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Homology and cohomology of Rees semigroup algebras
by

FREDERIC GOURDEAU (Québec), NIELS GRONBEK (Copenhagen),
and MICHAEL C. WHITE (Newcastle upon Tyne)

Abstract. Let S be a Rees semigroup, and let £*(S) be its convolution semigroup
algebra. Using Morita equivalence we show that bounded Hochschild homology and coho-
mology of ¢*(S) are isomorphic to those of the underlying discrete group algebra.

1. Introduction. In this paper we calculate the simplicial cohomology
of the ¢'-algebra of Rees semigroups, motivated by the explicit computa-
tions of the first-order [2] and second-order cohomology groups [4] of several
Banach algebras. These papers contain a number of results showing that
the simplicial cohomology groups (in dimensions 1 and 2 respectively) of
¢'-semigroup algebras are trivial for many of the fundamental examples of
semigroups. The first paper [2] considers the first-order simplicial and cyclic
cohomology of Rees semigroup algebras, the bicyclic semigroup algebra and
the free semigroup algebra. The second paper [4] shows that the second sim-
plicial cohomology vanishes for the semigroup Z., semilattice semigroups
and Clifford semigroups. It should be noted that in each of these papers
the arguments were mostly ad hoc. Subsequently the papers [10] and [9],
co-authored by two of the present authors, cover the case of the third coho-
mology groups. In these papers there is some attempt at systematic methods
which might be adapted to cover the case of all higher cohomology groups,
but the authors were not able to do this at that time. Finally, the papers
[6]-8] show how to calculate the higher order simplicial cohomology groups
of some of these algebras. These latter papers do not use ad hoc calculations,
but general homological machinery, such as the Connes-Tsygan long exact
sequence and topological simplicial homology to deduce their results. The
present paper belongs to the latter family of papers, in that it uses general
homological tools.
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Our primary concern is that of Rees semigroups. These semigroups have
played an important role in the understanding of homological properties of
semigroup algebras. In particular amenability of semigroup algebras can be
described in terms of a principal series for the semigroup with factors being
Rees semigroups (see [5, Theorem 10.12]).

The proofs in this paper are based firmly on the Morita equivalence meth-
ods developed by the second-named author [I], [I2]. These methods apply
to the class of so-called self-induced Banach algebras. Bounded Hochschild
homology and cohomology are Morita invariant within this class, provided
that coefficients are chosen appropriately.

We briefly describe our general approach. For a semigroup, 7T, with an
absorbing zero, (), there are two Banach algebras that naturally arise, the
discrete convolution algebra ¢!(T), and the reduced algebra A(T) (to be
defined below) associated with the inclusion ) < T'. In the case of a Rees
semigroup, S, with underlying group, G, we prove that A(.S) is Morita equiv-
alent to £1(G). This may be interpreted as a manifestation of a basic fact
from algebraic topology that for a path connected space X the fundamen-
tal groupoid 7(X) and the based homotopy group 7;(X,a) are equivalent
categories.

Our results then hinge on Theorem 3.1 in which natural isomorphisms
between the homology and cohomology of .A(S) and those of the underlying
group algebra are established by means of Morita equivalence. Using an ex-
cision result from [I7] we prove that the homology and cohomology of ¢1(.S)
and of A(S) are isomorphic for a large class of coefficient modules. Since
?1(S) and A(S) are both H-unital (cf. [19]), we further obtain homology and
cohomology results for the forced unitizations ¢*(S)# and A(S)*. From this
we derive our main result that for a Rees semigroup, S, the simplicial co-
homology H"™(¢1(S),¢*(S)*) (n > 1) of the semigroup algebra is isomorphic
to the simplicial cohomology H"(¢1(G), 1 (G)*) (n > 1) of the underlying
group algebra.

