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On the Rademacher maximal function

by

Mikko Kemppainen (Helsinki)

Abstract. This paper studies a new maximal operator introduced by Hytönen, McIn-
tosh and Portal in 2008 for functions taking values in a Banach space. The Lp-boundedness
of this operator depends on the range space; certain requirements on type and cotype are
present for instance. The original Euclidean definition of the maximal function is gener-
alized to σ-finite measure spaces with filtrations and the Lp-boundedness is shown not
to depend on the underlying measure space or the filtration. Martingale techniques are
applied to prove that a weak type inequality is sufficient for Lp-boundedness and also to
provide a characterization by concave functions.

1. Introduction. The properties of the standard dyadic maximal func-
tion

Mf(ξ) = sup
Q3ξ
|〈f〉Q|, ξ ∈ Rn,

where 〈f〉Q denotes the average of a locally integrable function f over a
dyadic cube Q, are well-known. More precisely, the (sublinear) operator
f 7→ Mf is bounded in Lp for all p ∈ (1,∞] and satisfies for all f ∈ L1 a
certain weak type inequality (and is also bounded from the dyadic Hardy
space H1 to L1). These properties remain unchanged even if one studies
functions taking values in a Banach space and replaces absolute values by
norms.

In their paper [HMP], Hytönen, McIntosh and Portal needed a new max-
imal function in order to prove a vector-valued version of Carleson’s embed-
ding theorem. Instead of the supremum of (norms of) dyadic averages this
maximal function measures their R-bound (see Section 2 for the definition),
which in general is not comparable to the supremum. More precisely, they
defined the Rademacher maximal function

MRf(ξ) = R(〈f〉Q : Q 3 ξ), ξ ∈ Rn,

for functions f taking values in a Banach space. They proved that the Lp-
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boundedness of f 7→MRf is independent of p in the sense that boundedness
for one p ∈ (1,∞) implies boundedness for all p in that range, and that for
many common range spaces including all UMD function lattices and spaces
with type 2, the operator MR is Lp-bounded. Nevertheless it turned out
that the new maximal operator is not bounded for some range spaces, e.g.
not for `1.

The study of the Rademacher maximal operator continues here in a bit
more general framework, which was motivated by the need for vector-valued
maximal function estimates in the context of non-homogeneous spaces
in [H2]. We consider it for operator-valued functions defined on σ-finite
measure spaces, where averages are replaced by conditional expectations
with respect to filtrations. The boundedness of MR—the RMF-property (of
the range space)—is shown not to depend on these new parameters; in-
stead, it is sufficient to check it for the filtration of dyadic intervals on [0, 1)
(Theorem 5.1). Here we follow a reduction argument from Maurey [M], orig-
inally tailored for the UMD-property. We also show that the RMF-property
requires non-trivial type and finite cotype of the Banach spaces involved
(Proposition 4.2). The Rademacher maximal function is readily defined for
martingales X = (Xj)∞j=1 of operators by

X∗R = R(Xj : j ∈ Z+).

We will show using ideas from Burkholder [Bur1] that the RMF-property
(requiring Lp-boundedness of MR) is actually equivalent (Theorem 6.7) to
the weak type inequality (or the weak RMF-property)

P(X∗R > λ) .
1
λ
‖X‖1.

Finally, the RMF-property is characterized using concave functions (Theo-
rem 7.3) in the spirit of Burkholder [Bur2].

2. Preliminaries. All random variables in Banach spaces (functions
from a probability space to the Banach space) are assumed to be P-strongly
measurable, by which we mean that they are P-almost everywhere limits of
simple functions on the probability space whose measure we denote by P.
Their expectation, denoted by E, is given by the Bochner integral. By an
Lp-random variable, for 1 ≤ p < ∞, we mean a random variable X (in a
Banach space) whose pth moment E‖X‖p is finite.

Let (εj)∞j=1 be a sequence of Rademacher variables, i.e. independent ran-
dom variables attaining values −1 and 1 with equal probability P(εj = −1)
= P(εj = 1) = 1/2. By the independence we have E(εjεk) = (Eεj)(Eεk) = 0
whenever j 6= k, while (trivially) E(εjεk) = 1 if j = k. The equality of a
randomized norm and a square sum of norms for vectors x1, . . . , xN in a
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Hilbert space is thus established by the following calculation:

(2.1)

E
∥∥∥ N∑
j=1

εjxj

∥∥∥2
= E

〈 N∑
j=1

εjxj ,
N∑
k=1

εkxk

〉
=

N∑
j,k=1

E(εjεk)〈xj , xk〉 =
N∑
j=1

‖xj‖2.

The following standard result guarantees the comparability of different
randomized norms (see Kahane’s book [Kah] for a proof).

