 2m diam(Q) > 1. We sum in m to obtain the claimed result.

Proof of Theorem 2.1. We first note that the asserted inequality for r = p
follows by assumption (2.1) and Fubini’s theorem. We prove the theorem for
r ≤ 1, and the intermediate cases 1 < r < p follow by interpolation.

By the monotone convergence theorem it suffices to prove (2.6) for all
finite sequences F = {fk}k∈N, i.e., we may assume that fk = 0 for large k.

We use the Fefferman–Stein theorem [4] for the #-maximal operator.
The left hand side of (2.6) is then rewritten and estimated as∥∥∥∑

k

|2ka/pPkTkfk|r
∥∥∥1/r

p/r

.
∥∥∥ sup
Q:x∈Q

�

Q

∣∣∣∑
k

|2ka/pPkTkfk(y)|r −
�

Q

∑
k

|2ka/pPkTkfk(z)|r dz
∣∣∣ dy∥∥∥1/r

Lp/r(dx)

.
∥∥∥ sup
Q:x∈Q

∑
k

2kar/p
�

Q

�

Q

|PkTkfk(y)− PkTkfk(z)|r dz dy
∥∥∥1/r

Lp/r(dx)
.

In the last step we simply use |ur − vr| ≤ |u− v|r for nonnegative u, v and
0 < r ≤ 1, combined with the triangle inequality.

Note that the application of the Fefferman–Stein inequality is valid be-
cause of our a priori assumption involving finite sums.
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Given a sequence fk we can choose cubes Q(x) depending measurably
on x so that the supremum in Q can be up to a factor of two realized by
the choice of Q(x). This means that it suffices to prove the inequality

(2.9)
∥∥∥∑

k

2kar/p
�

Q(x)

�

Q(x)

|PkTkfk(y)− PkTkfk(z)|r dz dy
∥∥∥1/r

Lp/r(dx)

≤ CA
[
log
(

3 +
B
A

)]1/r−1/p(∑
k

‖fk‖pp
)1/p

where C does not depend on the choice of x 7→ Q(x). We define L(x) to be
the integer L for which the sidelength of Q(x) belongs to [2L, 2L+1).

Let X = {x : L(x) ≤ 0}. We shall first estimate the Lp/r norm over X
(the main and more interesting part) and then provide the bound on
Lp/r(Rd \X) separately.

Define

Gkh(x) =
( �

Q(x)

�

Q(x)

|PkTkh(y)− PkTkh(z)|r dz dy
)1/r

so that the left hand side of (2.9) is equal to ‖
∑

k 2kar/p|Gkfk|r‖
1/r
p/r. Let

N be a positive integer (it will later be chosen as C log(3 + B/A) with a
large C). For x ∈ X we split the k-sum into three pieces acting on F = {fk}:∑

k

2kar/p|Gkfk(x)|r = |Slow[F ](x)|r + |Smid[F ](x)|r + |Shigh[F ](x)|r,

where

Slow[F ](x) =
( ∑
k+L(x)<0

2kar/p|Gkfk(x)|r
)1/r

Smid[F ](x) =
( ∑

0≤k+L(x)≤N

2kar/p|Gkfk(x)|r
)1/r

Shigh[F ](x) =
( ∑
k+L(x)>N

2kar/p|Gkfk(x)|r
)1/r

.

We need to bound the Lp norms of the three terms by the right hand side
of (2.9). The terms Slow[F ] and Smid[F ] will be estimated by using just
hypothesis (2.1).

To bound Slow[F ] we first consider the expression

PkTkfk(y)− PkTkfk(z)

=
1�

0

�
〈2k(y − z), 2kd∇ζ(2k(z − w + s(y − z)))〉Tkfk(w) dw ds.
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For y, z ∈ Q(x) we have 2k|y− z| . 2k+L(x), and by Hölder’s inequality and
the rapid decay of ζ,

|Gkfk(x)| ≤
( �

Q(x)

�

Q(x)

|PkTkfk(y)− PkTkfk(z)|r dz dy
)1/r

. 2k+L(x)MHL[Tkfk](x).

Here MHL denotes the standard Hardy–Littlewood maximal operator. Now,
by Hölder’s inequality with respect to the k-summation,( ∑

k+L(x)≤0

|2ka/pGkfk(x)|r
)1/r

.
(∑

k

|2ka/pMHL[Tkfk](x)|p
)1/p

.