2. Basics. A completely 0-simple semigroup is a semigroup which has
a 0, has no proper ideal other than {0}, and has a primitive idempotent,
that is, a minimal idempotent e in the set of non-zero idempotents (or,
precisely, an idempotent e # 0 such that, if ef = fe = f # 0 for an
idempotent f, then e = f). Such semigroups arise naturally and notably in
classification theory as quotients of semigroups by ideals. It is an important
result that any completely 0-simple semigroup is isomorphic to what we call
a Rees semigroup (and conversely). For this result and more background,
see |14, Chapter 3 and Theorem 3.2.3]. We now give the definition of a Rees
semigroup and some special cases of Rees semigroups to illustrate that many
natural semigroups are of this form.
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The data which are required to define a Rees semigroup are given by two
index sets I and A, a group G, and a sandwich matriz P. We introduce two
zero elements: the first, o, is an absorbing element adjoined to G to make the
semigroup denoted by G°. The second element, ), is an absorbing zero for
the Rees semigroup itself. The sandwich matrix P = (p);) is a set of elements
of G° indexed by Ax[I such that each row and column of P has at least one
non-zero entry. The Rees semigroup S is then the set (IxGxA)U{0}, where
() is an absorbing zero for the semigroup, and the other products are defined
by the rule

i, jh, j o),
R B
2o

2.1. Examples. There are two extreme, degenerate cases which provide
good intuition for the logic of calculations.

The first is the case where I and A are just singletons and the sandwich
matrix consists of the identity of G. In this case S is just G°. The reduced
semigroup algebra A(S) defined below will give us £!(G) in this case.

The second case has the group, G, being trivial and the index sets being
both equal to the set of the first n natural numbers {1,...,n}. The sandwich
matrix is diagonal with the group identity repeated along the diagonal. If we
identify G with {1} C C the Rees semigroup becomes the system of matrix
units together with the zero-matrix, S = {E;; : 1 < 4,5 < n} U {0}, and
?1(S9) is the algebra of complex (n 4 1) x (n + 1) matrices which are 2 x 2
diagonal block matrices consisting of an upper n x n block and a lower 1 x 1
block. The reduced semigroup algebra, A(S), does not have this deficiency
and is exactly the matrix algebra, M, (C).

Our third example is from homotopy theory and is almost generic for
the concept of Rees semigroups. Recall that a small category in which ev-
ery morphism is invertible is called a groupoid. It is connected if there is a
morphism between each pair of objects. The canonical example is 7(X), the
fundamental groupoid of a path connected topological space X . The objects
are the points of X and, for each z,y € X, the morphism set 7(X)(z,y) is
the set of homotopy classes relative to z, y of paths from z to y with composi-
tion derived from products of paths. In particular 7(X)(x,z) = m (X, x) for
each x € X, so that the fundamental group of X at x is identified with the
full subcategory of 7(X) with just one object x. Since X is path connected,
T (X, x) = m (X, y) for each x,y € X. For details see [3].

Fix a € X and set G = 7m1(X,a). We associate Rees semigroups to
m(X) in the following way. For each x € X choose s, € n(X)(a,z) and
ty € m(X)(x,a). This gives bijections 9 ,: 7(X)(z,y) — G defined as

Yoy(y) = sa7ty, xy € X, ven(X)(z,y).
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With this we get

¢x,z (77/) = ¢x,y('7) (Syty)_1¢y,z(’7/)

for z,y,z € X, v € n(X)(z,y), v € 7(X)(y,2). Let I, A be sets and
consider maps a: I — X, §: A — X. We define multiplication on (I x G x A)
U {0} as follows. Fori,j € I, g,h € G, A\, € A, put v = w;(li) B(/\)(g), v =
Vo) an (h) and set
. . (Z.>¢oc % (’Y’Y’)’M) (Oé(]) = /8()‘))7
()G = {7000

0 (a(f) # BA),

so that the product is simply given by products of paths, when defined. The
sandwich matrix is

[ (atan) ™t (i) = BV,
o {o (ali) # BOV)).

