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Directionally Euclidean structures of Banach spaces

by

Jarno Talponen (Aalto)

Abstract. We study Banach spaces with directionally asymptotically controlled
ellipsoid-approximations of the unit ball in finite-dimensional sections. Here these ellip-
soids are the unique minimum volume ellipsoids, which contain the unit ball of the corre-
sponding finite-dimensional subspace. The directional control here means that we evaluate
the ellipsoids by means of a given functional of the dual space. The term ‘asymptotical’
refers to the fact that we take ’lim sup’ over finite-dimensional subspaces.

This leads to isomorphic and isometric characterizations of Hilbert spaces. An appli-
cation involving Mazur’s rotation problem is given. We also discuss the stability of the
family of ellipsoids as the dimension and geometry vary. The methods exploit ultrafilter
techniques and we also apply them in conjunction with finite Auerbach bases to study the
convexity properties of the duality mappings.

1. Introduction. This paper deals with the local theory of Banach
spaces. Here that roughly means that we will make deductions about the
geometry of Banach spaces by studying the asymptotical behaviour of its
finite-dimensional subspaces as the dimension grows.

In a sense, there is a natural way of approximating a norm of a finite-
dimensional normed space by a norm induced by an inner product. Namely,
by compactness there exists an ellipsoid with the minimal volume (m.v.),
i.e. minimal Lebesgue measure, which contains the unit ball. It was an in-
teresting observation made by Auerbach that such a m.v. ellipsoid is unique
and thus preserved by linear isometries of the normed space (see [1], [2]).
Thus, by now it is a rather standard practice to use the Hilbertian norm
induced by the m.v. ellipsoid to approximate the original norm. However,
there are several other approaches as well (see [9]).

In Hilbert spaces the minimum volume ellipsoids in finite-dimensional
subspaces are precisely the unit balls of the corresponding subspaces and a
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fortiori uniformly bounded. On the other hand, it is not difficult to see that
if the Banach space in question is not isomorphic to a Hilbert space, then
the diameter of the minimum volume ellipsoids is not uniformly bounded. It
turns out that the diameter of the ellipsoids may not be uniformly bounded
even if the space is isomorphically Hilbertian. Here we will study spaces
such that the ellipsoids are asymptotically bounded in some direction. More
precisely, the term ‘Directionally Euclidean Structures’ in the title refers
to spaces X with an f ∈ X∗, f 6= 0, such that that for sufficiently large
finite-dimensional subspaces F the corresponding m.v. ellipsoid EF has the
property that its image under |f | is bounded by a uniform constant. This
will be stated accurately shortly. One of the key features here is that the
image of m.v. ellipsoids under f is sensitive to the selection of the particular
functional, as well as to the geometry of the unit ball.

To make a short introductory comment about the content of this paper
and its connections, this topic has a flavour slightly similar to the study of
weak Hilbert spaces and it relies heavily on ultrafilter based analysis. The
methodology and the problem setting here are closely related to the papers
[5] and [15].

We will characterize Banach spaces isomorphic to Hilbert spaces as those
spaces which have directionally Euclidean structure in every direction, up to
isomorphism. As an application, we will obtain a result related to Mazur’s
rotation problem. Interestingly, it turns out that the determination of the
ellipsoids is chaotic in a sense with respect to changes in equivalent renorm-
ings, even small ones.

1.1. Preliminaries. We refer to [7], [11] and [14] for relevant general
background information. The known ‘Mazur’s rotation problem’ appearing
in Banach’s book is discussed extensively in the survey [3], and for local
theory of Banach spaces involving ellipsoids we refer to [13].

Here X and Y stand for real Banach spaces, BX is the closed unit ball and
SX the unit sphere of X. We denote by Aut(X) the group of isomorphisms
T : X → X. The rotation group GX is the subgroup of all the isometries in
Aut(X). The identity map I : X → X is the neutral element. The group of
finite-dimensional perturbations of the identity is given by

GF = {T ∈ GX : Rank(I − T ) <∞}.