Thus

‖Slow[F ]‖p ≤
(∑

k

2ka‖MHL[Tkfk]‖pp
)1/p

(2.10)

.
(∑

k

2ka‖Tkfk‖pp
)1/p

. A
(∑

k

‖fk‖pp
)1/p

.

Next we take care of Smid[F ](x), which may often be considered the
main term but is also estimated using just (2.1). Now

|Gkfk(x)|r ≤ 2
�

Q(x)

|PkTkfk(y)|r dy

and therefore∑
0≤k+L(x)≤N

2kar/p|Gkfk(x)|r

.
�

Q(x)

N 1−r/p
( ∑

0≤k+L(x)≤N

|2ka/pPkTkfk(y)|p
)r/p

dy.

By Hölder’s inequality, this implies

|Smid[F ](x)| . N 1/r−1/pMHL

[(∑
k

|2ka/pPkTkfk|p
)1/p]

(x),

so that

‖Smid[F ]‖p . N 1/r−1/p
∥∥∥MHL

[(∑
k

|2ka/pPkTkfk|p
)1/p]∥∥∥

p
(2.11)

. N 1/r−1/p
(∑

k

2ka‖PkTkfk‖pp
)1/p

. AN 1/r−1/p
(∑

k

‖fk‖pp
)1/p

.
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We now turn to the expression Shigh which we estimate for L(x) ≤ 0.
Again by Hölder’s inequality,

Shigh[F ](x) ≤
(

2
∑

k>N−L(x)

2kar/p
�

Q(x)

|PkTkfk(y)|r dy
)1/r

≤
(

2
∑

k>N−L(x)

2kar/p
( �

Q(x)

|PkTkfk(y)| dy
)r)1/r

.

If r < 1 then we choose a small δ > 0 and use Hölder’s inequality with
respect to the k-summation to get

Shigh[F ](x) ≤ C(r, δ)
∑

k>N−L(x)

2ka/p2(k+L(x))δ
�

Q(x)

|PkTkfk(y)| dy,(2.12)

where

C(r, δ) = 21/r
( ∑
k>N−L(x)

2−(k+L(x))δr/(1−r)
)1−r

. 2−N δr(rδ)r−1,

so that C(r, δ) . (rδ)r−1.
In order to estimate the expression (2.12) it suffices to bound the Lp norm

of

T lin[F ](x) =
∑

k>N−L(x)

2ka/p2(k+L(x))δ
�

Q(x)

ωk(x, y)PkTkfk(y) dy,

where ωk(x, y) are measurable functions satisfying supx,y,k |ωk(x, y)| ≤ 1,
with the constants in the estimates independent of the particular choice of
the ωk. We now fix one such choice.

Write n = k + L(x), so that n > N , and define, for 0 ≤ Re(z) ≤ 1,
(2.13)
SznF (x) = 2(n−L(x))a(1−z)/q

�

Q(x)

ωn−L(x)(x, y)Pn−L(x)Tn−L(x)fn−L(x)(y) dy.

Observe that

(2.14) T lin[F ](x) =
∑
n>N

2nδSθnF (x) for θ = 1− q

p
.

We estimate the Lp norm of SznF for z = θ by interpolating between an
Lq bound for Re(z) = 0 and an L∞ bound for Re(z) = 1.

For z = iτ , τ ∈ R we obtain

|Siτn F (x)| ≤
�

Q(x)

sup
k

2ka/q|PkTkfk(y)| dy

≤MHL

[(∑
k

|2ka/qPkTkfk|q
)1/q]

(x)
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and therefore, by the Lq estimate for MHL, Fubini, and assumption (2.2),

‖Siτn F‖q .
(∑

k

2ka‖PkTkfk‖qq
)1/q

. B0

(∑
k

‖fk‖qq
)1/q

.