The condition that the sandwich matrix (py;) has a non-zero entry in
each row and each column is a(l) = 5(A).

It is a simple fact, but crucial to the use of groupoids in algebraic topology
(cf. [3, Chapter 8|), that the fundamental groupoid 7(X) and the based ho-
motopy group 71 (X, a) are equivalent categories. Our main result on Morita
equivalence is a manifestation of this fact in the setting of convolution Ba-
nach algebras.

2.2. Background on homological algebra. The main result of this
paper concerns bounded homology and cohomology of Banach algebras, so
we will give a brief description of the theory of homology and cohomology
of Banach algebras, as we fix the notation we will use for this paper. For
further details we refer to [13].

For a Banach algebra A we denote the categories of left (right) Ba-
nach A-modules and bounded module homomorphisms by A-mod (respec-
tively mod-.A). If B is also a Banach algebra, the category of Banach A-B-
bimodules and bounded homomorphisms is A-mod-B. A full subcategory is
a subcategory € which includes all morphisms between objects of €.

Let A be a Banach algebra, let A% be its forced unitization, and let
X € A-mod. The bar resolution of X is

BAX) 0= X - AFRX — ATRADX «— -
CATRAD BABX — -
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in which the arrows denote boundary maps

bla; ® ) = ayx,
n—1
bla1 ® - ®a, @) = Z(—l)’“*la1®--~®akak+1®---®x

k=1

+ (D" ® - @ an_1 ® apr.
Similarly we define the bar resolution for X € mod-A. It is a standard
fact that (A, X) is a complex, i.e. the compositions of two consecutive
boundary maps are trivial, and that this complex is contractible, i.e. there
are bounded linear maps

s: X S AP DX, s APSATSX » AF QAP G x
such that sb + bs = id. For further details, cf. [13].

The simplicial complez of A is the subcomplex of #(A, A) with the first
tensor factor in A rather than A%:

F(A): 0 A ABDA oo AD
A module X € A-mod-B is induced if the multiplication
ARAX @B — X:a® 1 ®5b— azb

is an isomorphism. If A is induced as a module in A-mod-A, then A is
self-induced.
A bounded linear map L: EF — F between Banach spaces is admissible
if ker L and im L are complemented as Banach spaces in E respectively F'.
A module P € A-mod is (left) projective if, for every admissible epimor-
phism ¢: Y — Z, all lifting problems in A-mod

P
/
<
%
Y —>Z—>0
can be solved. If all, not just admissible, lifting problems can be solved, then

P is strictly projective. The module P is (left) flat if for every admissible
short exact sequence in mod-.A

0—-X—-Y—-272-0
the sequence

0= X@UP—>Y@uP—Z@4P—0

is exact, and strictly flat if the requirement of admissibility can be omitted.
The fundamental concept of our approach is Morita equivalence.



110 F. Gourdeau et al.

DEFINITION 2.1. Two self-induced Banach algebras A and B are Morita
equivalent if there are induced modules P € B-mod-A and @ € A-mod-B
so that

PR34Q=B and Q®&gzP = A,
where the isomorphisms are implemented by bounded bilinear balanced mod-
ule maps [-,-]: P x Q — Band (+,-): Q x P — A satisfying
p.a]-p'=p-(a,0), a[pdl=(ap)-d, ppeP qqdecQ.

Our objective is to describe bounded Hochschild homology and cohomo-
logy of Rees semigroup algebras in terms of the homology and cohomology
of the algebra of the underlying group. First we define homology.

DEFINITION 2.2. For X € A-mod-A the Hochschild complex is
0<—X<—X®A<—--~<—X®A®"<—~-,
with boundary maps given as

M(z®a1® - Qap) =241 Q®az @ - @ ay
n—1
+2@ ) (-)fa1 @ @ apaps @ - @ ap
k=1

+(-D"apr®a1 @ @ ap_1.

