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Frequently hypercyclic semigroups

by

Elisabetta M. Mangino (Lecce) and Alfredo Peris (València)

Abstract. We study frequent hypercyclicity in the context of strongly continuous
semigroups of operators. More precisely, we give a criterion (sufficient condition) for a
semigroup to be frequently hypercyclic, whose formulation depends on the Pettis integral.
This criterion can be verified in certain cases in terms of the infinitesimal generator of
the semigroup. Applications are given for semigroups generated by Ornstein–Uhlenbeck
operators, and especially for translation semigroups on weighted spaces of p-integrable
functions, or continuous functions that, multiplied by the weight, vanish at infinity.

1. Introduction. The hypercyclic behaviour of strongly continuous
one-parameter semigroups was studied in a systematic way for the first time
in the paper by Desch, Schappacher, and Webb [21]. They gave a sufficient
condition for hypercyclicity of a semigroup based on the analysis of the point
spectrum of the generator of the semigroup. Moreover they characterized hy-
percyclic translation semigroups defined on weighted spaces of continuous or
integrable functions on the real line. However, during the last years it was
shown that hypercyclicity appears in C0-semigroups associated to “birth
and death” equations for cell populations, transport equations, first order
partial differential equations and diffusion operators as Ornstein–Uhlenbeck
operators (see [13] for a survey on the subject; further references on hyper-
cyclic semigroups and related properties are, e.g., [2, 3, 7–9, 16, 18, 20, 24,
28–31, 32, 34, 36, 37]).

We recall that, if X is a separable infinite-dimensional Banach space,
a C0-semigroup (Tt)t≥0 of linear and continuous operators on X is said to
be hypercyclic if there exists x ∈ X (called a hypercyclic vector for the
semigroup) such that the set {Ttx : t ≥ 0} is dense in X. An element x ∈ X
is said to be a periodic point for the semigroup if there exist t > 0 such that
Ttx = x. A semigroup (Tt)t≥0 is called chaotic if it is hypercyclic and the
set of periodic points is dense in X.

2010 Mathematics Subject Classification: Primary 47A16; Secondary 47D06.
Key words and phrases: chaotic C0-semigroups, frequently hypercyclic C0-semigroups,
translation semigroups.

DOI: 10.4064/sm202-3-2 [227] c© Instytut Matematyczny PAN, 2011



228 E. M. Mangino and A. Peris

In [15], the second author, in collaboration with A. Conejero and V.
Müller, proved that if x ∈ X is a hypercyclic vector for (Tt)t≥0 then for
every t > 0 the set {Tntx : n ∈ N} is dense in X, i.e. x is a hypercyclic
vector for each single operator Tt, t > 0. In particular, hypercyclicity is
inherited by discrete subsemigroups. However, this is not the case in general
if we change the index set [17], or if we consider the chaos property [4].

Motivated by Birkhoff’s ergodic theorem, Bayart and Grivaux intro-
duced the notion of frequently hypercyclic operators [5] (see [6] and the
references quoted therein, see also [10, 11, 27]), trying to quantify the fre-
quency with which an orbit meets the open sets. This concept was extended
to C0-semigroups in [1]. We recall that the lower density of a measurable
set M ⊂ R+ is defined by

Dens(M) := lim inf
N→∞

µ(M ∩ [0, N ])/N,

where µ is the Lebesgue measure on R+. A C0-semigroup (Tt)t≥0 is said to
be frequently hypercyclic if there exists x ∈ X such that Dens({t ∈ R+ :
Ttx ∈ U}) > 0 for any non-empty open set U ⊂ X.

If the lower density of a set A ⊂ N is defined by

dens(A) := lim inf
N→∞

#{n ≤ N : n ∈ A}/N,

an operator T ∈ L(X) is said to be frequently hypercyclic if there exists
x ∈ X (called a frequently hypercyclic vector) such that, for every non-empty
open subset U ⊂ X, the set {n ∈ N : Tnx ∈ U} has positive lower density.
In [15] it was proved that if x ∈ X is a frequently hypercyclic vector for
(Tt)t≥0, then for every t > 0 the x is a frequently hypercyclic vector for the
operator Tt.

In [10, 11], Bonilla and Grosse-Erdmann improve a result of Bayart and
Grivaux and give the following Frequent Hypercyclicity Criterion for oper-
ators (see also [25] for a probabilistic criterion).

Proposition 1.1. Let T be a continuous operator on a separable Banach
space X. Assume that there exist a dense subset X0 ⊆ X and a map S :
X0 → X0 satisfying:

(i) TSx = x for all x ∈ X0;
(ii)

∑∞
n=1 T

nx is unconditionally convergent for all x ∈ X0;
(iii)

∑∞
n=1 S

nx is unconditionally convergent for all x ∈ X0.