The L∞ estimate for Re(z) = 1 follows from Lemma 2.2; for L(x) ≤ 0, we
get

|S1+iτ
n F (x)| ≤

�

Q(x)

|Pn−L(x)Tn−L(x)fn−L(x)(y)| dy

. (AΓ 1/p2−na/p +B12−nε)‖fn−L(x)‖∞
and of course ‖fn−L(x)‖∞ ≤ supk ‖fk‖∞. Interpolating the two bounds yields

(2.15) ‖SθnF‖Lp(X) . 2−ε0n(1−q/p)B
(∑

k

‖fk‖pp
)1/p

with ε0 := min{a/p, ε} and B as in (2.5). Choosing δ = (1− q/p)ε0/2, this
yields

‖T lin[F ]‖Lp(X) .
∑
n>N

2nδ‖SθnF‖Lp(X)

. ε−1
0 (1− q/p)−1B2−N (1−q/p)ε0/2

(∑
k

‖fk‖pp
)1/p

and then, by suitably choosing ωk,

‖ShighF‖Lp(X) . ε−2
0 (1− q/p)−2B2−N (1−q/p)ε0/2

(∑
k

‖fk‖pp
)1/p

.

We combine the three bounds for Shigh, Smid and Slow and get∥∥∥∑
k

2kar/p|Gkfk|r
∥∥∥1/r

Lp/r(X)

≤ Cr(AN 1/r−1/p + ε−2
0 (1− q/p)−2B2−N (1−q/p)ε0/2)

(∑
k

‖fk‖pp
)1/p

and choosing N = Clarge log(3+B/A) (with Clarge depending on p, q and ε0),
we obtain the bound
(2.16)∥∥∥∑

k

2kar/p|Gkfk|r
∥∥∥1/r

Lp/r(X)
≤ CA

[
log
(

3 +
B
A

)]1/r−1/p(∑
k

‖fk‖pp
)1/p

.

It remains to give the estimation on Rd \ X (the set where L(x) > 0),
which is similar in spirit, but more straightforward. We first single out the
terms for k ≤ N and by an estimate similar to the one for Smid above we
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get

(2.17)
∥∥∥ ∑
k≤N

2kar/p|Gkfk|r
∥∥∥1/r

Lp/r
. AN 1/r−1/p

(∑
k

‖fk‖pp
)1/p

.

On the other hand, by assumption (2.2),

2ka/q‖Gkfk‖q . B0‖fk‖q
and by (2.8).

‖Gkfk‖L∞(Rd\X) . (AΓ 1/p2−ka/p +B12−kε)‖fk‖∞.
Thus, with ε0 = min{a/p, ε}, by interpolation we get

2ka/p‖Gkfk‖Lp(Rd\X) . 2−kε0(1−q/p)B‖fk‖p.
By a straightforward application of Hölder’s inequality,
(2.18)∥∥∥ ∑

k>N
2kar/p|Gkfk|r

∥∥∥1/r

Lp/r
. ε
−1/r
0 (1− q/p)−1/r2−N ε0(1−q/p)/2B sup

k
‖fk‖p,

which is slightly better than the `p(Lp) bound that we are aiming for. Com-
bining (2.17) and (2.18), and choosing N as before, yields∥∥∥∑

k

2kar/p|Gkfk|r
∥∥∥1/r

Lp/r(Rd\X)
≤ CA

[
log
(

3 +
B
A

)]1/r−1/p(∑
k

‖fk‖pp
)1/p

,

which concludes the proof.

3. Applications

Integrals over hypersurfaces. Consider the example of spherical
means. For k ∈ N, let Pk be a Littlewood–Paley cutoff operator Π̃k (localiz-
ing to frequencies of size ≈ 2k as in the introduction) such that Π̃kΠk = Πk.
Take Tkf = σ ∗ Π̃kf and fk = Πkf . If Q is a cube satisfying 2−k ≤
diam(Q) ≤ 1, with center xQ, then the exceptional set EQ is the tubular
neighborhood of the unit sphere centered at xQ, with width C diam(Q); if
diam(Q) > 1 we can simply choose the double cube. Then the hypotheses
of Theorem 2.1 are easily verified with a = d−1, q = 2, any p > 2, and with
A, B0, B1, Γ all comparable. Then (1.1) is implied by Theorem 2.1.

One can extend this observation to more general averaging operators
over hypersurfaces which are not necessarily translation invariant. Let χ ∈
C∞c (Rd \ {0}) and let (x, y) 7→ Φ(x, y) be a smooth function defined in a
neighborhood of suppχ and assume that ∇xΦ(x, y) 6= 0 and ∇yΦ(x, y) 6= 0.
Let δ be the Dirac measure on the real line and define the generalized Radon
transform R as the integral operator with Schwartz kernel

KR(x, y) = χ(x, y)δ(Φ(x, y)).
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As shown in [21] (cf. also [7]), regularity properties of R are determined by
the rotational curvature

κ(x, y) = det

(
Φxy Φx

Φy 0

)
.