The homology of this complex is the bounded Hochschild homology of A
with coefficients in X, H,(A,X), n = 0,1,.... The bounded Hochschild
cohomology of A with coefficients in the dual module X*, H"(A, X*), n =
0,1,..., is the homology of the dual complex

0—>X*—>(A@X)*H‘--H(A®"®X)*H-'~.

The important concept of H-unitality [19] can be expressed in terms of
bounded Hochschild homology. This is essentially the content of |19, Re-
mark (3)]. We use it as a definition.

DEFINITION 2.3. A Banach algebra A is H-unital if H, (A, X) = {0},
n > 0, for all trivial modules X € A-mod-A, i.e. modules with AX =
XA ={0}.

Our main result hinges on the fact that bounded Hochschild homology
and cohomology under certain conditions are Morita invariant (cf. [12]). We
state the version that we need in the paper.

THEOREM 2.4. Let A and B be self-induced Morita equivalent Banach
algebras with implementing modules P € B-mod-A and Q € A-mod-B. If
P is right flat as a module in mod-A and left flat as a module in B-mod,
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then there are natural isomorphisms
Hn (A, X) = Ho (B, PEAXB4Q) and H"(A, X*) = H"(B, (POAXB4Q)")
for all induced modules X € A-mod-A.

Proof. To establish the homology statement we briefly recall the Wald-
hausen first quadrant double complex. For details we refer to [12, pp. 132—
133]. Set N = X &4 Q. Then N € A-mod-B and N @5 P = X, so we must

prove that H,,(A, N @z P) = H,(B,P &4 N) and similarly for cohomology.
We set out by noting that N ® E € A-mod-B for all Banach spaces E with
the module operations inherited from N. In particular we regard N BA80m—1)
and N & B®(1) as modules in A-mod-B for all m,n € N in this way. For
each m € N the right bar resolution Z(B, N & A‘g(m*l)) is a complex in
mod-B, so we may form the complexes Z(B, N ® A®(m_1)) ®g P, meN.
Similarly we may form the complexes P &4 %(A, Bon-1) & N), n € N. We
combine these complexes into a double complex in the first quadrant by set-
ting the mth column to be A(B, ABm=1) & N) &g P and the nth row to be
P®4B(A N 5’@(”*1)). On the axes n = 0, m = 0 we use the Hochschild
boundary maps. This is possible since the (m, n)-entry up to a permutation
of tensor factors will be P& N & A®(Mm=1) & BB(n=1) for m,n > 1 regardless
of which of the two bar resolutions stipulates it.

BE-DVZPE 4N <~ PAN ABm-1) g BB(n-1)

i

N@gP<——:- N &g P& ABmD)

It is easy to show that the diagram is commutative. By [I1, Lemma 6.1],
to prove our statement it suffices to show that columns and rows are acyclic
for m,n > 1. As the bar complexes are contractible, this follows from the
assumed flatness properties of P.

Dualizing the Waldhausen double complex we obtain the cohomology
statement. =
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2.3. Semigroup algebras. Given a semigroup 7T, the semigroup algebra
is the Banach space ¢!(T), equipped with the product which extends the
product defined on the natural basis from T, by bilinearity, to the whole
of £(T). Throughout, we denote an element of the natural basis for £(T),
corresponding to t € T', by ¢ itself.

An absorbing element for a semigroup T is an element ) € T so that
th = (0t = () for all t € T. Obviously there is at most one absorbing element
in T. If () is absorbing, then C{ is a 1-dimensional 2-sided ideal of £} (T'). Our
calculations are more easily done modulo this ideal.

DEFINITION 2.5. Let T' be a semigroup with absorbing element (). The
reduced semigroup algebra is
A(T) = ¢(T)/Ch.
As a Banach space, A(T) is isometrically isomorphic to £1(T\ {#}) and the
multiplication is given by
st:{St ifst#0in T,
0 ifst=0inT.
For X € (1(T)-mod-¢*(T) the reduced module is
~ X
¥ AEx + X0)
cl(...) denoting closure. The reduced module is canonically a module in

A(T)-mod-A(T).