Theorem 2.1 (The Khintchine–Kahane inequality). For any 1 ≤ p, q
<∞, there exists a constant Kp,q such that(

E
∥∥∥ N∑
j=1

εjxj

∥∥∥p)1/p
≤ Kp,q

(
E
∥∥∥ N∑
j=1

εjxj

∥∥∥q)1/q

whenever x1, . . . , xN are vectors in a Banach space.

The concepts of type and cotype of a Banach space are intended to
measure how far the randomized norms are from `p sums of norms.

Definition 2.2. A Banach space E is said to have

(i) type p for 1 ≤ p ≤ 2 if there exists a constant C such that(
E
∥∥∥ N∑
j=1

εjxj

∥∥∥2)1/2
≤ C

( N∑
j=1

‖xj‖p
)1/p

for any vectors x1, . . . , xN in E, regardless of N ;
(ii) cotype q for 2 ≤ q ≤ ∞ if there exists a constant C such that( N∑

j=1

‖xj‖q
)1/q

≤ C
(
E
∥∥∥ N∑
j=1

εjxj

∥∥∥2)1/2

for any vectors x1, . . . , xN in E, regardless of N . For q =∞ the left
hand side in the above inequality is replaced by max1≤j≤N ‖xj‖.

Remark. A few observations are in order.

(i) As every Banach space has both type 1 and cotype ∞ we say that
a Banach space has non-trivial type (respectively finite cotype) if it
has type p for some p > 1 (respectively cotype q for some q <∞).

(ii) One can show that Lp-spaces have type min{p, 2} and cotype
max{p, 2} when 1 ≤ p < ∞. Sequence spaces `1 and `∞ are, on
the other hand, typical examples of spaces with only trivial type.

(iii) Type and cotype of a Banach space E and its dual E∗ are related
in a natural way: If E has type p, then E∗ has cotype p′, where p′

is the Hölder conjugate of p.
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(iv) The equality (2.1) of randomized norms and square sums of norms
in Hilbert spaces means of course that they have both type 2 and
cotype 2. A remarkable result of Kwapień’s (see the original pa-
per [Kwa], or the new proof by Pisier in [P]) is that a Banach space
with both type 2 and cotype 2 is necessarily isomorphic to a Hilbert
space.

The geometry of a Banach space can be studied by looking at its finite-
dimensional subspaces. We denote by `pN , where p ∈ [1,∞] and N ∈ Z+, the
N -dimensional subspace of `p consisting of sequences for which all but the
first N terms are zero. A Banach space E is said to contain `pN ’s λ-uniformly
for a λ ≥ 1 if there exist for each N ∈ Z+ an N -dimensional subspace EN of
E and a bounded isomorphism ΛN : EN → `pN such that ‖ΛN‖ ‖Λ−1

N ‖ ≤ λ.
The following theorem of Maurey and Pisier (see [MP] for the original

proof, or [DJT, Theorems 13.3 and 14.1]) relates this to the concept of type
and cotype:

Theorem 2.3. Suppose that E is a Banach space. Then

(i) E has a non-trivial type if and only if it does not contain `1N ’s uni-
formly (i.e. λ-uniformly for some λ ≥ 1).

(ii) E has finite cotype if and only if it does not contain `∞N ’s uniformly.

Proposition 2.4. If E∗ has non-trivial type, then E has finite cotype.

Proof. Non-trivial type implies finite cotype for the dual and thus it
follows from the assumption that E∗∗ has finite cotype. By Theorem 2.3,
E∗∗ does not contain `∞N ’s uniformly and the same has to hold for its sub-
space E. This means that E must have finite cotype.

The proposition above, together with the fact that non-trivial type im-
plies finite cotype, states in other words that if E has only infinite cotype,
then both E and E∗ have only trivial type.

Evidently, any infinite-dimensional Hilbert space contains `2N ’s 1-uni-
formly. The following theorem is a variant of Dvoretzky’s theorem (see
[DJT, Theorems 19.1 and 19.3] or the original paper by Dvoretzky [D]),
which says that Banach spaces satisfy almost the same. The definition of
K-convexity along with its fundamental properties can likewise be found
in [DJT, Chapter 13]. For the purposes of this paper, one can think of
K-convexity as the requirement of non-trivial type. Indeed, a Banach space
is K-convex if and only if it has non-trivial type ([DJT, Theorem 13.3]).
Furthermore, K-convexity is a self-dual property in the sense that a Banach
space possesses it if and only if its dual does ([DJT, Corollary 13.7 and
Theorem 13.5]).

Theorem 2.5. Every infinite-dimensional Banach space contains `2N ’s
λ-uniformly for any λ > 1. If the Banach space is also K-convex, then there
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exists a constant C so that the λ-isomorphic copies of `2N ’s can be chosen to
be C-complemented.