We say that X is convex-transitive with respect to G ⊂ GX if conv({Tx :
T ∈ G}) = BX for all x ∈ SX. A stronger condition is almost transitivity
with respect to G, namely that {Tx : T ∈ G} = SX for each x ∈ SX.

We call a bilinear form B : X × X → R with B(x, x) ≥ 0 for x ∈ X
positive semidefinite and in the symmetric case a degenerate inner product
informally. If additionally B(x, x) > 0 for all x 6= 0, then B is an inner
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product. In such a case we also call B, slightly overemphasising, a non-
degenerate inner product. Following e.g. [1], an ellipsoid is a set of the form
{x ∈ E : (x|x) ≤ 1}, where (·|·) is an inner product on a finite-dimensional
(sub)space E. The set of finite-dimensional subspaces of X will usually be
denoted by F = F(X).

2. Directionally bounded ellipsoids. For a finite-dimensional sub-
space E ⊂ X and f ∈ SX∗ put

η(f,E) = max{|fy| : y ∈ EE},

where EE ⊂ E is the unique minimum volume ellipsoid containing BX ∩ E
(following [1]). We say that a Banach space X has Directionally Euclidean
Structure (DES) in direction f ∈ SX∗ if

(2.1) inf
F

sup
E
η(f,E) <∞,

where the infimum is taken over finite-dimensional spaces F ⊂ X and the
supremum is taken over finite-dimensional subspaces E ⊂ X with F ⊂ E.
If the infimum in (2.1) is λ ∈ [1,∞), then we say that X has λ-DES in
direction f .

Clearly finite-dimensional spaces have DES in every direction, since the
unique minimum volume ellipsoid containing the unit ball is bounded ([1]).
We do not know whether the property of having DES in all directions is
inherited by subspaces. The directionally Euclidean structure is preserved
under the isometry group in the sense that if X has DES in direction f ∈ SX∗ ,
and T ∈ GX, then X also has DES in direction T ∗f . On the other hand, DES
is not preserved under isomorphisms. For instance, for each x ∈ SX one can
present X isomorphically as [x] ⊕2 Y for suitable Y ⊂ X and it turns out
that [x]⊕2 Y has DES in the direction of the axis [x], roughly speaking (see
Theorem 2.6).

Let us begin with an observation on the existence of continuous inner
products with controlled spread in one direction.

Theorem 2.1. Let f ∈ SX∗ and consider the following conditions:

(1) X has DES in direction f .
(2) supF infE η(f,E) <∞, where F ⊂ E are finite-dimensional.
(3) There exists a (possibly degenerate) inner product (·|·) on X such that

(x|y) ≤ ‖x‖ · ‖y‖ for x, y ∈ X and

(z|z) ≥
(

|f(z)|
supF infE η(f,E)

)2

for each z ∈ X.

Then (1)⇒(2)⇒(3).
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In the proof of this result we will use the following fact, which is easy to
see by examining the set {z ∈ X : f(z) � y}.

Fact 2.2. Let (X,≤) be a directed set, (Y,�) a poset and f : X → Y a
map. Suppose that there exists y ∈ Y with the following property: For each
x ∈ X there exists z ∈ X such that x ≤ z and f(z) � y. Then there exists
a subset Z ⊂ X satisfying the following conditions:

(i) (Z,≤) is a directed set.
(ii) For each x ∈ X there is z ∈ Z with x ≤ z.

(iii) f(z) � y for each z ∈ Z.

Proof of Theorem 2.1. Instead of proving (1)⇒(2) we will prove a strong-
er statement, namely that supF infE η(f,E) ≤ infF supE η(f,E). Towards
this, fix ε > 0. Observe that if F0 is a finite-dimensional subspace such that
supE0

η(f,E0)+ε ≤ infF supE η(f,E), where F0 ⊂ E0 are finite-dimensional,
then

sup
F

inf
E
η(f,E) + ε ≤ inf

F
sup
E
η(f,E)

because on the left the infimum can be taken over E such that F, F0 ⊂ E.
Thus the statement holds as ε was arbitrary.

To check (2)⇒(3), let F be the set of all finite-dimensional subspaces
of X ordered by inclusion. Consider the map α : F → [0,∞) given by E 7→
η(f,E).