For later use we note that, if the semigroup satisfies T2 = T, then the
multiplication maps

(NT) & NT) — (1(T) and A(T)® A(T) — A(T)
are both surjective.

ExXAMPLE 2.6. The concept of reduced semigroup algebra fits in the more
general context of extensions of semigroups. If I is a semigroup ideal of a
semigroup 7', then the equivalence class I of the Rees factor semigroup 7'/I
is an absorbing zero and we get the corresponding admissible extension of
Banach algebras

0— (1) = ¢4T) — A(T/I) — 0.

Note that every module in X € A(T)-mod-A(T) can be obtained as a
reduced module from a module in ¢} (T)-mod-¢*(T), simply by extending to
an action of T by )X = X0 = {0}, so that in this case X = X

From [I7] we get the following proposition relating the Hochschild ho-
mology and cohomology of /!(T) and A(T).
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PROPOSITION 2.7. Let X € (}(T)-mod-¢*(T) be such that 0X = X0.
Then

Ho (0T, X) 2 Ho(AT), X)  and H"(0(T), X*) = H"(A(T), (X)*)
form=0,1,....
Proof. By [17, Theorem 4.5] we have the long exact sequence
o= Hp(CP, 0X) — Hn(6H(T), X)
— Hn(A(T), X) — Hus1(CO,PX) — -+ .

As C) = C we have H,(C0D,0X) = {0} for all n > 0, yielding the claim
about homology. A similar application of [I7, Theorem 4.5] to cohomology
gives the other statement. =

As a consequence, since our concern is to determine Hochschild homol-
ogy and cohomology, we shall work with reduced semigroup algebras in the
following.

2.4. The Rees semigroup algebra. For the remainder of the paper
we fix a Rees semigroup, S, with index sets I and A over a group G. We set

Sy={i} xGx{\}, iel, Ne A
Then
A(S) = € (i5y)

el
AeA

is a decomposition of A(S) into an £!-direct sum of subalgebras such that
forall4,j € I and A\, u € A,

018y = 04(G) if pyi # o,
Sy - €' (;8,) = {0} if pyj = o.
The isomorphism above is implemented by the semigroup isomorphism
G =i Sxi g (i,9p3; s A)-
Since 01 (;S)) - 01(;S,) € £1(;S,) for all i, j € I and A, u € A, this decom-
position is organized as a rectangular band. We further put
S={i} xGxA, iel,
Sy=1IxGx{\}, AeA,
so that for each i € I the subspace (1 (;5) = @, £'(:S)) is a closed right
ideal of A(S) and for each A\ € A the subspace ¢}(S)) = @,.; 1 (;S)) is a

closed left ideal of A(S).

With our fixed Rees semigroup we establish a number of generic proper-
ties of Rees semigroup algebras.

i€l
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PROPOSITION 2.8. Each (1(;S), i € I, is a closed right ideal with a left
identity, and each £1(Sy), X\ € A, is a closed left ideal with a right identity.

Proof. Given an element of the indexing set i € I there is, by the property
of the sandwich matrix P, a non-zero entry p,,;, for some p € A (as each row
and column has a non-zero entry). We define e¢; = (i, p;il, 1). The element
e; acts as a left identity for s € ;5 as

eis = (1,0 1) (1,9, X) = (i, P Puigs ) = (6,9, 1) = s.

In particular e; is idempotent and is clearly a left identity for £!(;S). Sim-
ilarly, on the right we have a non-zero element py; of P, which gives the
required element as (j, p;\jl, A). =

Note that the idempotent e; is not necessarily unique. Such an idempo-
tent can be written down using any index from A which gives a non-zero
entry in P. However, in what follows it will be useful to have a fixed family
of left and right idempotents in mind.

DEFINITION 2.9. We fix a family of left (and right) idempotents denoted
{ei}ier (and {fa}rea), which are left (respectively right) units for the 1 (;S)’s
(respectively the £1(S))’s).