Then T is frequently hypercyclic.

The aim of the present paper is to give a continuous version of the Fre-
quent Hypercyclicity Criterion. The unconditional convergence of the series
in Proposition 1.1 will be replaced by the Pettis integrability of orbits under
the semigroup. Thanks to this criterion we will show that, e.g., the well-
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known Desch–Schappacher–Webb criterion for chaotic semigroups (see [21])
is actually a condition for frequent hypercyclicity. Moreover we prove that
chaotic translation semigroups on weighted spaces of integrable functions
defined on [0,∞[ are frequently hypercyclic. We give a necessary condition
on the weight for frequent hypercyclicity. Since several properties of the Pet-
tis integral are used in the proofs, for the convenience of the reader we recall
in an appendix the main definitions and basic results.

2. Frequent Hypercyclicity Criterion for semigroups

Proposition 2.1. Let (Tt)t≥0 be a C0-semigroup on a separable Banach
space X. Then the following conditions are equivalent:

(i) (Tt)t≥0 is frequently hypercyclic.
(ii) For every t > 0 the operator Tt is frequently hypercyclic.
(iii) There exists t > 0 such that Tt is frequently hypercyclic.

Proof. The implication (i)⇒(ii) was proved in [15]. It remains to prove
that (iii) implies (i). We can assume that t = 1; let x be a frequently hyper-
cyclic vector for T1. Let y ∈ X, and let U, V be 0-neighbourhoods such that
V + V ⊆ U . By the strong continuity of (Tt)t≥0, there exists 0 < δ < 1 such
that Tsy − y ∈ V for every s ∈ [0, δ]. Moreover, by the local equicontinuity
of (Tt)t≥0, there exists a 0-neighbourhood V ′ such that Ts(V ′) ⊆ V for every
s ∈ [0, δ]. By assumption,

dens{n ∈ N : Tnx ∈ y + V ′} > 0.

If Tnx ∈ y + V ′, then for every t ∈ [n, n+ δ],

Ttx− y = Tt−n(Tnx− y) + Tt−ny − y ∈ Tt−n(V ′) + V ⊆ V + V ⊆ U.
Thus, for every N ∈ N,

µ{t ≤ N : Ttx ∈ y + U}
N

≥ δ#{n ≤ N : Tnx ∈ y + V ′}
N

,

hence

lim inf
N→∞

µ{t ≤ N : Ttx ∈ y + U}
N

≥ δ lim inf
N→∞

#{n ≤ N : Tnx ∈ y + V ′}
N

> 0.

Theorem 2.2. Let (Tt)t≥0 be a C0-semigroup on a separable Banach
space X. Assume that there exist a dense subset X0 ⊆ X and maps St :
X0 → X, t > 0, satisfying:

(i) TtStx = x, TtSrx = Sr−tx for all x ∈ X0, t > 0, r > t > 0;
(ii) t 7→ Ttx is Pettis integrable on [0,∞[ for all x ∈ X0;
(iii) t 7→ Stx is Pettis integrable on [0,∞[ for all x ∈ X0.

Then (Tt)t≥0 is frequently hypercyclic.
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Proof. We will show that T1 is a frequently hypercyclic operator. The as-
sertion will follow from the previous result. First observe that for any x∈X0,
the map t 7→ Stx is continuous; indeed, if we fix r > t, Stx = Tr−t(Srx).

To verify that T1 is frequently hypercyclic, we will follow the proof of
Theorem 2.4 in [10], by considering suitable unconditionally convergent se-
ries of integrals.

We can assume that X0 = {y1, y2, . . . } is a countable set. Conditions (ii),
(iii) and Corollary 4.4 imply that there is an increasing sequence {Nl}l∈N in
N such that, for all λ ≤ l and all compact sets K ⊂ [Nl,∞[, we have

(2.1)
∥∥∥ �
K

Ttyλ dt
∥∥∥ < 1

l2l
,

∥∥∥ �
K

Styλ dt
∥∥∥ < 1

l2l
.

For every l, ν ∈ N, set ρ(l, ν) = ν and apply Lemma 2.5 of [11] to find
pairwise disjoint sets A(l, ν) ⊆ N, l, ν ∈ N, of positive lower density such
that, for all n ∈ A(l, ν), m ∈ A(k, µ) with n 6= m and

(2.2) n ≥ ν, |n−m| ≥ ν + µ.

Define now

(2.3) zn =
{
yl, n ∈ A(l, Nl),
0, otherwise,

and set

(2.4) x :=
∑
n≥1

n+1�

n

Stzn dt.

