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Abstract. A generalized procedure for the construction of the inductive limit of a
family of C*-algebras is proposed. The outcome is no more a C*-algebra but, under certain
assumptions, a locally convex quasi *-algebra, named a C*-inductive quasi *-algebra. The
properties of positive functionals and representations of C*-inductive quasi *-algebras are
investigated, in close connection with the corresponding properties of positive functionals
and representations of the C*-algebras that generate the structure. The typical example
of the quasi *-algebra of operators acting on a rigged Hilbert space is analyzed in detail.

1. Introduction. The construction of the inductive limit of a system
{Ba,Jsa : a,8 €F, B> a} where F is a directed set of indices, B, a C*-
algebra and Jg, a *-isomorphism of B, into B3 is a well-known procedure
whose outcome is a C*-algebra B (see, e.g., [5, [10]) which contains copies
of the C*-algebras {8, : a € F} of the given system. The main reason why
B is a C*-algebra is that the injective maps Jg, entering the construction
preserve not only the vector space operations, but also the multiplication;
this fact, in turn, implies that the norms are also preserved when passing
from a C*-algebra B, to a larger C*-algebra B 3. However, situations where
one can easily recognize inside a locally convex space an indexed family of
vector subspaces which can be viewed as the image under some vector space
isomorphism of C*-algebras abound. This is, for instance, the case of the
space £(D,D*) of all continuous linear maps from D into D*, where D
and D* are the extreme spaces of a rigged Hilbert space (D[t], H,D*[t*]),
if the topology t of D is the graph topology defined by a *-algebra 91 of
unbounded operators (an O*-algebra, in the terminology of [12| [I]; precise
definitions will be given in Section [2)) and ¢* is the corresponding strong dual
topology. Similarly, certain spaces of distributions contain natural families
of C*-algebras, typically *-algebras of continuous functions on some (locally)
compact set X. Then it is natural to ask whether, by weakening the assump-
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tions on the family of maps {Jg, : @, 8 € F, § > a} it is possible to recover,
by a generalization of the procedure of inductive limit, more general spaces
and structures. Both the space of operators in a rigged Hilbert space and the
space of distributions can be viewed as locally convex quasi *-algebras over
appropriate distinguished *-algebras contained in them [I, Ch. 10]. This is
exactly the structure we will get as a result of our approach.

Our starting point will be again the system {B,, Jgo : o, € F, > a}
with the proviso that the maps Jg, are only *-isomorphisms of vector spaces,
i.e., they do not necessarily preserve the multiplication; but we will require
a control on their behavior on positive elements (namely, we suppose that
the Jg,’s are Schwarz maps). In Section |3 we will show how this generalized
inductive limit can be constructed.

Other generalizations of the construction of the inductive limit of C*-
algebras have been considered in the literature: one of them consists in
supposing that the embedding maps Jg, act as *-homomorphisms at least
asymptotically, and assuming a boundedness condition on the Jg,’s (see the
review paper by Blackadar and Kirchberg [4] and references therein). The
result of the construction is then also a C*-algebra.

Our approach goes one step further: what we get at the end of our
construction is an involutive locally convex space 2 with an underlying C*-
structure: we will call it a C*-inductive locally convex space, for short. In
the same section we introduce an order, reflecting that of the C*-algebras
which generate the structure, and show that positive elements behave simi-
larly to positive elements of a C*-algebra. Then we consider positive linear
functionals on 2 and give conditions for the existence of a sort of GNS
*-representation of 2.

Finally we go back to the main question and investigate the possibility of
giving 2 the structure of a partial *-algebra or quasi *-algebra in close con-
nection with the family of C*-algebras {8, : a € F}. This is indeed possible,
but it depends on a family {w, : @ € F} which weighs the multiplication.
This ambiguous behavior is not surprising since the same ambiguity arises
for multiplication of operators in rigged Hilbert spaces and for multiplication
of distributions.

Section 4] is devoted to examining, in the light of the results of the pre-
ceding section, the problem of existence of a GNS construction for a general
quasi *-algebra (2, 2lp), starting from a linear functional which is positive
on 2Ap. The representations constructed in this section take values in the
quasi *-algebra of operators acting on a rigged Hilbert space. In particular,
the role of an admissibility condition (called (Q3)) for these functionals is
discussed. Finally, in Section [b] we describe in full detail some examples:
the main one is that of the quasi *-algebra of operators in a rigged Hilbert
space, which has been, in a sense, the starting point of this paper. The last
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examples show that C*-algebras of functions may give rise, by inductive
limit, either to a locally convex *-algebra of functions or to a locally convex
quasi *-algebra of distributions.

2. Notation and preliminaries. For general aspects of the theory of
partial *-algebras and of their representations, we refer to the monograph [1J.
For the convenience of the reader, however, we repeat here the essential
definitions.

A partial *-algebra 2 is a complex vector space with conjugate linear
involution * and a distributive partial multiplication -, defined on a subset
I' C Ax A, with the property that (x,y) € I'if, and only if, (y*, 2*) € I" and
(z-y)* = y*-x*. From now on, we will write simply xy instead of = -y when-
ever (x,y) € I'. For every y € 2, the set of left (resp. right) multipliers of y is
denoted by L(y) (resp. R(y)), i.e., L(y) = {x € A : (x,y) € I'} (resp. R(y) =
{r e (y,z) € I'}). We denote by L2 (resp. R2) the space of universal left
(resp. right) multipliers of 2. In general, a partial *-algebra is not associative.

The unit of a partial *-algebra 2, if any, is an element e € 2 such that
e=¢* e€ RAN LA and xe = ex = x for every x € 2.

Let ‘H be a complex Hilbert space and D a dense subspace of H. We
denote by LT(D,H) the set of all (closable) linear operators X such that
D(X) =D and D(X*) D D. The map X — X' = X*|D defines an involu-
tion on LT (D, H), which can be made into a partial *-algebra with respect
to weak multiplication [I]; however, this fact will not be used in this paper.

Let £F(D) be the subspace of LI(D,H) consisting of all its elements
which, together with their adjoints, leave the domain D invariant. Then
LT(D) is a *-algebra with respect to the usual operations. A *-subalgebra 9t
of LI(D) is called an O*-algebra.

Let MM be an O*-algebra. The graph topology t. on D is the locally convex
topology defined by the family {|| - ||, || - ||x : X € M} of seminorms, where
I€llx = IXE|l, € € D. The topology ty is finer than the norm topology,
unless 91 consists of bounded operators only. If the locally convex space
Dty] is complete, then 9 is said to be closed. More generally, we denote
by 15(932) the completion of the locally convex space D[ty| and put

X :=X[D(M) and M := (X : X em}.

Then 9 is a closed O*-algebra on 5(217{) which is called the closure of 9,
since it is the smallest closed extension of M. By £(D) we denote the set
of ty-continuous elements of Lf(D).

If Ay is a *-algebra, a *-homomorphism 7 : Ay — LI(D,), where D,
is a dense domain in Hilbert space H,, is called a *-representation of 2.
A *-representation is called closed if the O*-algebra m(2ly) is closed. The
graph topology t.(q() Will be briefly denoted by ¢.
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Let 2 be a complex vector space and 2y a *-algebra contained in A. We
say that (,2p) is a quasi *-algebra if

(i) the left multiplication az and the right multiplication za of an ele-
ment a of A and an element x of Ay which extend the multiplication
of Ay are always defined and bilinear;

(ii)) z1(z2a) = (x122)a and x1(axe) = (x1a)xe, for each z1, x5 € Ay and
a €A

(iii) an involution % which extends the involution of 2 is defined in 2
with the property (az)* = z*a* and (xa)* = a*z* for each z € 2
and a € .