We next turn to the study of the type of spaces of operators. Suppose
that H and E are Banach spaces. For y ∈ E and x∗ ∈ H∗ we write

(y ⊗ x∗)x = 〈x, x∗〉y, x ∈ H.

Clearly y ⊗ x∗ ∈ L(H,E) and ‖y ⊗ x∗‖ ≤ ‖y‖‖x∗‖. We can also embed H∗

and E isometrically into L(H,E) by fixing respectively a unit vector y ∈ E
or a functional x∗ ∈ H∗ with unit norm and writing

H∗ ' y ⊗H∗ := {y ⊗ x∗ : x∗ ∈ H∗} ⊂ L(H,E),
E ' E ⊗ x∗ := {y ⊗ x∗ : y ∈ E} ⊂ L(H,E).

The following result is most likely well-known but for lack of reference
we give a proof:

Proposition 2.6. If H and E are infinite-dimensional Banach spaces,
then L(H,E) has only trivial type.

Proof. Suppose first that H is K-convex and let λ > 1. By Theorem 2.5,
bothH and E contain `2N ’s λ-uniformly. More precisely, there exist sequences
(HN )∞N=1 and (EN )∞N=1 of subspaces of H and E such that each HN and
EN is λ-isomorphic to `2N . Now, as H is K-convex, we may further assume
that for some constant C, each HN is C-complemented in H so that the
projection PN onto HN has norm less than or equal to C. We can then
embed L(HN , EN ) in L(H,E) by extending an operator T ∈ L(HN , EN )
to T̃ = TPN so that ‖T̃‖ ≤ C‖T‖. Fix an N and denote the isomorphisms
from HN and EN to `2N by ΛHN and ΛEN , respectively. Define

Λ : L(`2N , `
2
N )→ L(HN , EN )

by Λ(T ) = (ΛEN )−1TΛHN . Then Λ−1(S) = ΛENS(ΛHN )−1 and

‖Λ‖ ‖Λ−1‖ ≤ ‖(ΛEN )−1‖ ‖ΛHN‖ ‖ΛEN‖ ‖(ΛHN )−1‖ ≤ λ2.

As every sequence in `∞N defines a (diagonal) operator in L(`2N , `
2
N ) with

the same operator norm, we have `∞N ↪→ L(`2N , `
2
N ) isometrically. Thus

L(H,E) contains `∞N ’s Cλ2-uniformly and cannot then by Theorem 2.3 have
finite cotype, and thus cannot have non-trivial type either.

Suppose then that H is not K-convex. Then H∗ is not K-convex either,
has only trivial type and contains `1N ’s uniformly. But H∗ ↪→ L(H,E) iso-
metrically and so L(H,E) also has only trivial type.

In many questions of vector-valued harmonic analysis the uniform bound
of a family of operators has to be replaced by its R-bound (originally defined
by Berkson and Gillespie in [BG]).
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Definition 2.7. A family T of operators in L(H,E) is said to be R-
bounded if there exists a constant C such that for any T1, . . . , TN ∈ T and
any x1, . . . , xN ∈ H, regardless of N , we have

E
∥∥∥ N∑
j=1

εjTjxj

∥∥∥p ≤ CpE∥∥∥ N∑
j=1

εjxj

∥∥∥p
for some p ∈ [1,∞). The smallest such constant is denoted by Rp(T ). We
denote R2 by R for short later on.

Basic properties of R-bounds can be found for instance in [CdPSW].
We wish only to remark that by the Khintchine-Kahane inequality, the R-
boundedness of a family does not depend on p, and the constants Rp(T ) are
comparable. As a consequence of the inequality Rp(T +S) ≤ Rp(T )+Rp(S)
for any two families T and S of operators, every summable sequence of
operators is also R-bounded:

Rp({Tj}∞j=1) ≤
∞∑
j=1

‖Tj‖.

We will then compare R-boundedness and uniform boundedness. Any
R-bounded set is seen to be uniformly bounded:

sup
T∈T
‖T‖L(H,E) ≤ Rp(T )

for any 1 ≤ p <∞. In Hilbert spaces also the converse holds. More generally,
the following result is proven by Arendt and Bu in [AB] (while the authors
credit Pisier with the proof):

Proposition 2.8. Suppose that H and E are Banach spaces. The fol-
lowing are equivalent:

(i) H has cotype 2 and E has type 2.
(ii) Every uniformly bounded family of linear operators in L(H,E) is

R-bounded.

Remark. It is clear from the above that if H and E have cotype 2 and
type 2, respectively, and if X ⊂ L(H,E) is a Banach space whose norm
dominates the operator norm, then all uniformly (X -) bounded sets are also
R-bounded.