To see that this series is convergent, observe that, for each l ∈ N,

(2.5)
∑

n∈A(l,Nl)

n+1�

n

Stzn dt =
∑

n∈A(l,Nl)

n+1�

n

Styl dt

converges unconditionally by (2.1). On the other hand, for every finite subset
F ⊂ A(l, Nl), by (2.2) we get

⋃
n∈F [n, n+ 1] ⊂ [Nl,∞[, hence, by (2.1),

(2.6)
∥∥∥∑
n∈F

n+1�

n

Styl dt
∥∥∥ ≤ 1

l2l
.

Therefore we easily see that the series in (2.4) is convergent. Fix l ∈ N and
n ∈ A(l, Nl). Then
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Tn+1x =
∑
j 6=n

Tn+1

(j+1�

j

Stzj dt
)

+ Tn+1

(n+1�

n

Stzn dt
)

(2.7)

=
∑
j<n

j+1�

j

Tn+1−tzj dt+
n+1�

n

Tn+1−tyl dt+
∑
j>n

j+1�

j

St−n−1zj dt

=
n∑

m=1

m+1�

m

Tszn−m ds+ ul +
∞∑
m=1

m�

m−1

Srzn+m dr,

where ul =
	1
0 Ttyl dt. We analyze the first summand in (2.7):

n∑
m=1

m+1�

m

Tszn−m ds

=
l∑

λ=1

( ∑
n−m∈A(λ,Nλ)

m+1�

m

Tsyλ ds
)

+
∑
λ>l

( ∑
n−m∈A(λ,Nλ)

m+1�

m

Tsyλ ds
)
.

By (2.2), since n ∈ A(l, Nl), n − m ∈ A(λ,Nλ), we necessarily have m =
n− (n−m) ≥ Nl +Nλ. Thus

(2.8)
∥∥∥ n∑
m=1

m+1�

m

Tszn−m ds
∥∥∥ ≤ l∑

λ=1

1
l2l

+
∑
λ>l

1
λ2λ

<
2
2l
.

Analogously, by (2.1), we obtain

(2.9)
∥∥∥ ∞∑
m=1

m�

m−1

Srzn+m dr
∥∥∥ < 2

2l
,

which gives, for every n ∈ A(l, Nl),

(2.10) ‖Tn+1x− ul‖ <
4
2l
.

Since A(l, Nl) has positive lower density for each l ∈ N, we are done if we
show that (ul)l is a dense sequence in X. Indeed, ul = Ryl, l ∈ N, where R
is the continuous operator defined by

Rx :=
1�

0

Ttx dt.

We need to prove that R has dense range. First observe that I − T1 has
dense range. Indeed, otherwise there would exist φ ∈ X ′, φ 6= 0, such that
〈φ, x−T1x〉 = 0 for all x ∈ X. This implies that, for every n ∈ N and x ∈ X,
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〈φ, x〉 = 〈φ, Tnx〉 = 0 for all x ∈ X. In particular, if s > 0, then
n+s�

n

〈φ, Ttyl〉 dt =
s�

0

〈φ, Tu+nyl〉 du =
s�

0

〈φ, Tuyl〉 du.

The left term tends to 0, by (2.1), as n → ∞. Since the right term is fixed
and s > 0, l ∈ N were arbitrary, we have 〈φ, x〉 = 0 for all x ∈ X, which is a
contradiction. Finally observe that if (A,D(A)) is the generator of (Tt)t≥0,
then for every x ∈ D(A),

(I − T1)x =
1�

0

TtAxdt = R(Ax),

thus (I − T1)(D(A)) ⊆ R(X). By the density of D(A) in X, we get

X = (I − T1)(X) = (I − T1)(D(A)) ⊆ R(X).

Corollary 2.3. Let X be a separable complex Banach space, and (Tt)t≥0

a C0-semigroup with generator A. Assume that there exists a family (fj)j∈Γ
of locally bounded measurable maps fj : Ij → X such that Ij is an interval
in R, Afj(t) = itfj(t) for every t ∈ Ij, j ∈ Γ and span{fj(t) : j ∈ Γ, t ∈ Ij}
is dense in X. If either

(a) fj ∈ C2(Ij , X), j ∈ Γ , or
(b) X does not contain c0 and 〈ϕ, fj〉 ∈ C1(Ij), ϕ ∈ X ′, j ∈ Γ ,

then (Tt)t≥0 is frequently hypercyclic.

First we prove the following:

(a)′ If (a) holds then there exists a family (gλ)λ∈Λ of functions gλ ∈
C2(R, X) with compact support such that Agλ(t) = itgλ(t) for every
t ∈ R and λ ∈ Λ, and span{gλ(t) : λ ∈ Λ, t ∈ R} is dense in X.

(b)′ If (b) holds then there exists a family (gλ)λ∈Λ of bounded mea-
surable functions gλ : R → X with compact support such that
〈ϕ, gλ〉 ∈ C1(R) for every ϕ ∈ X ′, Agλ(t) = itgλ(t) for every t ∈ R
and λ ∈ Λ, and span{gλ(t) : λ ∈ Λ, t ∈ R} is dense in X.