Of course, every quasi *-algebra is a partial *-algebra.

Let D be a dense linear subspace of a Hilbert space H and ¢ a locally
convex topology on D, finer than the topology induced by the Hilbert norm.
Then the space D* of all continuous conjugate linear functionals on DJt],
i.e., the conjugate dual of DJt], is a vector space and contains H, in the
sense that H can be identified with a subspace of D* (to avoid confusion,
we denote by B(-,-) the bilinear form that puts D and D* in duality; the
identifications made imply that B(h,§) = (h|&) for h € H and £ € D).
The space D* will always be considered as endowed with the strong dual
topology t* = (D>, D). The Hilbert space H is dense in D*[t*].

We get in this way a Gel’fand triplet or rigged Hilbert space (RHS)

D[t] — H — D*[t*],

where — denotes a continuous embedding with dense range.

Let £(D, D*) denote the vector space of all continuous linear maps from
D[t] into D*[t*]. In £(D, D*) an involution X + XT can be introduced by
the equality

B(X¢,n) = B(X1n,§), VEneD.

Hence £(D,D*) is a *-invariant vector space.
To every X € £(D, D*) there corresponds a separately continuous sesqui-
linear form #x on D x D defined by

Ox(&n) = B(XEm), &neD.

The space of all jointly continuous sesquilinear forms on D x D will be
denoted by B(D,D). We denote by £5(D,D*) the subspace of all X €
£(D, D*) such that Ox € B(D, D). By [I, Prop. 10.2.4], (£s(D, D), £1(D))
is a quasi *-algebra.

In what follows we will use extensively the notion of joint topological limit
(a generalized inductive limit) of a directed contractive family of Hilbert
spaces. We give the definitions below, referring to [3] for more details.
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Let {Hq : @ € F} be a family of Hilbert spaces indexed by a set F upward
directed by < (we denote by (-|+)q and |- ||a, respectively, the inner product
and the norm of H,). Suppose that, for every a, 3 € F with § > «, there
exists a linear map Ug, : Ho — Hg with the properties

(i) Ugq is injective;

(ii) [Ugalalls < ll€alla for all £, € Ha;
(iii) Una = Ia, the identity of H,;
(iv) Uva = U’yﬁUﬁa fa<p< .

The family {Hqo,Uss @ o, € F, 3 > a} is called a directed contractive
system of Hilbert spaces.

If {Ha,Upqa : @, B € F, B > a} is a directed contractive system of Hilbert
spaces, the following statements hold:

(dy) There exists a conjugate dual pair (D*,D) and, for every o € F,
a pair of injective linear maps (11,0, ), where I1, : D — H, and
Ou : Ho — D, both with dense range, such that

(I1) o = Vapllp if a < B (where Vo5 = Uj,,);

(IQ) a = QgUga if o <3

(I3) D* = Uper @a(Ha);

(I4) if £ € D and n € D* with n = Oun, for some a € F and
Na € Ha, then

B(??;f) = B(Qanavé‘) = <Ha§ ‘ 77a>ocv
independently of a such that n € ©,(H,).

(d2) The pair (D*,D) occurring in (d;) is uniquely determined by the
conditions given in (d;), in the following sense: if (D, D;) is an-
other conjugate dual pair for which there exists, for every a € F, a
pair (Ay, I'y), with A, : D1 — H, and [, : Ho — D7, such that
the statements corresponding to (I1)—(I4) are satisfied, then there
exists an injective linear map 7' : DX — D; such that I}, = TO,
and A, = II,T* for every a € F, where T : D; — D denotes the
adjoint map of 7.

The conjugate dual pair (D*, D) described above is called the joint topo-
logical limit of the directed contractive system {Ho,Usqy : o, f € F, > a}
of Hilbert spaces. The spaces D* and D are, respectively, the inductive limit
and the projective limit of the family {H, : o € F}.

Let (D, D*) be the joint topological limit of a directed contractive family
{Ha,Upq : o, 8 € F, 3> a} of Hilbert spaces. We denote by Lg(D,D*)

(*) We notice that Lg(D,D*) = £5(D, D*) when D and D* are the extreme spaces
of a RHS.
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the space of all linear maps X : D — D* for which there exist v € F and
C > 0 such that

(2.1) [B(Xn,8)| < Cll&yllyllmylly, V& = (&), 1= (1) € D.

Assume that, for each a € F, an operator X, € B(H,) (the C*-algebra
of bounded operators in H, ) is given and that there exists @ € F for which
X3 = UgaXaVap whenever @ < a < 3. Then [3] there exists a unique linear
map X € Lg(D,D*) such that X (&) = O3Xgllg(&,) whenever 5 > @. The
map X is called the inductive limit of the operators X, and denoted by
X = lim X,.

3. Vector spaces with underlying C*-inductive structure. We
will consider here a class of locally convex vector spaces which can be ob-
tained, in a certain sense, as the inductive limit of a family of C*-algebras.

3.1. Definitions and basic facts. Let 2 be a vector space over C. Let
F be an upward directed set of indices and assume that, for every a € F,
there is a Banach space 2, C 2 such that:

(L1) A, C Az if o < G5

(12) 2 = Uy Ao

(I.3) for each @ € T, there exists a C*-algebra B, (with unit e, and
norm || - o) and a norm-preserving isomorphism of vector spaces
D, B, — Uy;

(L4) 2o € BY = 25 = (D' Da)(xa) € B, for all a, § € F with 5 > a.

We put Jgo = @Elgﬁa ifa,6€F, 3> a.

If x € 2, there exist o € F such that z € A, and (a unique) 23 € By
such that x = ®3(xg) for all B > a. Then we put

Jga(xa) =xg ifa<p.

REMARK 3.1. By (1.4), Jgo preserves positivity, i.e., Jgo(za) > 0 if
T, € B . From this, it follows easily that J3, also preserves involution, i.e.,
Jpa(28) = (Jga(Ta))™.

The family {Bq, Jgq : B > a} is a directed system of C*-algebras, in the
sense that:

(J.1) for every o, 3 € F with 8 > «, Jgq : Bo — Bp is a linear and

injective map; J,q is the identity of B,;

(J.2) for every a, 8 € F with a < 3, @ = PgJ34;

(J:3) Jypdpa = Jra if @ < <.
We assume that, in addition, the Jg,’s are Schwarz maps (see, e.g., [9]), i.e.,

(sch) Jga(za)*Jga(ra) < Jaa(r)i2a) for all x4 € By, o < .
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For every a, f € F with a < 3, Jg, is continuous [9], and moreover
[Ja(za)llg < [Talla; Vo € Ba.

REMARK 3.2. We notice that Jg, is not, in general, a *-homomorphism
of C*-algebras, since it might not preserve multiplication.

The fact that the Jg,’s preserve the involution allows us to define an
involution in 2. Let = € . Then x € 2, for some « € F, i.e., x = Py (z4)
for a unique zo € B,. Put ¥ := &, (x}). Then if § > a, we have

D5 (2") = 51 (Pa(7)) = Jpalzs) = (Jpa(a))* = 5.
It is easily seen that the map z — z* is an involution in 2. Moreover, by
the definition itself, it follows that every map @, preserves involution, i.e.,
Do (z}) = (Po(24))* for all x4 € By, o € F.