There are at least two natural ways to use R-boundedness for sets of
vectors in E. One can fix a functional x∗ with unit norm on a Banach space
H and use the embedding E ' E ⊗ x∗ ⊂ L(H,E). Doing so, a set S of
vectors in E is R-bounded if there exists a constant C such that

E
∥∥∥ N∑
j=1

εj(yj ⊗ x∗)xj
∥∥∥p ≤ CpE∥∥∥ N∑

j=1

εjxj

∥∥∥p
for any choice of vectors y1, . . . yN ∈ S and x1, . . . , xN ∈ H.
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In particular, one can choose the scalar field for H. As linear operators
from the scalars to E are of the form λ 7→ λy for some y ∈ E, it makes sense
to call a set S of vectors in E R-bounded if there exists a constant C such
that

E
∥∥∥ N∑
j=1

εjλjyj

∥∥∥p ≤ CpE∣∣∣ N∑
j=1

εjλj

∣∣∣p
for all vectors y1, . . . , yN in S and all scalars λ1, . . . , λN . These two condi-
tions are easily seen to be equivalent.

3. The Rademacher maximal function. Suppose that H and E
are Banach spaces and that X ⊂ L(H,E) is a Banach space whose norm
dominates the operator norm. We are mostly interested in the case X ' E,
i.e. X = E ⊗ x∗ for some x∗ ∈ H∗ or H is the scalar field. Another typical
choice for X is L(H,E) itself. Further, when H is a Hilbert space, we can
take the so-called γ-radonifying operators for X (for the definition, see Linde
and Pietsch [LP], van Neerven [vN] or [DJT, Chapter 12]). Their natural
norm is not equivalent to the operator norm, thus giving us a non-trivial
example of an interesting X . Finally, for Hilbert spaces H1 and H2 one can
consider the Schatten–von Neumann classes Sp(H1, H2) with 1 ≤ p < ∞
(see [DJT, Chapter 4]).

We will now set out to define the Rademacher maximal function. Suppose
that (Ω,F , µ) is a σ-finite measure space and denote the corresponding
Lebesgue–Bochner space of F-measurable X -valued functions by Lp(F ;X )
(or Lp(X )), 1 ≤ p ≤ ∞. The space of strongly measurable functions f for
which 1Af is integrable for every set A ∈ F with finite measure, is denoted
by L1

σ(F ;X ).
If G is a sub-σ-algebra of F such that (Ω,G, µ) is σ-finite, there exists for

every function f ∈ L1
σ(F ;X ) a conditional expectation E(f | G) ∈ L1

σ(G;X )
with respect to G which is the (almost everywhere) unique strongly G-
measurable function satisfying�

A

E(f | G) dµ =
�

A

f dµ

for every A ∈ G with finite measure. The operator E(· | G) is a contractive
projection from Lp(F ;X ) onto Lp(G;X ) for any p ∈ [1,∞]. This follows
immediately if the vector-valued conditional expectation is constructed as
the tensor extension of the scalar-valued conditional expectation, which is a
positive operator (see Stein [S] for the scalar-valued case).

Conditional expectations satisfy Jensen’s inequality: If φ : X → R is a
convex function and f ∈ L1

σ(X ) is such that φ ◦ f ∈ L1
σ, then

φ ◦ E(f | G) ≤ E(φ ◦ f | G)
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for any sub-σ-algebra G of F (for which (Ω,G, µ) is σ-finite). The proof in
the case of a finite measure space can be found in [H1].

Suppose then that (Fj)j∈Z is a filtration, that is, an increasing sequence
of sub-σ-algebras of F such that each (Ω,Fj , µ) is σ-finite. For a function
f ∈ L1

σ(F ;X ), we denote the conditional expectations with respect to this
filtration by

Ejf := E(f | Fj), j ∈ Z.

The standard maximal function (with respect to (Fj)j∈Z) is given by

Mf(ξ) = sup
j∈Z
‖Ejf(ξ)‖, ξ ∈ Ω,

for functions f in L1
σ(X ). The operator f 7→ Mf is known to be bounded

from Lp(X ) to Lp whenever 1 < p ≤ ∞, regardless of X .

Definition 3.1. The Rademacher maximal function of a function f ∈
L1
σ(F ;X ) is defined by

MRf(ξ) = R(Ejf(ξ) : j ∈ Z), ξ ∈ Ω.

Remark. Two immediate observations are listed below.

(i) The µ-measurability of MRf can be seen by studying it as the supre-
mum over N of the truncated versions

M
(N)
R f(ξ) = R(Ejf(ξ) : |j| ≤ N), ξ ∈ Ω.

Indeed, every M
(N)
R f is a composition of a strongly µ-measurable

function
Ω → X 2N+1 : ξ 7→ (Ejf(ξ))Nj=−N

and a continuous function (we have assumed that the norm of X
dominates the operator norm)

X 2N+1 → R : (Tj)Nj=−N 7→ R(Tj : |j| ≤ N).