Strengthening the results in [21] slightly, we obtain

Corollary 3.1. (i) Let d ≥ 2, 2 < p < ∞, r > 0, and suppose that
κ(x, y) 6= 0 on suppχ. Then R : F p0,p(Rd)→ F p(d−1)/p,r(R

d).
(ii) Let d ≥ 2, r > 0, and suppose that κ(x, y) 6= 0 vanishes only of

finite order on suppχ, i.e. there is n such that
∑
|γ|≤n |∂

γ
yκ(x, y)| 6= 0. Then

there is a p0(n, d) <∞ so that R : F p0,p(Rd)→ F p(d−1)/p,r(R
d) for p0(n, d) <

p <∞.

The proof of (i) is essentially the same as for the spherical means. One
decomposes R =

∑∞
k=0Rk where for k > 0 the Schwartz kernel of Rk is

given by

(3.1) Rk(x, y) =
�
η(2−k|τ |)χ(x, y) eiτΦ(x,y) dτ

with a suitable η supported in (1/2, 2). One may then write

R =
∞∑
k=0

ΠkRkΠk +
∞∑
k=0

Ek,

where Ek is negligible, i.e. mapping Lp to any Sobolev space LpN with norm
≤ CN2−kN ; this decomposition follows by an integration by parts argument
in [7], and uses only the assumptions Φx 6= 0 and Φy 6= 0 (see also §2 in [19]
for an exposition of this kind of argument). To estimate the main operator∑∞

k=1ΠkRkΠk we use Theorem 2.1, setting Pk = Πk, fk = Πkf , Tk = Rk,
and choose all parameters as in the example for the spherical means. For the
exceptional sets EQ we choose a tubular neighborhood of width C diam(Q)
of the surface {y : Φ(xQ, y) = 0}.

For part (ii) one decomposes the operators R according to the size of κ,
using a suitable cutoff function of the form β1(2`|κ(x, y)|) where β1 is sup-
ported in (1/2, 2). Let R`k be defined as in (3.1) but with χ(x, y) replaced by
χ(x, y)β1(2`|κ(x, y)|). Then the proof of Proposition 2.2 in [21] shows that
the operators R`k are bounded on L2 with operator norm . 2`M2−k(d−1)/2

(in fact with M = 5d/2 + (d − 1)/2). By the finite type assumption on κ
(and a standard sublevel set estimate related to van der Corput’s lemma)
the operator R`k is bounded on L∞ with operator norm . 2−`/n. Hence for
p > q > (2Mn+1) hypotheses (2.1) and (2.2) are satisfied with A = 2−`ε(p),
B0 = 2−`ε(q) for some ε(p) > 0, ε(q) > 0. We choose the exceptional set as
in part (i), and (2.3), (2.4) hold as well with some B1, Γ independent of `.



A Calderón–Zygmund estimate with applications 11

Fourier integral operators. Another application concerns general
Fourier integral operators associated to a canonical graph. Let χ ∈ C∞0 (Rd),
let a be a standard smooth symbol supported in {ξ : |ξ| ≥ 1}. Let

Sf(x) = χ(x)
�
a(x, ξ)f̂(ξ) eiφ(x,ξ) dξ

where φ is smooth in Rd \ {0} and ξ 7→ φ(x, ξ) is homogeneous of degree 1.
We assume that detφ′′xξ 6= 0 on the support of the symbol. The following
statement sharpens the Lp estimates of [11], [9] for the wave equation and
of [20] for more general Fourier integral operators. One can use general
facts about Fourier integral operators [7] to see that it implies part (i) of
Corollary 3.1.

Corollary 3.2. Let d ≥ 2, 2 < p <∞, r > 0, and suppose that a is a
standard symbol of order −(d−1)(1/2−1/p). Then S : F p0,p(Rd)→ F p0,r(Rd).

The statement is equivalent to the F p0,p → F p(d−1)/p,r boundedness of a
similar Fourier integral operator T of order −(d− 1)/2. We use the dyadic
decomposition in ξ to split T = T0 +

∑∞
k=1 Tk where T0 is smoothing to

arbitrary order. Exceptional sets are also constructed as in [20]. Given a
cube Q with center xQ and diameter dQ ≤ 1 one chooses a maximal

√
dQ-

separated set of unit vectors ξν , thus this set has cardinality O(d−(d−1)/2
Q ).