«

DEFINITION 3.3. A locally convex vector space 20 with involution * is

called a C*-inductive locally convex space if

(i) there exists a family {{Bq, Pn} : @ € F}, where F is a directed set
and, for every a € F, B, is a C'*-algebra and @, is a linear injective
map of B, into 2, satisfying the above conditions (I.1)-(I.4) and
(sch), with 2, = &,(B,), o € F;

(ii) A is endowed with the locally convex inductive topology 7inq gener-
ated by the family {{$B,,2,} : a € F}.

For brevity the family {{Bq,®s} : @ € F} will be called the defining
system of A. We notice that the involution is automatically continuous in
Q[[Tjnd].

In the following subsections we will study some properties of the struc-
ture introduced above. Even if not mentioned explicitly, throughout Sec-
tion 3 we will always denote by A a C*-inductive locally convex space.

3.2. Positive elements

DEFINITION 3.4. An element x € 2 is called positive if there exists v € F
such that @ 1(x) € B for all a > ~. We denote by 2+ the set of all positive
elements of 2.

LEMMA 3.5. The following statements hold.

(i) Ewvery positive element x € 2 is hermitian, i.e., x € Ap == {y € A :
y* =y}
(ii) AT is a nonempty convex pointed cone.
(iii) If « € F and xo € BT, then Do (xqy) is positive.

PROPOSITION 3.6. FEwvery hermitian element x = x* is the difference of
two positive elements, i.e. there exist v+, 2~ € AT such that x = 2T — x~.
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Proof. Let x € 2. Then there exists a € F such that z € 2,. Hence
&, (z) € B, and &, (x) = ¢, (v)*. Being a hermitian element of a C*-

«

algebra, @, !(z) can be decomposed into the difference of two positive ele-
ments. Thus, there exist y,y, € B, with yTy, = y,yt = 0, such that

(o R

&1 (x) = yr —y;, from which it follows that z = &, (y}) — Pu(y5).

«

Define 2T = @g(yg), T = ég(yﬁ_) for 3> a,and T =2~ =0, § ¥ a.
Then, by Lemma [3.5(iii), T and 2~ are positive. m
REMARK 3.7. In every C*-algebra €, the decomposition of z € € as

z=2zt—2", with 27,27 € €' and 272~ = 2721 = 0 (orthogonal decom-
position), is unique and has the property
(3.1) [l = max{ ||, |27 [I}-

In our case, the same statement is true for every representative of a hermitian
element  in the sense that, for every a € F such that x € 2, ¢, *(z) decom-
poses as &, 1(z) = 2z} —z, with 2}, 2, € B, 2tz = v 2} = 0, and hence

obeying (3.1). Thus, x = &, (x}) — P, (x), but D (x}), o () are positive
but not necessarily orthogonal; so the uniqueness of decomposition fails.

3.3. Linear functionals. Let w be a linear functional on 2. Then, for
every a € F, w o @, is a linear functional on B,,.

DEFINITION 3.8. A linear functional w : 2 — C is called positive (w>0)
if w(z) >0 for every z € AT.

PROPOSITION 3.9. Letw be a linear functional on . The following state-
ments are equivalent.

(i) w is positive on 2.
(ii) wo @, >0 on B, for every a € F.
(iii) w is continuous on A[Tina] and ||w o Dol = (w o Py)(eq) for every
acT.

Proof. (i)=(ii): Assume that w > 0 and let 7, € B}. Put @ = & (z,);
then © = ®5(Js4(74)) for all B > a and Jgo(za) = 25 € BY, since Jg,
preserves positivity. This implies that = € 2*; indeed, & Y®g(zp)) =2y €
B for all v > 3. In conclusion, (wo @,)(z4) = w(z) > 0 for all a € F.

(i))=(i): Assume wo @, > 0 for all « € F, and let € A". Then
there exists v € F such that & 1(x) € BF for all @ > 7. Thus, w(x) =
(wo ®y) (D, (x)) >0 for all @ > 7, i.e. w > 0.

(iii)«<(ii): This equivalence follows from well-known properties of induc-
tive limits and from elementary properties of C*-algebras. m

For each o € F, let w, be a positive linear functional on B,. Assume
that

(3.2) wa(Jga(za)) = wa(Ta), VEa € Ba, 2> a.
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If € Ay, then 2 = D (24), To € Bo. We define
wa(z) = wa((p;l(x)) = wa(Za).
If B > «, we have
Dp(x) = wp(Py' (1)) = wp(P5' Pa(2a)) = ws(Jpa(Ta))
= wa(Za) = wa(gb;l(x)) = Wa(z).
Thus, we can define a linear functional w on 2 by putting
w(x) =wa(z), x€U,.

The functional w is called the inductive limit of the w,’s : w = li_r)nwa. It is
easily seen that w is a positive linear functional on 2 and w, = w o @, for
every o € IF.

PrOPOSITION 3.10. A linear functional w on A is positive if, and only
if, it is the inductive limit of a family {ws}, where each wy is a positive
linear functional on B,.

Proof. Let w be positive on 2l. Then, by Proposition Wa = wo P,
is positive on B,. We have, for every z, € B, and for § > «,

ws(Jga(Ta)) = (wo %)@51 0 P (za)) = (w0 Pa)(Ta) = wa(Ta)-
Hence (3.2)) is satisfied and limwg is well defined. Let us denote it by W' T8

remains to prove that ' = w.

Let x € A. Then x = @, (x4), To € By By the definition of w’ we have

(1) = wa(a) = w(z). =

3.4. Inductive limit of representations

PROPOSITION 3.11. Let {Hqa,Usqy : o, 3 € F, B > a} be a directed con-
tractive system of Hilbert spaces and denote by (D, D*) the joint topological
limit of this system. Let 2 be the C*-inductive locally convex space defined
by the system {{Bqy,Pn} : @ € F} as in Definition 3.3, For each a € F, let
T be a *-representation of B in H, and assume that
(3.3) 73(Jpa(Ta)) = UpaTa(2a)Use,  VTa € Ba, B> a.

Then there exists a unique linear map 7 : A — Lg(D, D*), preserving invo-
lution, such that

W(@a(w&)) = Qaﬂa(xa)na, V., € %a,

where Oy is the embedding of Hy into D* and Il is the embedding of D
mto He.

Proof. Let x € 2. Then &, (z) € B, for some a € F. The equality (3.3)
implies that

75(851(2)) = Upamta( @3 @) U0r B2 a
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Indeed, we have

Upaa(@5" (2))Uje = mp(J5a®y ' (2) = m((P5 ' Pa) (D5 (2)))

= m5(P5 " (2))-
Hence lim 7, (@, ()) is well-defined. Thus, we put
iy
(3.4) m(z) = lim e (@, (z), = €As CA

Then 7 satisfies the requirements. We shorten (3.4)) by writing = = lim 7q.
The uniqueness follows from the corresponding uniqueness of the inductive
limit of operators. m

THEOREM 3.12. Let & be a C*-inductive locally convex space and let
{{Ba, o} : a € F} be the corresponding defining system. Let w = lim wq
(wa = w o Py) be a positive linear functional on A such that

(A) ifa € F and wg(Jga(2),)J5a(Ta)) = 0 for some > o and x4 € Ba,
then wq(zxs) = 0.