If Ij = ]xj−rj , xj+rj [ is a bounded interval, consider a sequence (φjn)n ⊂
C∞(R) such that φjn(s) = 1 if |s−xj | ≤ rj − 1/n and φjn(s) = 0 if |s−xj | >
rj − 1/(2n). If we extend fj outside Ij setting fj = 0 in R \ Ij , then φjnfj ∈
C2(R, X) for every n ∈ N if (a) holds, and 〈ϕ, φjnfj〉 ∈ C1(R) for every
ϕ ∈ X ′ if (b) holds. Moreover (φjnfj)n converges pointwise to fj and

A(φjn(t)fj(t)) = φjn(t)Afj(t) = itφjn(t)fj(t)

for every t ∈ R and j ∈ Γ . If the interval Ij is unbounded, for example
Ij = ]aj ,∞[, the argument runs analogously, by considering functions φjn ∈



Frequently hypercyclic semigroups 233

C∞(R) with support in ]aj + 1/n, n[. It remains to show that

(2.11) span{φjnfj(t) : j ∈ Γ, t ∈ Ij , n ∈ N} = X.

If ϕ ∈ X ′ and 〈ϕ, φjn(t)fj(t)〉 = 0 for every j ∈ Γ , t ∈ Ij , n ∈ N, then, by
taking the limit as n→∞, we get 〈ϕ, fj(t)〉 = 0 for every t ∈ Ij and j ∈ Γ .
Then, by the assumption on the ranges of the fj , it follows that ϕ = 0.

Proof of Corollary 2.3. From now on, let Λ = {(j, n) : j ∈ Γ, n ∈ N}
and, for every λ = (j, n) ∈ Λ, set gλ = φjnfj . Then the family (gλ)λ∈Λ
satisfies the assertion in (a)′ (resp. (b)′) if (fj)j∈J satisfies (a) (resp. (b)).
We will show that (Tt)t≥0 is frequently hypercyclic. For every r ∈ R and
λ ∈ Λ, set

ψr,λ :=
�

R
e−irsgλ(s) ds = F(gλ)(r),

where F denotes the X-valued Fourier transform. The set {ψr,λ : r ∈ R,
λ ∈ Λ} is dense in X. Indeed, let ϕ ∈ X ′ be such that for all r ∈ R and
λ ∈ Λ,

〈ϕ,ψr,λ〉 =
�

R
e−irs〈ϕ, gλ(s)〉 ds = 0.

This means that the Fourier transform of the (scalar) function s 7→ 〈ϕ, gλ(s)〉
vanishes on R, hence, taking into account that 〈ϕ, gλ〉 is continuous, we get
〈ϕ, gλ〉 = 0 on R, therefore ϕ = 0. For every t > 0 set

Stψr,λ :=
�

R
e−i(t+r)sgλ(s) ds = F(gλ)(r + t) = ψr+t,λ.

We have

Ttψr,λ =
�

R
e−i(r−t)sgλ(s) ds = F(gλ)(r − t) = ψr−t,λ,

and TtStψr,λ = ψr,λ, TtSsψr,λ = Ss−tψr,λ for all λ ∈ Λ, r ∈ R, s > t > 0.
It remains to show that the maps t 7→ Stψr,λ and t 7→ Ttψr,λ are Pettis

integrable on [0,∞[ for every r ∈ R and λ ∈ Λ.
In case (a)′, F(gλ) is Bochner integrable. Indeed, gλ ∈ C2(R, X) and has

compact support. Hence g′′λ is Fourier integrable and

F(g′′λ)(r) = −r2F(gλ).

Therefore F(gλ) is Bochner integrable on R. It follows that t 7→ Tt(ψr,λ) and
t 7→ St(ψr,λ) are Bochner integrable on [0,∞[.

In case (b)′, we prove that F(gλ) is Pettis integrable on [0,∞[. It will
follow that t 7→ Tt(ψr,λ) and t 7→ St(ψr,λ) are Pettis integrable on [0,∞[.
First observe that F(gλ) is continuous, hence measurable. Let ϕ ∈ X ′ and
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consider g(s) = 〈ϕ, gλ(s)〉 ∈ C1
c (R). We have

〈ϕ,F(gλ)(r)〉 =
�

R
e−irs〈ϕ, gλ(s)〉 ds = F(g)(r).

Moreover, g′ ∈ L2(R) ∩ L1(R) and F(g′)(r) = irF(g)(r) ∈ L2(R). Hence,
for a > 0,

�

|r|>a

|F(g)(r)| dr ≤
( �

|r|≥a

1
r2
dr

)1/2( �

|r|>a

r2|F(g)|2 dr
)1/2

<∞.