(ii) By the properties of R-bounds we obtain the pointwise relation
Mf ≤ MRf . If H has cotype 2 and E has type 2 it follows from
Proposition 2.8 (and the following remark) that MRf . Mf . This
is the case in particular when H = Lq for 1 ≤ q ≤ 2 and E = Lp for
2 ≤ p <∞ over some measure spaces.

Example 3.2. Equip the Euclidean space Rn with the Borel σ-algebra
and the Lebesgue measure. For each integer j, let Dj denote a partition of
Rn into dyadic cubes with edges of length 2−j . Suppose in addition that
every cube in Dj is a union of 2n cubes in Dj+1. For instance, one can take
the “standard” dyadic cubes Dj = {2−j([0, 1)n +m) : m ∈ Zn}. A filtration
(Fj)j∈Z is then obtained by defining Fj as the σ-algebra generated by Dj .
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We write 〈f〉Q for the average of an X -valued function f over a dyadic
cube Q, that is,

〈f〉Q =
1
|Q|

�

Q

f(η) dη.

Our maximal functions are now given by

Mf(ξ) = sup
Q3ξ
‖〈f〉Q‖ and MRf(ξ) = R(〈f〉Q : Q 3 ξ), ξ ∈ Rn.

The Euclidean version of the Rademacher maximal function was origi-
nally studied by Hytönen, McIntosh and Portal [HMP] via the identification
L(C, E) ' E. They showed using interpolation that the Lp-boundedness
of f 7→ MRf for one p ∈ (1,∞) implies boundedness for all p in that
range. They also provided an example of a space, namely `1, for which the
Rademacher maximal operator is not bounded.

Definition 3.3. Let 1 < p < ∞. A Banach space X ⊂ L(H,E) is said
to have RMFp with respect to a given filtration on a given σ-finite measure
space if the corresponding Rademacher maximal operator is bounded from
Lp(X ) to Lp.

The smallest constant for which the boundedness holds will be called
the RMFp-constant for the given filtration on the given measure space.
When dealing with the Euclidean case, we occasionally drop the subscript
p and refer to the property as RMF with respect to Rn. Note that the
RMFp-property is inherited by closed subspaces. In particular, if L(H,E)
has RMFp, then both E and H∗ have it.

We will show that if X has RMFp with respect to the filtration of dyadic
intervals on [0, 1), then it has RMFp with respect to any filtration on any
σ-finite measure space. Supporting evidence is found in the Euclidean case:
If one restricts to the unit cube [0, 1)n with the filtration of dyadic cubes
contained in [0, 1)n, it is not difficult to show that RMFp with respect to
this filtration on [0, 1)n is equivalent to RMFp with respect to the filtration
of standard dyadic cubes on Rn.

Martingales are later on used to study a weak type inequality for the
maximal operator. In the Euclidean case, a similar inequality can be proven
with the aid of Calderón–Zygmund decomposition: Suppose that X ⊂
L(H,E) has RMFp with respect to the filtration of dyadic cubes on Rn

for some p ∈ (1,∞), i.e. MR is bounded from Lp(X ) to Lp. Then there
exists a constant C such that for all f ∈ L1(X ),

|{ξ ∈ Rn : MRf(ξ) > λ}| ≤ C

λ
‖f‖L1(X )

whenever λ > 0. The crucial part of the proof is to observe that MRa
vanishes outside a dyadic cube containing the support of an atom a (whose
average is zero).
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4. RMF-property, type and cotype. We will now study what kind
of restrictions the boundedness of the Rademacher maximal operator puts
on the type and cotype of the spaces involved.

Unlike many other maximal operators, MR is not in general bounded
from L∞(L(H,E)) to L∞. We actually have the following:

Proposition 4.1. The Rademacher maximal operator is bounded from
L∞(0, 1;L(H,E)) to L∞(0, 1) if and only if H has cotype 2 and E has type 2.

Proof. IfH has cotype 2 and E has type 2, all the uniformly bounded sets
are R-bounded and MRf ≤ CMf for all f in L∞(0, 1;L(H,E)). Suppose on
the contrary that H does not have cotype 2 or E does not have type 2, and
fix a C > 0. Now there exists a positive integer N and operators T1, . . . , TN
in L(H,E) with at most unit norm such that the R-bound of {T1, . . . , TN}
is greater than C. We then construct an operator-valued L∞-function on
[0, 1) that has the operators Tj as dyadic averages on an interval. Let us
write Ij = [0, 2j−N ), j = 1, . . . , N , so that I1 = [0, 21−N ) is the smallest
interval and IN = [0, 1). We set S1 = T1 and

Sj = 2Tj − Tj−1, j = 2, . . . , N.