Let {ma, Ha,Ea} be the GNS construction for B, defined by wy. Then:

(i) for every o, 8 € F with o < 3, there exists a contractive injective
linear map Uy such that {Ha,Usq : o, B € F, B > a} is a directed
contractive system of Hilbert spaces;

(ii) of (D,D*) is the joint topological limit generated by the directed
contractive system of Hilbert spaces in (i), there exists a unique
linear map 7 : A — Lg(D, D*), preserving involution, such that

T(Po(2a)) = Oamo(xa) 1y, Vo € B,

where Oy is the embedding of Hy into D> and Il is the embedding

of D into Hy, i.e. ™= li_n)m'a;
(iii) the inductive limit of the wy’s is
x € A there exists £ € D such that
w(z) = B(m(x)§, ),

where B(-,-) is the form that puts D* and D in conjugate duality.

*-representable, i.e., for every

Proof. (i): Making use of (sch), we have
176(Jga(xa))é8115 = (ma(Jaa(®a))Es | m3(Jgal2a))Es)
= (m5(Jpa(23) Ja(®a))ép | €8) 8 = wp(JpalTy) Jpa(Ta)
< wp(JpalThTa)) = wa(Thza) = (Ta(T57a)a | €a)a
= ||7Ta($a)£a||zv

Hence, if we put

Uﬁoﬂra(ma)fa = Wﬁ(Jﬁa(l’a))gﬁ, To € Ba,
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the above inequality implies that Ug, is a well-defined linear map from the
dense subspace {7, (zq)éq : o € B} of Hy into Ha satisfying
(3.5) ||Uﬁa77a(37a)€a”ﬁ <|ma(za)ballas  VTo € Ba,

thus it extends to a contraction of H, into Hg which we denote by the same
symbol. Every map Ug,, B > «, is injective. Indeed, suppose Ugama(Za)éa
= 0. Then

wp(Jpa () Jpa(Ta)) = “Uﬁaﬂa(ma)ga”% =0.
Hence, by (A), ||7a(za)éal|? = wal2ize) = 0. Moreover, Uyo = I, is the
identity of H, and, if o < 8 <+, by the cyclicity of £, and by
UysUsaTa(ta)a = Uypma(Jpa(Ta))és = Ty (JysJpa(2a))Ey
= Ufya'fra(xa)fa>
the equality holds all over H,.
(ii): Let Uje t Hg — Ha be the adjoint of Ug,. Then, using the equality
Wa(Za) = wg(Jga(za)) for every z, € B,, we have
(Ta(Za)a | €a)a = (Ta(JpalTa))a | €8) 8 = (UgaTa(Za)éa | £a) 8
= (Ta(Ta)&a | Uéaﬁm
The density of {7 (xa)Ea : Ta € Bo} implies that Ujals = &a- Hence 1)
holds true and we can apply Proposition [3.11] to the representations m,’s,
proving the statement.
(iii): If z € A, then there exists & € F such that z € A, for all & > @;
now, if 8 > «a > @ then
(@) = 6@ () = (@5 () Ea)o = (3l @5 ()65 1905
= (Upaa (@5 (2))Ujalp | €0)p = (Ta(@5 " (2))Ujals | Upabs)a
= (1085 (D)5 16 | UsoTo€)o = (a0 () T M),
= B(Ouma (P, () 11a€, &) = B(r(2)§, £).

The uniqueness of 7 follows once more from Proposition [3.11] =

REMARK 3.13. In the statement of Theorem there is a seeming
ambiguity: the GNS representation m, of %B,, constructed from wg, is in
fact determined only up to unitary equivalence. It is not difficult to realize,
however, that changing the 7,’s to unitarily equivalent representations gives
essentially the same global representation .

3.5. Sufficient families of positive linear functionals

THEOREM 3.14. Let A be a C*-inductive locally convexr space and let
{{Ba, Do} : a € F} be the corresponding defining system. Assume that

(i) if xa € By and Jgo(xa) > 0 for all > «, then x4 > 0;
(ii) eg € J3a(Ba) for all o, B € F with 5 > o
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Then, for every y € A*, y # 0, there exists a positive linear functional w
on A such that w(y) > 0.

Proof. Let y € A", y # 0. Then there exists o € F such that y = &, (z4)
for a unique positive element z, of B,. Clearly, z, # 0 and z, = wiw,
for some w, € B,. Therefore, there exists a positive linear functional w,
on B, with wy(eq) = 1, such that we(z4) = [|wa | > 0.

Let 8 > o and Mg := J3,(Ba). Then M is a subspace of Bg, stable
under the involution and containing the unit eg. We define, for yg € Mg,
wg(yg) := wa(®a), where x4 is the unique element of B, such that yg =
J3a(Ta). By (i), wg is positive on 9Mz. Thus, it is bounded: |wg(ys)| <
wg(eg)|lysllp for every yg € Mg [5], Th. 4.3.2]. By the Hahn-Banach theorem,
wg has an extension, denoted by the same symbol, to 83, which is continuous
and has norm equal to wg(eg). Hence, it is positive on Bg. We also define
wy = 0 if v < a. By the definition itself, {w, : a € F} satisfies (3.2). Hence
it defines, by taking the inductive limit, a positive linear functional w on .
One has w(y) = wa(xq) > 0. =

REMARK 3.15. Under the assumptions of Theorem the previous
proof shows also that, if f, is a positive linear functional on B, then there
exists a positive linear functional f on 2 such that f, = f o @, for every
ael.

Theorem shows that the set of positive linear functionals on a C*-
inductive locally convex space is, at least under certain circumstances, suf-
ficiently large to separate the points of the cone of positive elements. So we
expect the existence of a faithful representation of 2 in this case.

Let F be a family of representable positive linear functionals on %,
by which we mean that, for each w € F, its components {wy} satisfy
the condition (A) of Theorem For every w € F, we denote by 7,
the linear map of A into Lg(D,, D) constructed in Theorem Every
space D, is built up from a directed contractive system of Hilbert spaces
{HY, Ug, a, € F, B > a}. For each fixed a € F, we can construct the
direct sum of the corresponding spaces:

— PHy = {oes e ene, Z|15W|\2<oo}

weF
If 6 > «, the map
Uo = @Ug,, where (0Uf,)(8€5) = ©(Uf,EL),

defines a contraction of HZ into 'Hg, and {'Hf,Ufa o, €F, B > a}
is a directed contractive system of Hilbert spaces. Hence, it defines a joint
topological limit denoted by (D(7x)*, D(7x)).
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For every o € F we define 77 to be the ordinary direct sum of the family
of *-representations 7¥. It is easily seen that

(36) 7] (Jpa(2a)) = Ul (2a)(Ufa)", V2o € Ba, f 2 o
Then by Proposition the inductive limit 7r = h_r)nng is well-defined.

PropPOSITION 3.16. Let 2 be a C*-inductive locally convexr space and
{{Ba,Pa} : a € F} the corresponding defining system. Assume that the
conditions (i) and (ii) of Theorem are satisfied and that every positive
linear functional on 2 fulfills condition (A). Then there exists a representa-
tion  of A such that w(y) > 0 for every y € AT\ {0}.