According to Fact 2.2 and the fact supF infE α(E) < ∞ we find that
there is for each i ∈ N a directed subset Fi ⊂ F satisfying the statements (i),
(ii) of the fact and α(E) ≤ supF infE α(E)+1/i for E ∈ Fi. LetM =

⋃
iFi.

For each E ∈ M let (·|·)E be the inner product on E corresponding
to the minimum volume ellipsoid EE . For each E ∈ M let PE : X → E
be a (bounded) linear projection. Consider RM with the pointwise linear
structure. Define a map B : X × X → RM by B(x, y)(E) = (PEx|PEy)E .
Clearly B is a bilinear map.

The family

{{E ∈M : F ⊂ E, α(E) ≤ inf
E
α(E) + i−1}}(F,i)∈M×N

is a filter base onM. Let U be an ultrafilter extending the above filter base.
Put (x|y)X = limE,U B(x, y)(E) for x, y ∈ X. It is easy to see that (·|·)X is a
bilinear mapping.

Let us check that (x|y)X ≤ ‖x‖ · ‖y‖ for x, y ∈ X. Indeed, first observe
that the set {E ∈M : x, y ∈ E} contains sets in the filter base and thus this
set is in U . For this reason limE,U (PE(x)−x) = 0 and limE,U (PE(y)−y) = 0.
Since BE ⊂ EE for each E, we see that (x|x)E ≤ ‖x‖2 for x ∈ X and E ∈M
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such that x ∈ E. Thus

lim
E,U

(PEx|PEy)E ≤ lim
E,U

√
(PEx|PEx)E(PEy|PEy)E

≤ lim
E,U

√
‖x‖2 · ‖y‖2 = ‖x‖ · ‖y‖.

By our selection of the filter base, we have

lim
D,U

(α(D)− sup
F

inf
E
η(f,E)) = 0.

Let δE(x) = sup{a > 0 : ax ∈ EE} for x ∈ E, x 6= 0, E ∈ M. Since
|f(δE(x)x)| ≤ α(E) for each E such that x ∈ E, we obtain

|f(x)|
α(E)

≤ 1
δE(x)

,

which yields

|f(x)|
supF infE α(E)

= lim
E,U

|f(x)|
α(E)

≤ lim
E,U

1
δE(x)

=
√

(x|x)X.

There is one considerable difference between the lim inf and lim sup quan-
tities above, that is, supF infE η(f,E) and infF supE η(f,E). Namely, by us-
ing the former, weaker, control we may construct inner products which do
not vanish in the given direction f . Later we wish to construct inner prod-
ucts with a control simultaneously in several directions, and then the latter,
stronger, concept is required. Next, it turns out that DES in every direction
is a strong enough property of Banach spaces to characterize Hilbert spaces
up to isomorphism.

Theorem 2.3. Let X be a Banach space. The following conditions are
equivalent:

(i) X is isomorphic to a Hilbert space.
(ii) X is isomorphic to a space Y having DES in every direction f ∈ SY∗.

Moreover, X is isometric to a Hilbert space if and only if it has 1-DES in
every direction f ∈ SX∗.

Proof. First observe that a Hilbert space clearly has 1-DES in every di-
rection. This covers the implication (i)⇒(ii) and the last ‘only if’ statement.

Suppose that X is isomorphic to Y having DES in all directions f ∈ SY∗ .
Let us resume the notation of the proof of Theorem 2.1: we let F be the
set of finite-dimensional subspaces of Y ordered by inclusion. Let U here be
an ultrafilter on F containing the filter base {{E ∈ F : F ⊂ E}}F∈F . We
still denote (x|y)Y = limE,U (PEx|PEy)E . By construction, (·|·)Y is a bilinear
map with (x|y)Y ≤ ‖x‖ · ‖y‖ for x, y ∈ X.
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Now let us study the ‘ball’ B = {y ∈ Y : (y|y)Y ≤ 1}. Pick b ∈ B with
limE,U (PEb|PEb)E < 1. We obtain

(2.2) |f(b)| ≤ lim
E,U

sup
c∈EE
|f(c)| ≤ inf

F
sup
E
η(f,E).