Now ‖Sj‖ ≤ 3 for all j = 1, . . . , N , so that if we define f(ξ) = S1 for ξ ∈ I1
and f(ξ) = Sj for ξ ∈ Ij \Ij−1, j = 2, . . . , N , we have f ∈ L∞(0, 1;L(H,E)).

S1 S2 S3 S4

I1 I2 \ I1 I3 \ I2 I4 \ I3

Fig. 1. The construction of f with N = 4

We then look at the averages of f over the intervals Ij . Obviously

〈f〉I1 = S1 = T1,

〈f〉I2 =
S1 + S2

2
=
T1 + 2T2 − T1

2
= T2,

〈f〉I3 =
S1 + S2 + 2S3

4
=

2T2 + 4T3 − 2T2

4
= T3.

More generally, observing the telescopic behaviour we calculate

〈f〉Ij =
1

2j−1

(
S1 +

j∑
k=1

2k−1Sk

)
=

1
2j−1

(T1 + 2j−1Tj − T1) = Tj

for j = 2, . . . , N , as was desired. Thus MRf > C on I1, where C was chosen
arbitrarily large and the bound 3 for the norm of f does not depend on C.
The operator MR cannot therefore be bounded from L∞(0, 1;L(H,E)) to
L∞(0, 1).
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Based on the counterexample from [HMP] that the sequence space `1

does not have RMF we prove the following statement.

Proposition 4.2. If for some p ∈ (1,∞), L(H,E) has RMFp with re-
spect to the usual dyadic filtration on R, then H has finite cotype and E has
non-trivial type.

Proof. Suppose on the contrary that E has only trivial type. By The-
orem 2.3 it follows that for some λ ≥ 1 there exists a sequence (EN )∞N=1
of subspaces and a sequence (ΛEN )∞N=1 of isomorphisms between each EN
and `1N such that ‖ΛEN‖ ‖(ΛEN )−1‖ ≤ λ. Let us then fix an N . It is shown
in [HMP] that there exists a function f ∈ Lp(0, 1; `1) for any p ∈ (1,∞)
with the following properties:

(i) f(ξ) ∈ `1
2N for all ξ ∈ [0, 1),

(ii) ‖f(ξ)‖ = 1 for all ξ ∈ [0, 1) so that ‖f‖Lp(0,1;`1) = 1,
(iii) ‖MRf‖Lp(0,1) ≥ C1 log logN , where the constant C1 does not de-

pend on N .

Define then a function g : [0, 1)→ E by g(ξ) = (ΛE
2N )−1(f(ξ)) and note that

‖g‖Lp(0,1;E) ≤ ‖(ΛE2N )−1‖. Since MR is bounded from Lp(0, 1;E) to Lp(0, 1)
there exists a constant C2 such that ‖MRg‖Lp(0,1) ≤ C2‖g‖Lp(0,1;E). But
now, since f(ξ) = ΛE

2N (g(ξ)) we have ‖MRf(ξ)‖ ≤ ‖ΛE
2N ‖ ‖MRg(ξ)‖. Thus

‖MRf‖Lp(0,1) ≤ ‖ΛE2N ‖ ‖MRg‖Lp(0,1) ≤ C2‖ΛE2N ‖ ‖g‖Lp(0,1;E) ≤ C2λ,

which gives a contradiction whenever N is chosen so large that C1 log logN
≥ C2λ.

The claim on finite cotype is proven similarly. Suppose on the contrary
that H has only infinite cotype. Then H∗ has only trivial type and one
can proceed as above by defining a function h : [0, 1) → H∗ by h(ξ) =
ΛH

∗

2N (f(ξ)).

Recall that L(H,E) has only trivial type whenever H and E are infinite-
dimensional Banach spaces. Therefore it cannot have RMF via the identifi-
cation L(H,E) ' L(C,L(H,E)).

Since Lp-spaces have type 2 whenever 2 ≤ p <∞, they have the RMF-
property. We show next that they have RMF also when 1 < p < 2. This is
implied by the following heredity property of RMF.

Proposition 4.3. Let 1 < p < ∞. Suppose that (Σ, ν) is a σ-finite
measure space and that X ⊂ L(H,E) has RMFp with respect to the usual
dyadic filtration on Rn. Then Lp(Σ;X ) has RMFp with respect to the usual
dyadic filtration on Rn.
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Proof. We use the identification Lp(Rn;Lp(Σ;X )) ' Lp(Rn×Σ;X ) and
write

M̃Rf(ξ, η) = R
(

1
|Q|

�

Q

f(ζ, η) dζ : Q 3 ξ
)
, (ξ, η) ∈ Rn ×Σ,

for the Rademacher maximal function in the first variable. By the RMFp-
property of X we have, for ν-almost every η,�

Rn

M̃Rf(ξ, η)p dξ .
�

Rn

‖f(ξ, η)‖p dξ.