For each ν let πν be the orthogonal projection to the hyperplane perpendic-
ular to ξν . Form for large C the rectangle ρν(Q) consisting of y for which
|〈y − φξ(xQ, ξν), ξν〉| ≤ CdQ and |πν(y − φξ(xQ, ξν))| ≤ Cd

1/2
Q . The excep-

tional set EQ for |Q| < 1 is then defined to be the union of the ρν(Q)
and has measure O(|Q|−1/d). We refer to [20] for the arguments proving
‖Tk‖Lp→Lp . 2−k(d−1)/p, 2 < p < ∞, and the integration by parts argu-
ments leading to (2.4).

Strongly singular integrals. Define the convolution operator Sb,γ by

Ŝb,γf(ξ) =
exp(i|ξ|γ)

(1 + |ξ|2)b/2
f̂(ξ).

We assume 0 < γ < 1 and 1 < p < ∞. The classical result [4] states that
Sb,γ is bounded on Lp(Rd) if and only if b ≥ γd|1/2−1/p|. Theorem 2.1 can
be used to upgrade the endpoint version to

Corollary 3.3. Let d ≥ 1, 2 < p < ∞, r > 0, b = b(γ) = γd(1/2 −
1/p). Then Sb,γ : F p0,p → F p0,r.

To prove it we define T̂ γf(ξ) = (1+|ξ|2)−γd/2pŜb(γ),γf(ξ). For diam(Q) <
1 we choose for the exceptional set EQ the cube with the same center but di-
ameter C(diam(Q))1−γ , for large C. Then the verification of the hypotheses
with a = γd is done using the arguments in [4] or [10].
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Remarks. (i) For the range 2 ≤ p < s, it is known that the operator
Sb(γ),γ is not bounded on F p0,s (see [2]).

(ii) There are also corresponding results for the range γ > 1 which im-
prove on the results in [10], but they do not fit precisely our setup of Theo-
rem 2.1 (cf. [17] for the corresponding smoothing space-time estimate).

Integrals over curves. We consider the generalized Radon transform
associated to curves given by the equations Φi(x, y) = 0, i = 1, . . . , d − 1,
where the ∇xΦi are linearly independent and the ∇yΦi are linearly inde-
pendent, for (x, y) in a neighborhood U = X × Y of the support of a C∞c
function χ. For simplicity (and without loss of generality) we assume that
Φi(x, y) := Si(x, yd)− yi for i = 1, . . . , d− 1, and ∇xSi are linearly indepen-
dent.

An important model case arises when Si(x, yd) = xi+(xd−yd)d+1−i (i.e.
for convolution with arclength measure on the curve (td, td−1, . . . , t), for a
compact t-interval). The complete sharp Lp-Sobolev estimates for 2<p<∞
are unknown in dimension d ≥ 3. However in three dimensions the sharp
estimates are known for some range of large p (see [14]), and this result is
strongly related to deep questions on Wolff’s inequality for decompositions
of cone multipliers [24]. A variable coefficient generalization of the result
in [14] is in [16]. To discuss and apply the latter result we now let δ be the
Dirac measure on Rd−1 and define the generalized Radon transform R as
the operator with Schwartz kernel

K(x, y) = χ(x, y)δ(~Φ(x, y)).

Again we shall also consider the dyadic pieces Rk with Schwartz kernel

(3.2) Rk(x, y) =
�
β(2−k|τ |)χ(x, y)eiτ ·~Φ(x,y) dτ.

The analogue of the rotational curvature now depends on τ ; we define it as
a homogeneous of degree zero function and, for |τ | = 1, set

κ(x, y, τ) = det

(
τ · ~Φxy ~Φx
~Φy 0

)
=

d−1∑
i=1

τi det(Sixyd S
1
x · · · Sd−1

x ).

Note that for d ≥ 3 there are always directions where κ(x, y, τ) vanishes.
In [16] the case d = 3 is considered; we refer to this paper for further

discussion. Let M = {(x, y) ∈ U : ~Φ(x, y) = 0} and let N∗M be the
conormal bundle. We assume that (N∗M)′ is a folding canonical relation
and satisfies an additional curvature condition. To describe the latter one
consider the fold surface

L = {(x, τ · ~Φx(x, y), y,−τ · ~Φy(x, y)) : ~Φ(x, y) = 0, κ(x, y, τ) = 0},
and assume that the projection L → X has surjective differential. Thus for
any fixed x the set Σx = {ξ ∈ R3 : (x, ξ, y, η) ∈ L for some (y, η)} is a two-
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dimensional conic hypersurface, and the additional curvature assumption is
that Σx has one nonvanishing principal curvature everywhere (see [5], [16]
for further discussion). For d = 3 this covers perturbation of the translation
invariant model case.