PROPOSITION 2.10. For each i € I, the right ideal £1(;S) is strictly pro-
jective in mod-A(S) and, for each N\ € A, the left ideal *(Sy) is strictly
projective in A(S)-mod.

Proof. We give the proof for £1(;S) as the other is completely analogous.
Let q: Y — Z be an epimorphism in mod-A(S) and consider the lifting
problem

1(;9)
e
o0 s
£ q
Y Z 0
Choose y; € Y so that ¢(y;) = ¢(e;) and define for s € I x G x A

95(61'5) = Yi€;S.
)

Since ;S = ;(I x G x A) in A(S), the universal property of £!-spaces provides
a bounded linear map ¢: ¢1(;8) — Y such that go ¢ = ¢. Clearly ¢ is a
right module map. =

COROLLARY 2.11. The Banach algebra A(S) is strictly projective in
mod-A(S) and in A(S)-mod.

Proof. We utilize the direct sum decomposition A(S) = @,¢; £*(;S) in
mod-A(S). Consider the lifting problems
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A

where k;, i € I, are the natural inclusions and ¢;, i € I, are the lifts of ¢ ox;
constructed in the proof of By the open mapping theorem applied to g,
we can choose the elements y; such that |ly;|| < C for some constant C, and
therefore such that ||¢;]| < C for all i € I. Thus there is a unique module
map ¢: A(S) — Y with ¢ o r; = ¢; for all i € I. Since both g o ¢ and ¢
complete the direct sum diagram for the maps ¢ox;, it follows by uniqueness
of universal elements that g o gB = ¢.
The case of left projectivity is completely analogous. =

COROLLARY 2.12. The Banach algebras A(S) and ¢*(S) are H-unital.
In particular they are self-induced.

Proof. The statement about A(S) is a general fact about one-sided pro-
jective Banach algebras with surjective multiplication 4 ® A — A. Let
p: A — AR Abea splitting of multiplication provided by right projec-
tivity of A. Then p® 1: ABn  AB(HD) g contracting homotopy of the
simplicial complex:

0 A A®2

N

0 A ; A®2 . A®3

To see this, let a1 ® - Q@ a, € A®" Then
pR1(bla; @ - ®ayp)) =plaraz) ®az @ -+ R a, — plar) @blag @ -+ @ ay,)
= plar)az @ -+ @ an — pla1) @ b(az ® - -+ @ an),
and
bp@l(a @ - ®ap)) =01 @+ Qan
—plar)az @ -+ @ ap + plar) @blaz @ - -+ @ ay),

so that (p®1)b+b(p® 1) =id.

For a trivial module X the Hochschild complex is —X & .7#(A). Since

S (A) is contractible, it follows that H, (A, X) = {0}, n > 0, for trivial
modules, i.e. A satisfies the definition of H-unitality (Definition [2.3).
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As X = X for any trivial module, the statements about £1(S) follow
from Proposition 2.7 =

2.5. Morita equivalence. With S our fixed Rees semigroup, fix one of

the idempotents e = (i, p;il, A) and put
P=cA(S) and Q= A(S)e,
so that P is the closed right ideal £1(;S) and @ is the closed left ideal ¢1(S)).
Further, let
B =eA(S)e,

so that B = £1(;S)) = (1(G).

For brevity in this section, let A = A(S). Then P € B-mod-A and
Q € A-mod-B. Our main result is

THEOREM 2.13. The modules P and @Q give a Morita equivalence of A
and B, that is, multiplication gives bimodule isomorphisms

AZQ®gP and B=ZP®4Q.

Proof. Clearly multiplication P& Q — B is surjective: see the note right
before Example 2.6l Now suppose that

Zeanbne =0 for Z llean|| [|brell < o0, an, by, € A.
n

n

Then
Zean ® 4 bpe = Zeanbne@)Ae =0
n n

so that multiplication P ® 4 Q — B is injective. It follows that P ®4 Q = B.
For the reversed tensor product first note that
Gy 95 1) = (4 9, ) (i, Dy > 1)
forall j € I, g € G, u € A, so that the multiplication Q ®z P — A is
surjective.