If Y has DES in all directions, then the right hand side of (2.2) is finite.
Thus we obtain supb∈B |f(b)| < ∞. Now, since f ∈ SY∗ was arbitrary, the
Uniform Boundedness Principle implies that B is norm-bounded. Observe
that BY ⊂ B by the selection of the ellipsoids EE . This can be rephrased as
follows: there exists 1 ≤ C <∞ such that

‖y‖2 ≤ (y|y)Y ≤ C‖y‖2 for y ∈ Y.

To check the last claim of the theorem, we will apply the above argument
with X = Y, where this space has 1-DES in all directions. It follows that
|f(b)| ≤ 1 in (2.2). Since this holds for all b ∈ B and all f ∈ SX∗ , we get
B ⊂ BX. Thus B = BX and hence ‖x‖2 = (x|x)X for x ∈ X.

Remark 2.4. We note that in Theorem 2.3 the condition (ii) could be
replaced by an equivalent condition (ii′): X is isomorphic to a space Y for
which there exists a norming subspace Z ⊂ Y∗ such that Y has DES in every
direction f ∈ SZ.

2.1. On boundedness of ellipsoids containing the unit ball. In a
Banach space a continuous non-degenerate inner product corresponds to a
convex body that might be unbounded but does not contain a 1-dimensional
linear subspace. There are plenty of such convex bodies, or inner products,
according to the following fact, which is probably folklore.

Proposition 2.5. Let X be a Banach space with a ω∗-separable dual
space. Then there exists an inner product (·|·) on X such that (x|x) ≤ ‖x‖2
and (x|x) > 0 for x ∈ X, x 6= 0. This in turn implies that there exists a
continuous linear injection from X into c0(Γ ) for some set Γ .

Proof. Let (x∗n) ⊂ X∗ be a sequence which is ω∗-dense in X∗ and does
not contain 0. It is easy to see that the mapping g : X → `∞ given by
x 7→ (x∗n(x)/‖x∗n‖) is linear, contractive and injective. The injectivity follows
from the fact that (x∗n) separates each x ∈ X, x 6= 0, as it is ω∗-dense. Next,
observe that f : `∞ → `2 given by (zn) 7→ (2−nzn) is linear, contractive and
injective. Now, the required inner product on X is induced by one in `2 via
the composite mapping f ◦ g.

For the last claim of the proposition, we first form the completion H of
(X, ‖ · ‖2) and consider its orthonormal basis {eγ}γ∈Γ . The required map
X→ c0(Γ ) is then given by x 7→ {(x|eγ)}γ∈Γ .

Spaces that admit a continuous linear injection into c0(Γ ) have been
studied quite a bit (see e.g. [10]). We do not know exactly what kind of
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Banach spaces admit a continuous (non-degenerate) inner product. Note
that a continuous inner product will induce a continuous norm on X, but
according to the Open Mapping Principle this norm will be complete if and
only if the original norm and the induced norm are equivalent.

Even though there are often continuous inner products on Banach spaces,
the way the inner products are produced here, by applying DES, results in
constructions that turn out to be sensitive to small changes of the norm. We
also note that continuous inner products are typically not invariant under
isometries of the space. However, directionally Euclidean structure allows us
to construct continuous inner products that will be invariant under suitable
isometries.

The following result suggests that the disposition of the minimum volume
ellipsoids becomes in a sense chaotic as the subspaces vary. It follows in
particular that the property of having DES in all directions is not preserved
under isomorphisms, even for small Banach–Mazur distances.

Theorem 2.6. Let X be a Banach space and F,E ⊂ X be subspaces
such that X = F ⊕p E isometrically for some 1 ≤ p ≤ ∞. If 1 ≤ p ≤ 2
and dim(F ) <∞, then X has DES in every direction (f, 0) ∈ SF ∗⊕p∗E∗. On
the other hand, if 2 < p ≤ ∞ and E = `2, then X does not have DES in
any direction (f, 0) ∈ SF ∗⊕p∗`2

. However, if X = `2 ⊕p `2, 2 < p ≤ ∞, and
g = (f, 0) ∈ S`2⊕p∗`2

, then supF infE η(g,E) <∞.