Proof. Let us consider the *-representation mx constructed above, with
F the family of all positive linear functionals on 2. By Theorem [3.14] for
every y € AT, there exists a positive linear functional w such that w(y) > 0.
Put, as before, wy = wo®,. Then wy (P, (y)) > 0. This in turn implies that
72 (y) >0 and so 77 (y) > 0. =

67

REMARK 3.17. It is clear that all the assumptions of Theorem and
condition (A) too are satisfied if Jg, is, for 8 > «a, a *-isomorphism or,
in particular, the identity of B, into B3 (of course, this means that B,
is a true subspace of B3). This case is not necessarily trivial, as shown in
Example 5.5

REMARK 3.18. The condition (sch), which has played an important role
in our construction, is certainly satisfied if every Jg, is completely posi-
tive and [|Jgq(eq)|lp < 1 [9, Proposition 9.9.4]. Hence, it is natural to ask
what changes in the previous construction if these stronger assumptions are
satisfied. For instance, one may conjecture that the space which comes out
from our set-up has a richer structure, e.g. is a Banach space. Example
(where Jg, is the identity map from a certain C*-algebra 9B, into another
Bg, with B, C Bg) shows that this is not the case: strengthening in this
way the assumptions does not essentially modify the final structure that
one obtains. Nevertheless, the hypothesis of complete positivity of the Jg,’s
is intermediate between (sch) and the Jg,’s being *-homomorphisms, and
thus, certainly, it deserves a deeper analysis, which we hope to undertake in
the future.

3.6. An algebraic structure for 2. In some cases, as we shall see, it
is possible to define a partial multiplication in 2. This can be introduced by
means of a family w = {wy}, wa € B,. The outcome is the structure of a
partial *-algebra, depending, clearly, on the chosen family w.

Let w = {wq} be a family of elements such that w, € B} and Jgq (wa) =
wg for all o, B € F with 8 > a.
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Let x,y € 2. There exists a € F such that x,y € 2A,. This implies that
also z,y € Ag for all 3 > a. For every 8 > «, there exist x3,y3 € Bg such
that x = @g(z) and y = @5(yg). Put 25 = rgwgyp € Bpy. Let 2(5) € A, for
all B > a, be such that z(g) = ®s(25) = @5(4551(1:) wg @El(y)). If g > g,
then 23y = @p(2p) € Az but in general Ppr(25) # Pp(25). Hence, we can
multiply two elements z,y € 2 if there exists v € F such that 25 = z(g)
for all 3,3 > ~.

DEFINITION 3.19. In 2, partial multiplication x -y of x,y € 2 is defined
by the conditions:

HeF: B0 (Dws; W) = Py (@5 (@)wg ;) (1), V6,5 =7,

z-y=Dp(P5 (2)wsPs' (y), B>

ProrosiTION 3.20. A s a partial *-algebra with respect to the usual
operations and the above defined multiplication.

Proof. Let x,y € 2; we want to prove that if -y is well defined, so also
is y* - z* and (z-y)* = y* - 2*. From z - y € 2, using the fact that every &,
preserves involution, it follows that (z - y)* € 2 and there exists v € F such
that, for every a > ~,

(€ y)" = (Pa(P5 (2)wa®3 (1)) = Pa((P5 (@) wa®y (y)7)
= dsa(@;l(y*)wa@;l(x*)) =y
It remains to prove that, if x -y and x - z are well-defined then, for every

A € C,z- (A\y + pz) is well-defined too. From the assumptions, there
exists 71 € F such that for all a > 1, 2 -y = Do (D, (x)waP, (y)). Since

&7

x - z is also well-defined, there exists v € F such that for all § > ~s,
-z = @5(@51(x)w3d5_1(z)). If v > ~1, 72, then for all o > ~,

AP (D5 () wa P (y)) + 1Pa(P5 () wa P (2))
Do (D5 () wa P (AY)) + Pa(P5 (x) wa 5 (112))
Po(P5 " () wa (B3 (Ay) + D, (12)))
Bo (B, () wa B Ay + p2)) = - (\y + p2). =

PROPOSITION 3.21. The spaces RA™) and LAW) of the universal right,
of A are algebras. Hence, Qléw) = LA N

respectively, left multipliers |(>
RA™) 4s g *-algebra.
Proof. Let y,z € RU™); then y - z is well-defined. To prove that y - z €

RA®)_ consider any x € 2. Since z - y is well-defined, there exists y; € F
such that for all 6,8 > v1, &5(P5 (2)ws; D5 (y)) = @51(@5,1@)1115@5_,1@))

(3) The symbol ) is a reminder of the dependence of the spaces of multipliers on
w = {wa}; we omit a similar reminder for the multiplication itself, to lighten notation.
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and z -y = @5(@(5_1(@105@6_1(3;)). Now (x - y) - z is well-defined too, so there
exists 72 € F such that for all 0,0’ > 79 we have @, (.1 (x - y)w, P, (2)) =
Do (D (- Y)wer @M (2)) and (z - y) - 2 = §o (D, (2 - y)w, P, (2)). If now
T > 71,72 then

(‘75 ’ y) TR = @T(¢;1($ ’ y)wT@;l(z)) = QST(@;l(x)w‘r@;l(y)w'r@;l(z))'
By associativity of 2, for all A\, \' > 7 we can write

DA (D3 ! (2)wa (D3 (1)wa®y ' (2)) = Py (B3 (2) wy (B! (y)wxndy' (2)))-
Hence z-(y- z) is well-defined, so we conclude that y-z € RA. The statement
for LA™ follows by observing that LA™ = (RA™))*, u

COROLLARY 3.22. The following statements hold.

(i) (Ql,ill(()w)) is a quasi *-algebra.
(ii) If A is endowed with Ting, then the maps x — x*, x — a-x, x — x-b,
a,b e Qtéw), are continuous.

Proof. (i): Because of Proposition and the fact Q[éw) is a *-algebra,
we need only prove the module associativity. But this is done by computa-
tions analogous to those in the proof of Lemma [3.21

(ii): The continuity of the involution follows immediately from the def-
inition. Let now a € Ql(()w) and x € 2. Then, there exists o € IF such that
a,r € A,. Hence, for > a, a -z = qjd@?(a)wﬁ@gl(:n)) and

la - zlig) = 9525 (a)ws®5" (2)i(g) = |95 (a)wsPy' (2)]]5

< 125" (@)lgllwslls |25 (@)lls = llwsllsllall szl s):-
Thus x — a -2 maps g continuously into itself for sufficiently large 3 € F.
This implies the continuity with respect to the inductive topology [11 II,
6.3]. The proof for the right multiplication is similar. m

PROPOSITION 3.23. The quasi *-algebra (2, Ql(()w)) has a unit e if, and

only if, every element w,, of the family {wy} defining the multiplication is
invertible and

(3.7) Jpa(wy) =wy', Va,BE€F, 5> a.

In this case, e = Do (w3 ), independently of a € F.

Proof. Assume that (3.7) holds. If we put e := @, (w; "), we also have,
for 8 > a, ¢g(w§1) = &5(Jpa(wzl)) = Po(wy') = e. Thus, for every x € A,

x-e= @5@551(1‘)105@51(@)) =d5(0 7 (2)) =2, B>a

Similarly, e - = x. Hence, e € Ql(()w) and it is the unit of (2, Ql(()w)).

Conversely, assume that (Ql,%l(()w)) has a unit e. Then e = @, (w,) for

some o € F and w, € B,. Put wg = Jgo(wa) for > a. If x € A, then for
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sufficiently large 3, we have x = ®g(x3), 3 € B3, and
r=x-e= @5(@51(:13)105@51(6)).
This implies that
rg = @El(a:)wg@f_}l(e) = xgwgdi/gl(e).
Analogously, we can prove that
rg = @El(e)wgzcﬁ.

Since xg is an arbitrary element of B, we conclude that @gl(e) = wgl.
This, in turn, implies that Jw(wgl) = w;l forally> (3.

PROPOSITION 3.24. The following statements hold.

(i) If a € A and a* - a is well-defined, then a* - a € A*. In particular,

a*-a € AT for every a € Ql(()w).
(i) Ifz €A and a € QLéw), then a* -z -a € AT.