Identifying Q ® P with £'(Se x eS) a generic element in Q ® P has the
form

t= Z Qghp(J, 9, A) @ (4, h, ).
j?gvhvﬂ
Assume that multiplication on t is 0, i.e.

Z ajghu(ja g, )‘)(Z7 h: ,u) =0.
J:g,h.p
This means that

E , Xjghy = 0
g,h

gpaih=v
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foreach j € I,v€ G, p € A. Now
(]agv)‘) ®B (lah’/J’) = (]797>\) ®B (iaha )\)(lap;zlvu)
= (j797 )‘)(Za h) )‘) ®B (Ilap;:uu)
= (jagp)\ihv )‘) X (i7p;i1>:u)7

SO
Z ajgh,u,(jvg7 )‘) ®B(Z7h7:u) = Z [ Z ajgh,u:| (j777A)®B (vagzlau) = 0.
J:ghsp Vb gih

gpaih=v

It follows that multiplication @ ®,5 P — A is injective so that Q ®5 P = A.
Altogether, A and B are Morita equivalent. m

We want to establish Morita invariance of Hochschild homology. We have
already noted that P is strictly projective in mod-A. We now prove

THEOREM 2.14. The module P = e A is strictly projective in B-mod.

Proof. Consider the direct sum decomposition in B-mod P =P, LGS,
Let

A (iSu)
7 J{m
Ve
£ q
Y Z 0
be the lifting problem, where ¢, is the restriction of ¢ : P — Z. From the
open mapping theorem applied to ¢, there exists y,, with

lyull < C and  q(y,) = du((i, 03, 1)),

for some constant C' not depending on p. Define (5”: 1;8,) — Y by

(0,9, 1) = (1,9, Ny
Then ¢, € B-mod and ||¢,|| < C. Since

a(bu((is 9, 10)) = a((i, g, Nyu) = (i, 9, N)a(yu)
= (i, 9, N (i, y; 1) = du((i, 9, M) (0,03}, 1))
= ¢u((i, g, 1)),

we have solved the lifting problem. Proceeding as in the proof of Corollary
we conclude that P, being a direct sum of strictly projective modules,
is strictly projective in B-mod. =

3. Applications to homological properties. With S our fixed Rees
semigroup and P, @, A = A(S), and B = eA(S)e as in the previous section
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we have functors

A(S)-mod-A(S) — B-mod-B: X — P &4 X ®4Q,

B-mod-B — A(S)-mod-A(S): Y — Q Rz Y &g P.
Replacing B by the isomorphic £}(G) we get functors
&: A(S)-mod-A(S) — ¢1(G)-mod-£1(G),
I': ¢Y(G)-mod-¢'(G) — A(S)-mod-A(S).
We collect our findings in

THEOREM 3.1. The functors @ and I' constitute an equivalence of the
full subcategories of induced bimodules over A(S) and (*(G) and there are
natural isomorphisms of homology and cohomology functors

Ha(A(S), X) = Ha(£1(G), §(X)),
H'(A(S), X*) = H"(£1(G), 2(X)")
for alln > 0.
Proof. The equivalence follows from the natural isomorphisms
QR PIAXD4Q) D P=2AD4 X 4 AKX,

PR4(QRY ®P)24Q2BoY @gB2Y

for induced modules X € A(S)-mod-A(S) and Y € B-mod-B. As P is
strictly projective in B-mod and in mod-.A(S), the statements about ho-
mology and cohomology groups follow from Theorem [2.4] =

We recall that S is a Rees semigroup with underlying group GG. We note
a number of consequences.