Proof. For both the cases p ≤ 2 and p > 2 we are interested in finite-
dimensional subspaces of the type F⊕pEn, where En ⊂ E is an n-dimension-
al subspace. This is so because each finite-dimensional subspace Y ⊂ X is
contained in a finite-dimensional subspace of the above type.

Denote by E ⊂ F ⊕p En the unique minimal volume ellipsoid containing
BF⊕pEn . Let (·|·)E be the corresponding inner product. According to Auer-
bach’s results this ellipsoid is invariant under linear isometries of F ⊕p En
onto itself. In particular, given a linear projection PF : F ⊕pEn → F , the el-
lipsoid E is invariant under the isometric reflection mapping I−2PF . Denote
QF = I− PF .

Claim 1. For each x ∈ F ⊕p En,

(x|x)E = (PFx|PFx)E + (QFx|QFx)E .

Indeed, by using invariance we obtain

(x|x)E = ((I− 2PF )x|(I− 2PF )x)
= (x|x)E − 2(x|PFx)E − 2(PFx|x)E + 4(PFx|PFx)E ,

which gives (x|PFx)E = (PFx|PFx)E , and this yields the claim.
Next, recall that each ellipsoid is given by the formula x2

1/C1 + · · · +
x2
m/Cm ≤ 1 where one fixes a suitable coordinate system. If one normalizes
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the measure by fixing the volume of BF⊕pEn , then the volume of the ellipsoid
does not depend on the selection of the coordinate system. With the above
notation the volume of the ellipsoid E is

Vol(E) = βC1 . . . Cm,

where β is a constant depending on the dimension and the coordinate sys-
tem.

Let us identify F ⊕pEn with Rm. Thus we will regard the volume as the
standard m-dimensional Lebesgue measure. According to Claim 1 we may
assume that the coordinate system is such that the first dim(F ) coordinates
of Rm support the ellipsoid PF (E) and the last n coordinates support the
ellipsoid QF (E). We may assume without loss of generality, by choosing the
coordinate system suitably, that B`2(k+n) ⊂ BF⊕pE . Clearly, the fact that
B`2(k) ⊂ PF (E) and B`2(n) ⊂ QF (E) implies that C1, . . . , Ck+n ≥ 1.

Fix the minimal volume ellipsoids E1 ⊂ F , E2 ⊂ En containing BF and
BEn , respectively. Then the corresponding constants satisfy C(F )

1 . . . C
(F )
k ≤

C1 . . . Ck and C
(E)
k+1C

(E)
k+2 . . . C

(E)
m ≤ Ck+1Ck+2 . . . Cm.

Let us verify the statement involving p ≤ 2. We obtain

BF⊕pEn ⊂ {x ∈ F ⊕p En : (PFx|PFx)E1 + (QFx|QFx)E2 ≤ 1}.
We conclude that

(x|x)E = (PFx|PFx)E1 + (QFx|QFx)E2 for x ∈ F ⊕p En.
This means that PF (E) is a norm bounded set, which does not depend on
n = dim(En). Consequently, we have the first part of the statement.

Let us check the latter statement, where p > 2 and E is a Hilbert space.
The invariance of E under isometries yields Ck+1 = Ck+2 = · · · = Cm.
Indeed, here we consider isometries of the form I ⊕ T , where I : F → F is
the identity map, T is a linear isometry of En = `2(n) onto itself, and we
apply the fact that the isometry group of a Hilbert space acts transitively
on the unit sphere.

Claim 2. Given b > 1 and 2 < p <∞, set

αp(b) = inf
{
a > 1 :

(
x2

a
+
y2

b

)1/2

≤ (xp + yp)1/p for x, y > 0
}
.

Then

(2.3)
b

22/pb− 1
≤ αp(b) ≤

b

b− 1
.