Proof. (i): If the element a* - a is well-defined, there exists v € F such
that, for all 3,3 >+,

D5(P;' (a")wpj (a) = Dy (D5 (a ) wp Py (a)),
a*-a= 455(4551(61*)1054%1(@)).
The positivity of a* - a follows from
@' (a* - a) = @5 (a")wsPy ' (a) = D5 (a) wpdy ' (a) € BY, VB> 7.
(ii): Let # € AT; then there exists v € F such that &, !(z) € BF for all

a > ~. The product a* - = - a is well-defined; hence, there exists 7' € F such
that, for all § > +/,

a* -z a=Ds(P5t (a*)ws®; H(x)ws D5 Ha)).
If o > 7,7/, then (taking into account the associativity of B,)
G, (0" - 1 a) = B, o (B, (a*)wo @, (2)w, D, (a))
=& Y a"wed,  (2)weP, 1 (a) € BT.

It is then clear that a* - 2-a € A", =

By Propositions [3.9 and [3.24], it is easy to prove the following corollary.

COROLLARY 3.25. Let w > 0, a € Ql(()w) and define wy : A — C by
we(x) :=w(a* -z -a). Then wg > 0.

REMARK 3.26. The fact that several different multiplications can be
defined in a C*-inductive locally convex space, depending on the choice of
the family w = {w,}, deserves a comment. The reader may suspect there
is something artificial in our construction. Why not choose, for instance,
Wq = €q, the unit of B,? This is certainly a possible choice. But, in some
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examples, the corresponding spaces of multipliers become too small to make
the partial multiplication of any use. A certain ambiguity in the definition of
partial multiplication occurs, on the other hand, in familiar examples, like
spaces of distributions or in spaces of operators acting in the rigged Hilbert
space (D, H, D*) considered in Example In the latter case, introducing
partial multiplication is really a touchy business, because of the (sometimes
dramatic) pathologies pointed out by Kiirsten and collaborators [6, [7, §]. An
unambiguous definition of multiplication can only be given by fixing suitably
chosen families of interspaces [14] between D and D* (see, also, [I, 2]). In
conclusion, the definition of multiplication through the family w = {w,}
corresponds on one hand to this known ambiguity, and on the other hand
yields a certain flexibility.

4. Quasi *-algebras with C*-inductive structure. Let now (2, 2)
be a given quasi *-algebra and assume that 2 is a C*-inductive locally convex
space whose involution coincides with the involution of (A, 2p).

DEFINITION 4.1. A quasi *-algebra (2, 2lp) is called a C*-inductive quasi
*-algebra if A is a C*-inductive locally convex space with respect to a di-
rected system of C*-algebras {B, Jgq : B > o} and the following conditions
hold:

(i) allmapsz € A za € A,z € A bx € A, a,b € Yy, are continuous
with respect to Ting;
(ii) a*a,a*za € AT for every a € Yy and = € AT.

REMARK 4.2. If there exists w = {wq} such that 2y C Ql(()w) and ab = a-b
for every a,b € 2, then, as shown in Section conditions (i) and (ii) are
automatically satisfied.

PROPOSITION 4.3. Let (A,2p) be a C*-inductive quasi *-algebra and w
be a positive linear functional on 2. Then:

(i) w(a*a) >0 for every a € Ap;
(ii) for every a € Uy, the linear functional w, defined by
we(x) =w(a*za), xe€,

1$ also positive;

(ili) w(b*za) = w(a*z*b) for all a,b € Wy and x € A;

(iv) if © € Uq, there exists y € AL = A, NAT, depending only on «a,
such that

(4.1) lw(b*za)| < ||z|aw(a*ya) 2w (b yb) /2, Va,b e Ap.

Proof. (i) and (ii) follow immediately from the definition of positivity
and from (ii) of Definition As for (iii), it is enough to consider the
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equality
3
1
w(b*xa) = 1 Z i*w((a +i*b)*z(a + i*b)).
k=0

To prove (iv) we begin by showing that, for every x € 2, there exists
B € F such that x € 23 and

(4.2) lw(a*za)| < [|z]|(gw(a"Psleg)a), a € .

Indeed, if z € Ag, then x = Pg(zg) for some x5 € B. Hence, for every
a € A,

|(wa 0 Dp)(26)] = |(wa © Pp) (5" (2))]

< (wa 0 P5)(ep)) 195" (2) 15 = wa(Ps(ep)) 2]l 5).

On the other hand, (w, o @5)(@51(1')) = wgy(x) = w(a*za). Hence
fwlawa)] < ol pn(@a(es)) = 1zl pyolaBo(es)a).  Va € Ao

Now, let € A" and a,b € 2. Define 2%(a,b) := w(b*za). Then it is
easily checked that (27 is a positive sesquilinear form on g x 2.
Hence, for fixed x € AT, the Cauchy-Schwarz inequality holds:

102 (a,b)| < 2%(a,a)20Q%(b,b)Y2,  Va,b e Up.
Then using (4.2)), for a suitable g € F, we get
(4.3) lw(b*za)| < wla*za)?w(b*zb)/?
< |lzllgw(a*Bs(es)a)*w(b B (es)b) /2.

Now we turn to the general case. If z € 2, then x can be decomposed as
r=u+iv=u"—u +iw" —iv” with ut,u~,v" v~ € AT, by Proposition
If € Ag, then also u™,u™, v, v € leg Then using (4.3)), we get

lw(b*za)| < |wd*uta)| + |wb*ua)| + |wb*vTa)| + |w(b*vTa)|
< 2|lul|(gw(a*Ps(eg)a)'/ w(b*Bs(es)b)
+2||ol|gw(a*Bs(eg)a)'/? w(b*Bs(es)b)
< A|z||gyw(a*Ps(es)a) 2w(b* Pg(es)b) /2.
Finally, taking y = 4 @3(eg) € A}, we get the desired inequality (4.1)). =

As we have seen, every positive linear functional over a C*-inductive
quasi *-algebra satisfies the conditions (i)—(iv) of Proposition It is then
natural to ask whether these conditions are sufficient in order to get a GNS-
construction of a general quasi *-algebra (2, 2ly) taking its values in some
space £g(D,D*).

Before going forth, we need an explicit definition of *-representation of
a quasi *-algebra in RHS.
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DEFINITION 4.4. Let (2, 2) be a quasi *-algebra with identity e, and
D, a dense domain in a certain Hilbert space H, endowed with the graph
topology to defined by an O*-algebra M C LT(D;). A linear map 7 from 2A
into £g(Dx, D)) such that:

(i) m(a*) = w(a)' for all a € A,
(i) if @ € A, x € ™A, then w(az) = 7(a)7(x),
(i) 7(Ao) C LT(Dx),
is called a *-representation of 2 in the RHS (Dy[tm], Har, D [toy])-

The following lemma, which allows one to extend a *-representation de-
fined on a domain D to its completion, can be easily proved.

LEMMA 4.5. Let D be endowed with the graph topology ty defined by an
O*-algebra M on D and let X € £5(D,D*). Let D[ty denote the completion
of D with respect to the topology te. Then X has a unique extension X such
that X € £5(D,D*).

Let (2,2(p) be a quasi *-algebra with unit e, and w a linear functional
on 2. Assume that w satisfies the following conditions:

(Ql) w(a*a) > 0 for every a € 2o;
(Q2) w(b*z*a) = w(a*zb) for every x € A and a,b € Ap;
(Q3) for all z € A, there exist 7, > 0 and ¢ € 2y such that

lw(a*z*b)|? < ypw(a*c*ca)w(b*c*eh), Va,b e Ap.