COROLLARY 3.2. There are isomorphisms
Hn(A(S), A(S)) = Ha(€1(S), £1(S))
2= Ha(A(S)7, A(S)7) 2 Ha(E1(5)7, £1(5)7)
= H, (£1(G), 11(@))

and
H"(A(S), A(S)") = H"(£1(S), £1(S)")
= HM(A(S)7, (A(S)F)") = H (£1(S)7, (£1(5))")
= H"((1(G), £1(G)")
for allmn > 0.

Proof. The proofs for homology and cohomology are identical. Since the
reduced module of £1(S) is A(S), in both cases the first isomorphism follows
from Proposition The next two isomorphisms follow from H-unitality (cf.
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Corollary|2.12). Finally the last isomorphism is a consequence of Theorem
since @(A(S)) = (1(G). =

A Banach algebra A is weakly amenable if H'(A, A*) = {0}. It is an open
question to determine exactly which semigroups give weakly amenable semi-
group algebras. Our corollary below has in the instance ¢!(.S) been obtained
in [IL Corollary 5.3| by a different approach.

COROLLARY 3.3. The algebras £*(S)%, £1(S), A(S)*, and A(S) are all

weakly amenable.
Proof. The Banach algebra ¢!(G) is weakly amenable [16]. m

A Banach algebra A is biprojective if multiplication IT: A® A — A
has a right inverse in A-mod-A, and is biflat if the dual of multiplication
7 : A* — (A® A)* has a left inverse in A-mod-A.

COROLLARY 3.4. A(S) is biflat if and only if G is amenable.

Proof. By [18, Theorem 5.8(i)] a Banach algebra A is biflat if and only
if it is self-induced and H!(A, X*) = {0} for all induced modules X. As

/(@) being unital, is biflat if and only if it is amenable, the result follows
from [15]. =

The corresponding result for biprojectivity is not immediate from Morita
theory, as a description of biprojectivity in terms of Hochschild cohomology
involves non-induced modules. But we can give a direct proof of

THEOREM 3.5. A(S) is biprojective if and only if G is finite.

Proof. Assume that |G| < co. Choose an idempotent e = (i, p); !.)\) and
define p: A(S )—>A( ) ® A(S) by

(5,9, 1)) |G‘ > Ghghpy N @ (R ), (g, m) €1 x G x A
heG
Then clearly IT op = 1. One checks, as in the proof of biprojectivity of group
algebras over finite groups, that

(9, g 1)) = p((G 9. )G9 1)) = p((G, 9, ) (5 9 1)
for all (j, g, 1), (5',9',1') € IxG x A, so that p is a bimodule homomorphism.
Conversely, suppose that A(S) is biprojective. For a splitting of mul-
tiplication A(S) — A(S) ® A(S) we consider its restriction p: eA(S)e —
eA(S) ® A(S)e. Since p is a bimodule homomorphism we have
p(eae) = eaep(e) = p(e)eae, a € A(S5).

Using the decomposition

eA(S) e_@z (iSu % jSh)

as a direct sum of eA(S)e-bimodules, we may write
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ple) = Z Tuj

with 7,5 € £1(;S, % jS)), j € I, u € A. It follows that
eaet,; = Tyjeae

for all a € A(S), jel, pe A

In the remainder of the proof it will be convenient to use the multiplica-
tion on a projective tensor product of Banach algebras given by a®b-a’ @b’ :=
aa’ @ b'b.

For each j € I, u € A choose f,; € ;S\ and e, € ;S,, so that

IN(7y  fug @ eus) = I (745).

This is clearly possible: If p,; = o choose e,; and f,; arbitrarily. If p,,; # o
choose fu; = (j,p/;jl,)\) and ey; = (i,py; , 11)-

Now put
A= ZTM g ® ey
Joft
Then A € eA(S)e ® eA(S)e and
II(A) =e,

eaeA = Aeae, a € A(S5),

so that eA(S)e has a diagonal and therefore is biprojective. Since e A(S)e =
(@), the group G must be finite. m
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