This is proved by analyzing the test points (2−1/p, 2−1/p) and (1, 1).
Moreover, it is fairly easy to see that

(2.4) αp(b)→∞ as b→ 1+ for 2 < p ≤ ∞.
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Note that according to Claim 2 the constants C1, . . . , Ck satisfy the in-
equality

(2.5) a
Ck+1

22/pCk+1 − 1
≤ Ci ≤ b

Ck+1

Ck+1 − 1
, 1 ≤ i ≤ k,

for suitable constants a, b > 0 depending only on the disposition of BF in
Rk, and not on p or the actual value of k or n.

Since Ck+1 = Ck+2 = · · · = Cm, it follows by using (2.5) that the
expression of the minimal volume,

Vol(E) = β(n)C
(n)
1 . . . C

(n)
k (C(n)

k+1)n,

must satisfy C
(n)
k+1 → 1+ as n → ∞. Thus (2.4) implies that C(n)

i → ∞ as
n→∞ for 1 ≤ i ≤ k. This yields the second claim of the theorem.

For the last claim we may select finite-dimensional subspaces E appear-
ing in supF infE η(g,E) to be of the form E = E0 ⊕p E0. Then by a simple
symmetry argument we obtain η(g,E) = suph(E), where E ⊂ `p(2) is the
m.v. ellipsoid containing the unit ball and h = (1, 0) ∈ `p∗(2).

We do not know whether the property of having DES in all (or some)
directions passes on to subspaces, ultrapowers, ultra-roots, or to almost
isometric copies. Consider Banach spaces X with the property that the min-
imum volume ellipsoids E of finite-dimensional subspaces of X are uniformly
bounded. We note that this property passes on to the above-mentioned
structures related to X. The proof is omitted but we will list some observa-
tions which lead to the claims involving ultrapowers.

Observation 1. The determination of the volume of the minimum vol-
ume ellipsoid is continuous with respect to the norm. This can be formulated
more precisely as follows: Suppose that E and F are n-dimensional spaces
with Lebesgue measures µ and ν, respectively, normalized so that µ(BE) =
ν(BF ) = 1. If f : E → F is an isomorphism and ‖x‖ ≤ ‖f(x)‖ ≤ C‖x‖
for x ∈ E, then µ(A) ≤ ν(f(A)) ≤ Cnµ(A) for each Lebesgue measurable
A ⊂ E.

Observation 2. Each finite-dimensional subspace of XU is an ultralimit
of suitable finite-dimensional subspaces of X in the sense of the Banach-
Mazur distance. Let x1, . . . , xn ∈ XU be non-zero, linearly independent
vectors. Then for each 1 ≤ i ≤ n there is a sequence (z(i)

k ) ⊂ X such
that limk,U ‖z

(i)
k − xi‖ = 0. Let Ek = [z(1)

k , z
(2)
k , . . . , z

(n)
k ] for k ∈ N. It

is not difficult to see that there exists K ∈ U such that Tk : Ek → E,
Tk(
∑

i aiz
(i)
k ) =

∑
i aixi defines a linear isomorphism for k ∈ K. Moreover,

limk,U ‖Tk‖ = 1 and limk,U ‖T−1
k ‖ = 1.
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For each k we denote by µk the Lebesgue measure on Ek normalized so
that µk(Ek) = 1. We will denote by µ the minimum volume ellipsoid of Ek
containing BEk

by Ek. The minimum volume ellipsoid of E is denoted by E
and the corresponding normalized measure is denoted by µ.

Observation 3. By using the previous observations we obtain

lim
k,U

µk(Ek) = µ(E).

Observation 4. By using the previous observations, compactness and
the uniqueness of the minimum volume ellipsoid in E, we have

lim
k,U

(T−1
k x|T−1

k y)Ek = (x|y)E for x, y ∈ E.

The details are omitted.

3. An application involving Mazur’s problem. In the presence of a
high degree of symmetry the nice local properties of a Banach space tend to
self-improve (see e.g. [8], also [3]). For example, a convex-transitive Banach
space with the RNP is already uniformly convex, uniformly smooth and
almost transitive.