0

Then, starting from w *

= w[%Ay one can define a closed strongly cyclic *-
representation 70, with strongly cyclic vector &,, defined on a domain D;,.
The space D, can be endowed with several topologies finer than that in-
duced by the Hilbert norm. Each of them can be used to construct a RHS
having Dy, as the smaller space. In [I] it was proved that if we endow D
with t;, the graph topology generated by £T(Dm), and w is a linear func-
tional on A satisfying (Q1)—(Q3), then there exists a *-representation 7, of
(A, %) into the corresponding space £g(Dx,,, Dy ) which reduces to 72 on
2o (m, was called the *-representation canonically associated with 72).

DEFINITION 4.6. Let (2, %) be a quasi *-algebra and 7 a *-representa-
tion of gy, with domain D,o. We say that 70 is extensible to 2 if there
exists a *-representation 7 in the RHS (Dyoltro], Hyo, D [t%]) such that
7y = 7°.

PROPOSITION 4.7. Let (A,2y) be a quasi *-algebra with unit e and w a

linear functional on A satisfying (Q1) and (Q2). Let 7° denote the closed
GNS-representation of Ag. Then 70 is extensible to A if and only if w sat-

isfies (Q3).
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Proof. Assume that (Q3) is satisfied. The following argument modifies
that given in [I] only in some points. For this reason we skip all details.

As is known, the GNS representation of g acts on the pre-Hilbert space
2o/Ny, with N, = {a € %y : w(a*a) =0}, as

Wg(b))‘w(a) = Ay(ba), a,b € Ay,

where \,(a) = a+ N, for a € 2y, and then it is extended to the completion
Dy = A(Ao)[tro] (the extension is denoted by the same symbol). The
vector 7, := A, (e) is strongly cyclic for 70.

If x € A, the linear functional z* on D,, defined by

“(Ao(a)) =w(xa), a € Ao,

is continuous, since, by (Q3), there exist v, > 0 and ¢ € 2y such that

|29 (Mo(@))| = [w(z*a)| < yow(c*e)? w(ac*ea)'/? = 7} |7l () A (@)
Hence, there exists a unique {,(z) € Dj, the conjugate dual of Dy[ty],
such that

(@) = () [£(x)),  Va €.

Thus for every = € A, m,(z)\s(a) = & (za), a € Ay, is well-defined and
maps A, (2lp) into D. By Lemma () extends to D,,. The fact that
T, 18 a *-representation is easily checked.

Finally, consider the sesquilinear form 0, ) associated to 7, (), x € A:

107 (2) (A (@), A (0))| = (o (z) Aws(a) | A (b)) = w(b™za)
< v w(b*c*eb)  2w(a* ¢ ea)'/?
= Lllm (@A) |75 ()Au(a)ll,  Va,b € Ap.
This means that 0, is jointly continuous in Dyltro]. Hence m,(z) €
£8(D,,DY).
Vice versa, assume that 70 is extensible to 2; then for every x € A,

Tw(7) € £g(Dy, D), where D, is endowed with t;0. Hence, there exist
Y. > 0 and ¢ € g such that for every a,b € 2,

|w(b*za)| = |0r, () A (@), Ao (D)] < Y2l T () A0 (B)]] |7 ()N ()
= yew(b*c*eb)  2w(a*c*ca)V?,  Va,be Ap. m

EXAMPLE 4.8. Assume that the topology t on a domain D, in a Hilbert
space H, makes (£(D,D*), LI(D)) a quasi *-algebra. For every fixed ¢ € D,
the linear functional wg on £(D,D*) defined by

we(X) = (X¢1E), X € &(D, DY),

satisfies the conditions (i)—(iii) of Proposition As for (iv), we get the
stronger condition (Q3). Indeed, by the definition itself, for every X €
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£5(D, D), there exist vy > 0 and A € LT(D) such that
Jwe(X)| = [(XE] )] < x| A,
or in other terms
Jwe(X)| < yxwe(ATA),
which, in turn, implies
lwe(CTX B)| < yxwe(BTATAB)we(CTATAC),  VB,C € L1(D).

REMARK 4.9. The conditions (Q1)-(Q3) given above look very close to
the conditions (L1)—(L3) used in [I3]. The two groups of assumptions differ
essentially in the third condition (i.e., (L3) and (Q3)). The first one implies
that the corresponding representation lives in Hilbert space, giving rise to
ordinary closable operators, while (Q3) forces the operators to go beyond
Hilbert space.

5. Examples. In this section we collect some examples that illustrate
the ideas developed so far.

5.1. Sesquilinear forms and operators. We will now show that cer-
tain spaces of sesquilinear forms or spaces of operators acting on a RHS (see
[1, 12] for details) provide examples of C*-inductive locally convex spaces
or C*-inductive quasi *-algebras.

ExaMPLE 5.1. Let D be a dense domain in a Hilbert space H. The graph
topology ti, defined by LT(D), is also generated by the system of seminorms

{Il - ”A}AEET(D)7 where

I€la = VI + AL = ||(I + A"A)V%¢||, € eD.

The completion of D[|| - || 4] is a Hilbert space denoted by H 4.

For A, B € L1(D), we write A < B if ||A¢| < || B¢|| for every &€ € D.
If A < B, we define, as in (I;) of Section 2, a linear map Vup from Hp
into H4 in the following way. If £ € Hp, there exists a sequence {&,} of
elements of D which converges to £ with respect to || - || 5. This implies that
{&,} is Cauchy with respect to || - || 4, and therefore it converges to &' € Ha4.
Clearly, ¢ = € and so Hg C H 4. Thus V4p is nothing but the identity Iap
of Hp into Ha. One has ||[Iap€|la < ||| for every £ € Hp. We denote by
Upa : Ha — 'Hp, the adjoint map of I4p, i.e. Upa = I5. One also has
[Usanlls < [nlla for every n € Ha.

Let, as before, B(D, D) denote the vector space of all jointly continuous
sesquilinear forms on D x D, i.e. # € B(D, D) if, and only if, there exists
c¢>0and A € LT(D) such that

(5.1) 005, | < clléllalnlla, V& n € D.
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The involution @ +— 6* in B(D, D) is defined by

0"(&,m) =0(n, &), &neD.
The subspace BA(D, D) of B(D, D) consisting of all # € B(D, D) such
that holds, for a fixed A € LT(D), is stable under involution.
Then, if § € BA(D, D), 0 extends to H4 (we use the same symbol for
this extension) and it is a bounded sesquilinear form on H 4. Hence, there
exists a unique operator X9 € B(H 1) such that

0(¢,n) = (X4&Ima, V& €Ha
Conversely, if X4 € B(H4), then the sesquilinear form 0x, defined by
9XA(£777) = <XA€|17>A7 5)77 € D7
satisfies ([5.1). Thus the map
By: Xy €B(Ha) — 0x, € BAD,D)

defines a *-isomorphism of vector spaces with involution.

If B> A, then
10x4 (&)l = [(Xag|mal < [ Xallaaléllallnlla < [ Xalla,alléllzlnlls,
where || - ||4,4 denotes the operator norm in B(7H4). Hence, there exists a

unique Xp € B(Hp) such that

(Xa&|ma=(Xp&|np, VYneD.
So it is natural to define

JBA(XA) = XB, VXA c %(HA)

It is easily seen that Jpa = @glgﬁ 4. A more explicit expression of Jp4 is
obtained as follows. Let £, € D C ‘Hp. Then

(Jpa(Xa)é|mp = (Xa&|n)a = (Xalap&|Iapn)a = (UpaXalaé|n)s.