Fix ` and, for k > 3`, define

R`k(x, y) =
�
η(2−k|τ |)χ(x, y)β̃1(2`κ(x, y, τ/|τ |)) eiτ ·~Φ(x,y) dτ,

where β̃1 is supported in {ξ : C−1 ≤ |ξ| ≤ C} for large C, and, for k = 3`,
define R`k(x, y) in the same way but with β1 replaced by β0, a smooth cutoff
function which is equal to 1 in a C-neighborhood of the origin. LetR`k be the
operator with Schwartz kernel R`k. We then have to estimate the Lp operator
norm for

R` :=
∑
k≥3`

R`k,

for each l > 0.
In [16] it is shown, based on the previously mentioned Wolff inequality,

that under the above assumptions

‖R`k‖Lp→Lp . C(ε◦, p)2−k/p2−`(1−ε◦)/p, p > pW .

Here (pW ,∞) is the range of Wolff’s inequality (in [24], pW = 74, but this
has been improved since). Standard L2 estimates (see [13], [12]) show that
for k ≥ 3` the operators R`k are bounded on L2 with norm O(2(`−k)/2). By
interpolation,

‖R`k‖Lp→Lp . 2−k/p2−`ε(p) with ε(p) > 0 for p > (pW + 2)/2.

We claim that this yields the boundedness result

Corollary 3.4. Let (pW + 2)/2 < p <∞, r > 0. Then R : F p0,p(R3)→
F p1/p,r(R

3).

To see this we use the assumption that ∇xSi are linearly independent
and thus by integration by parts one can find a constant C0 depending on ~S
so that

‖ΠkR`k′Πk′′‖Lp→Lp ≤ CN min{2−kN , 2−k′N , 2−k′′N}
provided that max{|k − k′|, |k′ − k′′|} ≥ C0, k

′ ≥ 3l.

Straightforward arguments (such as those used for the error terms in the
proof of Corollary 3.1) reduce matters to the inequality

(3.3)
∥∥∥(∑

k>0

|2k/pΠk+s1R`kΠk+s2f |r
)1/r∥∥∥

p

. 2−`ε
′(p)
∥∥∥(∑

k>0

|Πk+s2f |p
)1/p∥∥∥

p
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with ε′(p) > 0 for p > (pW + 2)/2. Here |s1| ≤ C0 and |s2| ≤ C0. Indeed we
apply, for fixed `, Theorem 2.1 with Pk = Πk+s1 , fk = Πk+s2f , and Tk = R`k
if k ≥ 3` (and Tk = 0 otherwise). For p > q > (pW + 2)/2 assumption (2.1)
holds with A . 2−`ε(p) and assumption (2.2) holds with B1 . 2−`ε(q). We
check assumption (2.4). By an integration by parts argument we derive the
crude bound

|R`k(x, y)| ≤ CN
22k

(1 + 2k−`|y′ − ~S(xQ, y3)|)N
.

Now for a given cube Q with center xQ we let

EQ := {y : |y′ − ~S(xQ, y3)| ≤ C2` diam(Q)}
if diam(Q) ≤ 1. If diam(Q) ≥ 1 then we let EQ be a ball of diameter
C2` diam(Q) centered at xQ. Clearly assumptions (2.3) and (2.4) are satis-
fied with Γ . 23` and B1 . 22`. By Theorem 2.1,∥∥∥( ∑

k≥3`

|2k/pPkR`kfk|r
)1/r∥∥∥

p
. (1+`)2−ε

′(p)`
(∑

k

‖fk‖pp
)1/p

, p >
pW + 2

2
,

which concludes the proof of (3.3) and yields

‖R`f‖
F p

1/p,r

. (1 + `)2−ε(p)`‖f‖
F p0,p

.

Corollary 3.4 follows by summation in ` ≥ 0.

Remark. A similar strengthening, with a similar argument, applies to
the restricted X-ray transform model in [15].
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