In [5] it was asked whether a Banach space almost transitive with respect
to isometric finite-dimensional perturbations of the identity is isometric to
a Hilbert space. The answer is affirmative if the space has DES in some
direction.

Theorem 3.1. Let X be a Banach space, which has DES at some di-
rection f ∈ SX∗ and assume that X is convex-transitive with respect to GF .
Then X is isometrically a Hilbert space.

Proof. We will construct an inner product (·|·)X on X such that |x| =√
(x|x)X defines a norm which is continuous with respect to ‖ · ‖ and such

that |x| = |Tx| for x ∈ X and T ∈ GF . By using that X is convex-transitive
with respect to GF it follows that there exists a constant c > 0 such that
‖ · ‖ = c| · | (see [6]), which yields the claim.

The argument here closely resembles that of [5]. Let Γ be the set of all
finite subsets γ of GF such that T ∈ γ ⇒ T−1 ∈ γ. Note that Γ can be
viewed as a lattice when ordered by inclusion ⊆.

By using a simple argument concerning the Hamel basis of X we find
that for each finite-dimensional subspace A ⊂ X and each γ ∈ Γ there is a
finite-dimensional subspace F ⊃ A and a finite-codimensional subspace E
such that X = F ⊕E, span

⋃
T∈γ(I− T )(X) ⊂ F , E ⊂

⋂
T∈γ ker(I− T ) and

T (F ) = F for T ∈ γ ∈ Γ . Note that F 6= {0} for any γ 6= {I}. Denote by
FA,γ the collection of all pairs (F, γ) which satisfy the above conditions.

For each (F, γ) ∈ FA,γ let EF be the unique minimum volume ellipsoid in
F which contains BX∩F . We denote by (·|·)F : F×F → R the inner product
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induced by the ellipsoid EF . Observe that the uniqueness of the minimum
value ellipsoid implies invariance under isometries and thus (Tx|Ty)F ≤√

(Tx|Tx)F
√

(Ty|Ty)F =
√

(x|x)F
√

(y|y)F ≤ ‖x‖·‖y‖ for x, y ∈ F, T ∈ γ.
For technical reasons, for each finite-dimensional F ⊂ X we denote a lin-

ear projection X→ F by PF without specifying exactly which projection we
mean. LetM =

⋃
A,γ FA,γ , where the union is taken over finite-dimensional

subspaces A ⊂ X and γ ∈ Γ . We may define a partial order on M by
declaring (F, γ) ≤ (F ′, γ′) if F ⊂ F ′ and γ ⊂ γ′.

Define [·|·] : X → RM by letting [x|y], evaluated at (F, γ), be equal to
(PFx|PF y)F . Observe that the family

{{(F, γ) ∈M : δ ⊂ γ, A ⊂ F}}(A,δ)∈M,
where A ranges over finite-dimensional spaces, defines a filter base on M.

Let U be a non-principal ultrafilter on M extending this filter base.
Define (·|·) : X×X→ R by (x|y) = limU [x|y]. It is easy to check to that (·|·)
is well-defined, bilinear and (x|y) ≤ ‖x‖ · ‖y‖, (x|x) ≥ 0, (Tx|Ty) = (x|y)
for x, y ∈ E, T ∈ GF . Indeed, pick (F, γ) ∈ M such that x, y ∈ F , T ∈ γ.
Firstly, [·|·] evaluated at (F ′, γ′) ≥ (F, γ) satisfies the conditions described
above. Secondly, note that the set of pairs (F ′, γ′) ≥ (F, γ) belongs to U .
This means that the ultralimit (·|·) = limU [·|·] satisfies the above-mentioned
conditions.

Finally, we will check that (x|x) > 0 for x ∈ X, x 6= 0. Suppose that
X has λ-DES in direction f ∈ SX∗ . Then infF supF ′ η(f, F ′) < ∞, which
means that we may select F such that supF ′⊃F η(f, F ′) = α < ∞. Pick
x ∈ X such that f(x) ≥ α. Then [x|x] evaluated at any pair (F ′, γ′) ≥ (F, γ)
is at least 1. Similarly, since the set of pairs (F ′, γ′) ≥ (F, γ) belongs to the
filter, we find that (x|x) ≥ 1. This means that Y = {x ∈ X : (x|x) = 0}
is not the whole space X. Observe that Y is invariant under GF . It is easy
to see that the convex-transitivity with respect to GF implies that only a
trivial subspace, i.e. {0} or X, can be invariant under GF . Since Y 6= X, we
conclude that Y = {0}.