Therefore F(g) ∈ L1(R). By Theorem 4.5, this implies that F(gλ) is Pettis
integrable on [0,∞[.

Remarks 2.4. (1) With the same argument as in [23, Remark 2.2],
one can show that the Desch–Schappacher–Webb criterion for chaos of C0-
semigroups (see [21]) implies frequent hypercyclicity.

(2) There is a connection between Corollary 2.3 and the recent results
of S. Grivaux in [26]. Indeed assume that one of the conditions (a) or (b)
(or equivalently (a)′ or (b)′) holds for a countable family of locally bounded
functions {fj}j∈Z. For every j, k ∈ Z and θ ∈ [0, 2π[ define

Ej,k(eiθ) = fj(θ + 2kπ).

The family {Ej,k : T → X : j, k ∈ Z} is a countable family of bounded
eigenvector fields for the operator T1, where T = {λ ∈ C : |λ| = 1}, such
that span{Ej,k(λ) : λ ∈ T, j, k ∈ Z} is dense in X. Actually span{Ej,k(λ) :
λ ∈ T\D, j, k ∈ Z} is dense in X for every countable subset D of T. Indeed,
if D = {eiθn : n ∈ N} with θn ∈ [0, 2π[, then

span{Ej,k(λ) : λ ∈ T \D, j, k ∈ Z}
= span{fj(s) : s ∈ R \ {θn + 2kπ : n ∈ N, k ∈ Z}, j ∈ Z},

which is dense in X by the weak continuity of each fj . Thus, by [26, Proposi-
tion 4.1], T1 has perfectly spanning unimodular eigenvectors, i.e. there exists
a probability measure σ on the unit circle T such that for every σ-measurable
subset of A with σ(A) = 1, span{ker(T − λ) : λ ∈ A} is dense in X.

Example 2.5. Consider the linear perturbation of the one-dimensional
Ornstein–Uhlenbeck operator

Aαu = u′′ + bxu′ + αu,

where α ∈ R, with domain

D(Aα) = {u ∈ L2(R) ∩W 2,2
loc (R) : Aαu ∈ L2(R)}.

In [14], it was proved that if α > b/2 > 0, then the semigroup generated
by Aα in L2(R) is chaotic. Actually the semigroup is frequently hypercyclic.
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Indeed, for every µ ∈ C with <µ < −b/2 +α the functions u1
µ and u2

µ whose
Fourier transforms are

û1
µ(ξ) = e−ξ

2/2bξ|ξ|−(2+(µ−α)/b), û2
µ(ξ) = e−ξ

2/2b|ξ|−(1+(µ−α)/b),

are eigenfunctions of Aα (see [14, 33]). For each s ∈ R, consider the functions
f1(s) = u1

is and f2(s) = u2
is. For every φ ∈ X ′ = L2(R) and j = 1, 2, by the

Parseval equality, we have

〈φ, fj(s)〉 =
�

R
φ(x)ujis(x) dx =

�

R
φ̂(x)ûjis(x) dx, s ∈ R.

It is immediate to verify that 〈φ, fj〉 ∈ C1(R), by Lebesgue’s theorem. The
argument of [14] shows that span{fi(s) : i = 1, 2, s ∈ R} is dense in L2(R).
Therefore the semigroup is frequently hypercyclic by Corollary 2.3.

We will see that the Frequent Hypercyclicity Criterion for semigroups
implies chaos for each single operator of the semigroup. It is interesting to
observe that this is in general stronger than the chaoticity of the semigroup
since, by recent results of Bayart and Bermúdez [4], there are chaotic C0-
semigroups (Tt)t≥0 such that no single operator Tt is chaotic, and chaotic
C0-semigroups (Tt)t≥0 containing non-chaotic operators Tt0 , t0 > 0, and at
the same time chaotic Tt1 for some t1 > 0.

Proposition 2.6. Let X be a separable Banach space and let (Tt)t≥0 be
a C0-semigroup on X that satisfies the Frequent Hypercyclicity Criterion of
Theorem 2.2. Then the operator Tt0 is chaotic for every t0 > 0.

Proof. Given t0 > 0, we know that Tt0 is frequently hypercyclic, thus
hypercyclic [15]. Given x ∈ X and ε > 0 we want to find a Tt0-periodic point
z ∈ X such that ‖x− z‖ < ε. Indeed, let y ∈ X0 be such that ‖x− y‖ < ε.
By continuity, we fix δ > 0 such that∥∥∥x− δ−1

δ�

0

Tsy ds
∥∥∥ < ε.

Now, let n ∈ N be large enough so that, by Corollary 4.4 and for t := nt0,
the element

z := δ−1
[∑
k≥1

δ�

0

Skt−sy ds+
δ�

0

Tsy ds+
∑
k≥1

δ�

0

Tkt+sy ds
]

satisfies ‖x− z‖ < ε. Finally, observe that the hypothesis of the Frequent
Hypercyclicity Criterion and continuity give Tnt0z = Ttz = z.