We then calculate

E
∥∥∥∑
Q3ξ

εQλQ〈f〉Q
∥∥∥p
Lp(Σ;X )

=
�

Σ

E
∣∣∣∣∑
Q3ξ

εQλQ
1
|Q|

�

Q

f(ζ, η) dζ
∣∣∣∣p dν(η)

.
�

Σ

M̃Rf(ξ, η)p dν(η) E
∣∣∣∑
Q3ξ

εQλQ

∣∣∣p
and so

R(〈f〉Q : Q 3 ξ)p .
�

Σ

M̃Rf(ξ, η)p dν(η).

Therefore,�

Rn

MRf(ξ)p dξ .
�

Σ

�

Rn

M̃Rf(ξ, η)p dξ dν(η) .
�

Σ

�

Rn

‖f(ξ, η)‖p dξ dν(η),

so that MR is bounded from Lp(Lp(Σ;X )) to Lp.

Remark. The previous proposition also follows from the more general
results proven in [HMP], namely that both non-commutative Lp-spaces and
all UMD function lattices have RMF.

5. Reduction to Haar filtrations. We will show that the RMF-
property is independent of the filtration and the underlying measure space
in the following sense:

Theorem 5.1. Let 1 < p < ∞. If X has RMFp with respect to the
filtration of dyadic intervals on [0, 1), then it has RMFp with respect to any
filtration on any σ-finite measure space.

When this is the case, we simply say that X has RMFp. The proof of
Theorem 5.1 uses ideas from Maurey [M], where a similar result is proven for
the UMD-property. We begin with the simplest possible case of filtrations
of finite algebras on finite measure spaces and proceed gradually toward
more general situations. In order to do so, we first work on measure spaces
(Ω,F , µ) with µ(Ω) = 1 that are divisible in the sense that any set A ∈ F
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with positive measure has for all c ∈ (0, 1) a (measurable) subset with
measure cµ(A).

By a basis of a finite subalgebra G of F we mean a partition of Ω into
disjoint non-empty sets A1, . . . , Am ∈ G that generate the subalgebra so that
each A ∈ G can be expressed as a union of some of these Ak’s. Such a par-
tition, denoted by bsG, always exists and is unique. Observe that functions
measurable with respect to a finite algebra can be identified with functions
defined on the basis of this algebra (or any finer algebra).

A filtration (Fj)∞j=1 of finite subalgebras of F is called a Haar filtration if
bsFj consists of j+1 sets of positive measure. We also write F0 = {∅, Ω} so
that bsF0 = {Ω}. Furthermore, every Fj is obtained from Fj−1 by splitting
a set B ∈ bsFj−1 into two sets B′ and B′′ of positive measure. A Haar
filtration is said to be dyadic if in each splitting, µ(B′) (and hence also
µ(B′′)) is a dyadic fraction of µ(B); and the filtration is standard if each B
splits into sets of equal measure.

A typical example of a filtration of finite algebras is of course the fil-
tration of dyadic intervals on [0, 1). We denote by Dj the finite algebra of
dyadic intervals of length 2−j on [0, 1), and so

bsDj = {[(k − 1)2−j , k2−j) : k = 1, . . . , 2j}.

bs F0

bs F1

bs F2

A filtration of finite algebras A Haar filtration

bs F0

bs F1

bs F2

bs F0

bs F1

bs F2

bs D0

bs D1

bs D2

A standard Haar filtration The filtration of dyadic intervals

Fig. 2. Different filtrations of finite algebras

Suppose that (Fj)Nj=1 is a filtration of finite algebras. By adding one set
at a time (to the basis), one can construct a Haar filtration (F̃j)KN

j=1 such
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that
F̃1 ⊂ F̃2 ⊂ · · · ⊂ F̃K1 = F1 ⊂ F̃K1+1 ⊂ · · · ⊂ F̃KN

= FN ,

where Kj+1 is the number of sets in bsFj . Likewise, the filtration of dyadic
intervals on [0, 1) can be “embedded” in a standard Haar filtration on [0, 1).

Note that the RMFp-constant of X with respect to a filtration (Fj)Nj=1

of finite algebras is at least the RMFp-constant with respect to any “sub-
filtration” (Fjk)Mk=1, where 1 ≤ jk1 ≤ · · · ≤ jkM

≤ N . Indeed, for any
FN -measurable f we have

R(E(f | Fjk)(A) : 1≤ k≤M) ≤ R(E(f | Fj)(A) : 1≤ j ≤N), A∈ bsFN ,

and the claim follows.
Two filtrations (Fj)∞j=1 and (F̃j)∞j=1 of finite algebras (possibly on differ-

ent measure spaces) are said to be equivalent if there exists for every j ∈ Z+

a measure preserving bijection between bsFj and bs F̃j . Observe that if b is
such a bijection from bsFN to bs F̃N , then for every FN -measurable f we
have

E(f | Fj) = E(f ◦ b−1 | F̃j) ◦ b

for any j = 1, . . . , N . It is a matter of calculation that the RMFp-constant
of X (if finite) is the same with respect to equivalent filtrations of finite
algebras.