The density of D in Hp implies that Jpa(X4){ = UpaXalapé and that
this equality extends to Hp. Hence,

(5.2) Jpa(Xa) =UpaXalap, VXa4€B(Ha), Bx A
It is readily checked that
Jpa(Xa) = (I +B*B) Y(I+A*A) X4, Xa€B(Ha).
Now we prove that (sch) is satisfied. Let X4 € B(H4) and {p € Hp;
put €4 = Iap€p for A < B. Then, using ,
(Jpa(X4)JBa(Xa)éB [EB)B = (JBA(XA)EB | JBA(XA)EB) B
= |UpaXalapésly
< | Xalapénlh = (Xafa| Xaka)a
= (X3 Xa€a|€a)a = (Jpa(X3Xa)iB|EB)B-
Hence, B(D, D) is a C*-inductive locally convex space.
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EXAMPLE 5.2. We denote by £5(D,D*) the space of all linear maps X
from D into D* such that the sesquilinear form on D x D defined by

is jointly continuous in D[t1]; i.e., X € £5(D,D*) if, and only if, there exist
vx >0and A € ET(D) such that

(5-4) 0x (&, ml = (X&) <xl€llalnlla, V&0 eD.

Then £5(D,D*) C £(D,D*), the space of all continuous linear maps from
D[ty] into D*[t{’]. Clearly, if X € £5(D,D*), then 0x € B(D, D).

Conversely, if § € B(D, D), there exists a unique X € £5(D,D*) such
that 6 = 6x. The operator X' € £5(D,D*) corresponding to 6* is the
adjoint map of X, since

(XE|n) = (Xn|E), VEneD.

I:X € £4(D,DX) — Ox € B(D, D)

is an isomorphism of vector spaces preserving involution.

Let £4(D,D*) = I7'B4(D,D). Clearly £4(D,D*) is a subspace of
£5(D,D*) and a Banach space, with norm

X4 = sup  [0x(& )l
€llaslnlla<1

If A < B, then £4(D,D*) C £8(D, D) and ||-||® < ||-||* on £8(D, DX).

The space £5(D,D*) endowed with the inductive topology 7i,q defined
by the family of subspaces {Eé(D,DX) . A € LI(D)} is a bornological
Hausdorff space [12, Section 1.2.IT1].

In conclusion,

X4 € B(Ha) < 0x, € BYD,D) — X € £4(D,D*)

are isometric *-isomorphic Banach spaces (we recall that the multiplication
of B(H 4) is not preserved) and £g(D,D*) is a C*-inductive locally convex
space, isomorphic to B(D, D).

There is, however, something more. Indeed, the pair (£5(D, D*), L1(D))
is a quasi *-algebra, the products of X € £5(D,D*) and A € LT(D) being
defined by

(XA)e = X(A¢) and (AX)¢=A(XE), ¢e€D,
where A denotes the extension of A to D* defined by
(A¢'|n) = (¢'| Aly), ¢ €D, neD.
The conditions of Definition are satisfied by taking, as usual,
£B(D,DX)+ ={X € £5(D,D*) : (X¢|§) >0, V¢ € D}
Hence, (£5(D, D), LT(D)) is a C*-inductive quasi *-algebra.

Thus, the map
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EXAMPLE 5.3. We will show here how to choose a family {W4 € B(Ha4) :
A € L1(D)} so that the partial multiplication defined in £5(D,D*) by the
method of Section would reproduce the quasi *-algebra structure of the
previous example.

Let A € £L1(D). Then (I + A*A)~' € B(H.), as a simple consequence of
the closed graph theorem, and ||(I + A*A)~!{|4.4 < 1. Moreover, for every
&nenb,

(I +AA) € ) a = (I + ATA) 21+ AA)TIE| (1 + ATA) )
= (&In)-
We choose W = {W, : A € LI(D)} with W4 = (I + A*A)~1. We prove
that with this choice, £T(D) ¢ Reg(D, D)) nLeg (D, D)™, Indeed, if
Y € LI(D), then Y € £5(D, D) for some A € LT(D), and the operator Y4 €
9B(H 4) corresponding to Y satisfies Y4 [D = (I+ATA)Y . If X € £5(D,D>),
then X € £3(D,D*) for sufficiently large S € LT(D). Therefore, for every
£eD,
XeWrYré = Xp(I+T*T) "Y1 + TIT)Y¢ = XpYE, T =8,
with X7 = &1 (X).
This implies that X - Y is well-defined and (X - Y)r = X7Y. Hence
(X -Y)r&|mr = (XrYE|n)r = (XYE[n).
In order to prove that also Y - X is well defined we take into account that
Yy is also equal to the operator Y (I + A*A) where Y denotes the extension
of Y to D* defined in Example Thus we have
YeWrXré =Y + TT)(I + T°T) ' Xq¢ = YV Xr€.
Hence, for every &,n € D,
(V- X)r& | mr = (Y Xr& [ m)r = (Xr& [ Yin)r = (XE|YTn),
which proves the statement.

Finally, we notice that if I is the identity map from D into D>, then
I={W;':Aec Ll(D)}, as expected from Proposition

5.2. Functions and distributions

EXAMPLE 5.4. Let (X, X) be a measurable space and (X, Y) the set
of positive measures on (X, X). If u, v € M(X, X), a natural order is defined
by

p=v & puF)<v(E),VEcX.
This order makes (X, Y) a directed set.
To fix notation, if p € M(X,Y) and f is a measurable function, we

denote by | f|/5 the L>®-norm with respect to u and, as usual, we put
L*°(X, u) = {f measurable: ||f||5 < oo}. As it is well-known, L>(X, p) is
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a C*-algebra. If u =< v, then || f|% < ||f]|5%, hence L>(X, u) C L®(X,v).
If Loo(X,M(X, X)) denotes the set union of the spaces {L>°(X,pu) : p €
M(X, X))}, then the corresponding map @, is the identity and so are all the
Juu’s, v = pu. Therefore, Lo (X, M(X,Y)) is a *-algebra and, when endowed
with the topology Ting, a C*-inductive locally convex space. If X = R and
X is the o-algebra of Borel sets, then Lo (X, (X, X)) coincides with the
*-algebra of all Borel measurable functions.

ExaMPLE 5.5. Let us take as index set the family K of all compact
subsets of the real line, ordered by inclusion. For K € K, put

B(K) = {g € Lioc(R) : g(z) = f(z)xx(2), [ € Lig(R)}.
Then B(K) is a C*-algebra under the norm ||g|| = || f Xk ||co- It is easily seen
that if K C K', then B(K) C B(K'). Let, as usual, D(R) denote the space
of test functions and D’'(R) the space of distributions. We define

Pk : g € B(K)— T, € D'(R),
where T}, denotes the regular distribution defined by

Ty(p) = | g(2)p(x) dz, ¢ € D(R).
R

It is clear from the definition that @ does not preserve multiplication. The
embedding Jg i of B(K) into B(K”) is, in this case, the identity map. The
algebraic inductive limit 2 of the system {{B(K), Pk} : K € K} is the set
of distributions T having at least one regular restriction Tk to a compact
set K which is defined by a function g € B(K). This space is quite large:
it contains, in fact, all distributions with compact support. When endowed
with the topology 7ing, & is a C*-inductive locally convex space.
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