We point out the connection between the Frequent Hypercyclicity Crite-
rion for semigroups and the Frequent Hypercyclicity Criterion for operators.
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Proposition 2.7. Let X be a separable Banach space and let (Tt)t≥0 be
a C0-semigroup on X. Assume that there exist a dense subset X0 ⊆ X with
Tt(X0) ⊆ X0 for every t > 0, and maps St : X0 → X0, t > 0, satisfying

(i) TtStx = x, SrTtx = TtSrx = Sr−tx for all x ∈ X0, r > t > 0;
(ii) t 7→ Ttx is Pettis integrable on [0,∞[ for all x ∈ X0;

(iii) t 7→ Stx is Pettis integrable on [0,∞[ for all x ∈ X0.

Then the operator Tt satisfies the Frequent Hypercyclicity Criterion for every
t > 0.

Proof. For the sake of simplicity, let t = 1. First observe that Snx =
SnT1S1x = Sn−1S1x = Sn−2S

2
1 = · · · = Sn1 x for every x ∈ X0. For every

x ∈ X0, set y =
	1
0 Ttx dt. Then the series

∞∑
n=1

Tny =
∞∑
n=1

n+1�

n

Ttx dt

is unconditionally convergent by Proposition 4.3. Analogously, since
n�

n−1

Ssx ds =
1�

0

Sn−1+sx ds =
1�

0

Sn−ux ds = Sn

1�

0

Tsx ds = Sny,

the series
∑∞

n=1 Sny is unconditionally convergent. Finally we observe that,
by the same argument used in the proof of Theorem 2.2, the set {

	1
0 Ttx dt :

x ∈ X0} is dense.

Proposition 2.7 establishes a link between the continuous and discrete
criteria for frequent hypercyclicity which, together with some analogous con-
nections in the case of hypercyclicity [16] and mixing [7], motivate the fol-
lowing natural questions.

Problem 2.8. Let (Tt)t≥0 be a C0-semigroup and t0 > 0 such that
Tt0 satisfies the Frequent Hypercyclicity Criterion of Proposition 1.1. Does
(Tt)t≥0 satisfy the Frequent Hypercyclicity Criterion of Theorem 2.2? Does
it follow at least that every single operator Tt, t > 0, satisfies the Frequent
Hypercyclicity Criterion for operators?

We thank the referee for the second question in the above problem.

3. Translation semigroups. An admissible weight function on [0,∞[
is a measurable function ρ : [0,∞[→ R satisfying the following conditions:

(i) ρ(t) > 0 for all t ∈ [0,∞[;
(ii) there exist constants M≥1 and ω∈R such that ρ(τ)≤Meωtρ(τ + t)

for all τ ∈ [0,∞[ and all t > 0.

We recall the following useful result.
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Lemma 3.1 ([21]). If ρ is an admissible weight, then for every l > 0
there exist A,B > 0 such that for every σ ∈ [0,∞[ and every t ∈ [σ, σ + l],

Aρ(σ) ≤ ρ(t) ≤ Bρ(σ + l).

We also need the following lemma, which in particular unifies different
characterizations of chaos for translation semigroups (see [19] and [32]).

Lemma 3.2. Let ρ : [0,∞[→ R+ be an admissible weight.

(1) The following conditions are equivalent:

(i) For all b ≥ 0 the series
∑∞

k=1 ρ(b+ k) is convergent.
(ii) For all b ≥ 0 there exists P > 0 such that

∑∞
k=1 ρ(b + kP ) is

convergent.
(iii) There exists D⊆N with bounded gaps (i.e. there exists M > 0

such that D ∩ [n, n + M ] 6= ∅ for every n ∈ N) such that∑
k∈D ρ(k) is convergent.

(iv) The series
∑∞

k=1 ρ(k) is convergent.
(v)

	∞
0 ρ(s) ds <∞.

(2) ρ is bounded if and only if there exists D ⊆ N with bounded gaps
such that ρ is bounded on D.

Proof. We prove (2). The proof of (1) can be obtained by similar consid-
erations and usual comparisons between integrals and series. Assume that
ρ(h) ≤ K for every h ∈ D, where D ⊆ N with bounded gaps. Hence, there
is M ∈ N such that [Mn,Mn + M ] ∩ D 6= ∅ for every n ∈ N. Choose
hn ∈ [Mn,Mn+M ]∩D. By Lemma 3.1, there exist AM , BM > 0 such that

AMρ(Mn) ≤ ρ(hn) ≤ BMρ(Mn+M), n ∈ N,
hence ρ(Mn) ≤ A−1

M K for every n ∈ N. On the other hand, for every s ≥ 0
there exists k ∈ N ∪ {0} such that x ∈ [Mk,Mk +M ], and therefore

ρ(s) ≤ BMρ(Mk +M) ≤ KA−1
M BM .