Theorem 3.2. Let X be a Banach space which is convex-transitive with
respect to GX and has DES in some direction f ∈ SX∗. Then X is isomorphic
to a Hilbert space. Moreover, if X has 1-DES in direction f , then X is
isometric to a Hilbert space.

Proof. It is known (see [3]) that X is convex-transitive if and only if
convω

∗
({T ∗g : T ∈ GX}) = BX∗ for g ∈ SX∗ . This means that {T ∗f :

T ∈ GX} is a 1-norming set. Then one can construct, as in the proof of
Theorem 2.3, an inner product (·|·)X on X with (x|x)X ≤ ‖x‖2 for x ∈ X.
It follows from the assumptions by inspecting the construction of (·|·)X that
{x ∈ X : (x|x)X ≤ 1} ⊂ λBX. Thus we have the claim.
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Some authors have asked whether an almost transitive Banach space that
is isomorphic to a Hilbert space, is in fact isometric to one (see e.g. [4]). This
question appears not to have been settled yet.

4. Final remark: near-convexity of the duality mapping. Recall
that the duality mapping J : X→ 2X∗ is a multivalued mapping defined by

J(x) = {x∗ ∈ X∗ : ‖x‖2 = ‖x∗‖2 = x∗(x)} for x ∈ X.

If X is a Gateaux-smooth space, then J becomes a point-to-point mapping.
Recall that for Hilbert spaces the duality map is an isometric isomorphism.
We always have J(BX) = BX∗ according to the Bishop–Phelps theorem, and
in the reflexive case J(BX) = BX∗ by James’s characterization of reflexivity.
However, it can easily happen that the image of a convex set under J is not
convex. Next, we will study spaces whose duality mapping does not distort
convex sets very far from being convex. It turns out that such spaces are
isomorphically Hilbertian.

Theorem 4.1. Let X be a smooth Banach space and let J : X → X∗ be
the duality mapping. Suppose that there exists a constant 0 ≤ C < 1 such
that ∥∥∥J(∑xn

)
−
∑

J(xn)
∥∥∥ ≤ C∥∥∥∑xn

∥∥∥ for x1, . . . , xn ∈ X.

Then X is isomorphic to a Hilbert space. Moreover, if J is a convex map,
then X is isometric to a Hilbert space.

Proof. By using an ultrafilter construction similar to that in the proof
of Theorem 2.3 it suffices to check that in any finite-dimensional subspace
F ⊂ X there exists an inner product (·|·) : F 2 → R such that

(4.1) (1− C)‖x‖2 ≤ (x|x) ≤ (1 + C)‖x‖2 for x ∈ F.

Let F ⊂ X be a finite-dimensional subspace. Then there exists an Auer-
bach basis on F , that is, a biorthogonal system {(ei, e∗i )}ni=1 ∈ (SX×SX∗)n.
Define a mapping g : F 2 → R by g(x, y) =

∑
aie
∗
i (y), where

∑
aiei is

the unique expression of x. Note that g is bilinear. Define B : F 2 → R by
B(x, y) = (g(x, y) + g(y, x))/2 for x, y ∈ F . Now B is clearly a symmetric
bilinear form.

Fix x =
∑
aiei ∈ F . Observe that∣∣‖x‖2 − g(x, x)

∣∣ = |J(x)(x)− g(x, x)|

=
∥∥∥(J(∑ aiei

)
−
∑

aiJ(ei)
)

(x)
∥∥∥ ≤ C‖x‖ · ‖x‖.

Thus
∣∣‖x‖2−B(x, x)

∣∣ ≤ C‖x‖2, so that B is a non-degenerate inner product
on F and (4.1) holds.
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