We consider the following function spaces:

Lρp([0,∞[) = {u : [0,∞[→ R : u is measurable and ‖u‖p <∞},

where ‖u‖p = (
	∞
0 |u(t)|pρ(t) dt)1/p, and

Cρ0 ([0,∞[) = {u : [0,∞[→ R : u is continuous and lim
x→∞

u(x)ρ(x) = 0},

with ‖u‖∞ = supt∈[0,∞[|u(t)|ρ(t). If X is any of the spaces above, the transla-
tion semigroup (Tt)t≥0 is defined as usual by Ttf(x) = f(x+t), t ≥ 0, x ∈ I,
and it is a C0-semigroup (see e.g. [21]).

Hypercyclic and chaotic translation semigroups have been characterized
in [21, 19, 32]. If X is one of the spaces Lρp([0,∞[) or Cρ0 ([0,∞[) with an
admissible weight function ρ, the translation semigroup (Tt)t≥0 on X is
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hypercyclic if and only if lim inft→∞ ρ(t) = 0. If X = Cρ0 ([0,∞[), then the
translation semigroup (Tt)t≥0 on X is chaotic if and only if limx→∞ ρ(x) = 0.
For X = Lρp([0,∞[), (Tt)t≥0 is chaotic if and only if any of the conditions of
Lemma 3.2(1) are satisfied.

Proposition 3.3. Let ρ be an admissible weight on [0,∞[, X =
Lρp([0,∞[), 1 ≤ p < ∞ and (Tt)t≥0 the translation semigroup on X. Then
(Tt)t≥0 is chaotic if and only if it satisfies the Frequent Hypercyclicity Cri-
terion for semigroups.

Proof. If (Tt)t≥0 is chaotic, then
	∞
0 ρ(s) ds is finite. Let X0 be the space

generated by the characteristic functions of bounded subintervals of [0,∞[,
which is dense in Lρp([0,∞[). For every t > 0 and f ∈ X0 we set

Stf(s) =
{
f(s− t), s ≥ t,
0, s ∈ [0, t[.

Observe that TtStf = f and TtSrf = Sr−tf for all f ∈ X0, t > 0, r > t > 0.
Moreover

	
R+ ‖Ttf‖ dt converges for all f ∈ X0, because of the compact sup-

port of f , hence
	
R+ Ttf dt is Pettis integrable. On the other hand, consider

f = χ[a,b], with 0 ≤ a < b. If p = 1, we have

‖Stf‖ =
t+b�

t

ρ(s) ds =
b�

0

ρ(s+ t) ds ≤ bBρ(t+ b)

where B is a positive constant such that ρ(s+ t) ≤ Bρ(t+ b) for all s ∈ [0, b]
and t ≥ 0 . Since

	∞
0 ρ(t + b) dt is finite, we see that t 7→ Stf is Pettis

integrable.
Let p > 1 and let φ ∈ Lρp′([0,∞[), where 1/p + 1/p′ = 1. To prove

that t 7→ Stf is Pettis integrable, by Theorem 4.5, we have to show that
t 7→ 〈φ, Stf〉 ∈ L1([0,∞[). We have

〈φ, Stf〉 =
∞�

t

f(s− t)ρ(s) ds =
∞�

0

f(u)ρ(t+ u) du.

A straightforward application of the Tonelli and Fubini theorems (as for the
proof of the integrability of convolution) gives the assertion.

With similar techniques we can prove the following result for translation
semigroups on weighted spaces of continuous functions.

Proposition 3.4. Let ρ be an admissible weight on [0,∞[ and (Tt)t≥0

the translation semigroup on Cρ0 ([0,∞[). If
	∞
0 ρ(s) ds < ∞, then (Tt)t≥0

satisfies the Frequent Hypercyclicity Criterion for semigroups.

Remark 3.5. It should be observed that, for the translation semigroup
(Tt)t≥0 on Lρp([0,∞[), (Tt)t≥0 is chaotic if and only if every operator Tt satis-
fies the Frequent Hypercyclicity Criterion for operators by Proposition 2.7.
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In [27] the authors obtain a necessary condition for frequent hypercyclic-
ity of unilateral weighted shifts on `p. Inspired by their condition, we can
obtain an analogous one for translation semigroups. The proof partially fol-
lows the one in [27], and standard arguments using Lemmas 3.1 and 3.2(2).

Proposition 3.6. Let ρ be an admissible weight on [0,∞[, and (Tt)t≥0

the translation semigroup in Lρp([0,∞[). If (Tt)t≥0 is frequently hypercyclic,
then for every ε > 0 there exists a sequence (nk)k in N with positive lower
density such that

∑
k>i ρ(nk−ni) < ε for all i ∈ N. Moreover, ρ is bounded.

If (Tt)t≥0 is a frequently hypercyclic translation semigroup on Cρ0 ([0,∞[),
then for every ε > 0 there exists a sequence (nk)k in N with positive lower
density such that ρ(nk − ni) < ε for all i ∈ N and k > i.

Example 3.7. Let φ : R+ → R be a C1 function with derivative
bounded by ω > 0 and such that lim sups→∞ φ(s) =∞, and lim infs→∞ φ(s)
= −∞. (For example, consider a C1 function such that φ(s) = s sin(log s) if
s ≥ 1.) Set ρ = e−φ. Clearly ρ > 0 and, if t, τ > 0, we have

ρ(τ)
ρ(t+ τ)

= e−
	t+τ
τ φ′(s) ds ≤ eωτ .

Hence ρ is an admissible weight. The translation semigroup on Lρp([0,∞[) is
hypercyclic, since lim infs→∞ ρ(s) = 0, but it is not frequently hypercyclic,
since ρ is unbounded.

4. Appendix. We recall in this Appendix the main definitions and
results about Pettis integrability. Let X be a Banach space and (Ω,µ) a σ-
finite measure space. A function f : Ω → X is said to be weakly µ-measurable
if the scalar function ϕ ◦ f is µ-measurable for every ϕ ∈ X ′, where X ′

denotes the topological dual of X; f is said to be µ-measurable if there
exists a sequence (fn)n of simple functions such that limn→∞|fn − f | = 0
µ-a.e.

Lemma 4.1 (Dunford). If f is weakly µ-measurable and ϕ◦f ∈ L1(Ω,µ)
for every ϕ ∈ X ′, then for every measurable E ⊆ Ω there exists xE ∈ X ′′
such that

xE(ϕ) =
�

E

ϕ ◦ f dµ for every ϕ ∈ X ′.

Definition 4.2. If f : Ω → X is weakly µ-measurable and ϕ ◦ f ∈
L1(Ω,µ) for every ϕ ∈ X ′, then f is called Dunford integrable. The Dunford
integral of f over a measurable E ⊆ Ω is defined to be the element xE ∈ X ′′
such that

xE(ϕ) =
�

E

ϕ ◦ fdµ for every ϕ ∈ X ′.
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In the case that xE ∈ X for every measurable E, then f is called Pettis
integrable and xE is called the Pettis integral of f over E and will be denoted
by (P )-

	
E f dµ.

Clearly the Dunford and Pettis integrals coincide if X is a reflexive space.
Moreover, if ‖f‖ is integrable on Ω (i.e. f is Bochner integrable on Ω), then
f is Pettis integrable on X.

Theorem 4.3 (Pettis). If f is Pettis integrable, then for every sequence
(En)n of disjoint measurable sets in Ω�

S
n∈N En

f dµ =
∑
n∈N

�

En

f dµ,

where the series converges unconditionally.

Corollary 4.4. If f : [0,∞[ → X is Pettis integrable on [0,∞[, then
for every ε > 0 there exists N > 0 such that for every compact set K ⊂
[N,∞[, ∥∥∥ �

K

f(t) dt
∥∥∥ < ε.

Proof. Assume that there exists ε > 0 such that for every n ∈ N there
exists a compact set Kn ⊆ [n,∞[ such that ‖

	
Kn

f(s) ds‖ > ε. It is easy
to find a sequence (kn)n of natural numbers such that the sets Kkn are
mutually disjoint. Then

�
S
nKkn

f(s) ds =
∞∑
n=1

�

Kn

f(s) ds,

hence limn→∞
	
Kn

f(s) ds = 0, a contradiction.

Theorem 4.5. If the Banach space X does not contain c0 and (Ω,µ)
is σ-finite measure space, then a measurable Dunford integrable function
f : Ω → X is Pettis integrable.

The proofs of all these results can be found in [22] for the case of a
finite measure space, but they easily extend to σ-finite measure spaces. In
particular, the proof of the deep Theorem 4.5 follows analogously to the
finite measure space case ([22, Theorem 7, p. 54]) taking into account the
following decomposition theorem due to J. K. Brooks (see [12, Theorem 1]).

Theorem 4.6. Let (Ω,µ) be a σ-finite measure space. If f : Ω → X
is a measurable weakly integrable function, then f can be represented in the
form f = g+h µ-a.e. where g is a bounded Bochner integrable function and
h assumes at most a countable number of values in X.
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Università del Salento
I-73100 Lecce, Italy
E-mail: elisabetta.mangino@unisalento.it

Alfredo Peris
IUMPA

Universitat Politècnica de València
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