Evidently, every filtration of finite algebras on any measure space (of
total measure one) is equivalent to a filtration on the unit interval. The
next lemma shows that when dealing with dyadic Haar filtrations, we can
choose an equivalent filtration on the unit interval that very much resembles
the filtration of dyadic intervals. The result goes back to Maurey [M] and a
detailed proof can be found in Hytönen [H1].

Lemma 5.2. Every dyadic Haar filtration on any measure space with
total measure one is equivalent to a dyadic Haar filtration (Fj)Nj=1 on the
unit interval such that Fj ⊂ DKj for some integers Kj and

E(f | Fj) = E(f | DKj ), 1 ≤ j ≤ N,

for any FN -measurable f .

Hence, if X has RMFp with respect to the filtration of dyadic intervals
on [0, 1), then it has RMFp with respect to any dyadic Haar filtration on any
measure space with total measure one and the RMFp-constant is at most
the RMFp-constant with respect to the filtration of dyadic intervals.

We say that X has RMFp uniformly with respect to a class of filtrations
on a class of measure spaces if the RMFp-constants in question are uniformly
bounded.
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For the next three lemmas, fix a divisible measure space (Ω,F , µ) with
µ(Ω) = 1. In each of the lemmas we start with a filtration (Fj)∞j=1, truncate
it at a positive integer N and construct a related more “regular” one, whose
σ-algebras we denote by F̃j . Objects corresponding to these are denoted
likewise, for instance, conditional expectations are denoted by Ej and Ẽj ,
respectively.

Lemma 5.3. If X has RMFp uniformly with respect to dyadic Haar fil-
trations on (Ω,F , µ), then it has RMFp uniformly with respect to all Haar
filtrations on (Ω,F , µ) .

Proof. Suppose that (Fj)∞j=1 is a Haar filtration. Let f be an FN -mea-
surable X -valued function for a fixed positive integer N and let ε > 0. We
aim to show that

‖M (N)
R f‖Lp ≤ r(ε,N, f) + C‖f‖Lp(X ),

where r(ε,N, f)→ 0 as ε→ 0 and C depends only on X and p.
To construct a dyadic Haar filtration (F̃j)Nj=1 that approximates (Fj)Nj=1,

we proceed inductively. Assume that we have constructed F̃j−1 in our desired
dyadic Haar filtration so that µ(B 4 B̃) < 2j−1−Nε whenever B̃ in bs F̃j−1

corresponds to a B in bsFj−1. If B in bsFj−1 splits into B′ and B′′ in bsFj ,
then using divisibility we choose B̃′ ⊂ B̃ whose measure is a dyadic fraction
of µ(B̃) and which contains B̃ ∩ B′ while µ(B̃′ \ B′) < 2j−1−Nε. Now, as
B′ \ B̃′ = B′ \ B̃ ⊂ B \ B̃, we see that

µ(B′ 4 B̃′) ≤ µ(B̃′ \B′) + µ(B \ B̃) <
ε

2N−j
.

Also for B̃′′ = B̃ \ B̃′ we have

µ(B′′ 4 B̃′′) <
ε

2N−j
.

We have now constructed a dyadic Haar filtration (F̃j)Nj=1 for which
µ(B 4 B̃) < ε whenever B̃ corresponds to a B in some Fj .

Now

‖M (N)
R f‖Lp =

( �

Ω

R(Ejf(ξ) : 1 ≤ j ≤ N)p dµ(ξ)
)1/p

≤
( �

Ω

R(Ejf(ξ)− Ẽjf(ξ) : 1 ≤ j ≤ N)p dµ(ξ)
)1/p

+ ‖M̃Rf‖Lp ,

where the maximal operator M̃R satisfies by assumption ‖M̃Rf‖Lp ≤
C‖f‖Lp(X ) for a constant C independent of the filtration (F̃j)Nj=1. Estimat-
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ing the R-bound in the first term by summing the norms we get( �

Ω

R(Ejf(ξ)− Ẽjf(ξ) : 1 ≤ j ≤ N)p dµ(ξ)
)1/p

≤
( �
Ω

( N∑
j=1

‖Ejf(ξ)− Ẽjf(ξ)‖
)p
dµ(ξ)

)1/p
≤

N∑
j=1

‖Ejf − Ẽjf‖Lp(X ).

To estimate ‖Ejf − Ẽjf‖Lp(X ) for a fixed j, recall that µ(B4 B̃) < ε when
B̃ in bs F̃j corresponds to a B in bsFj . Decomposing Ω as

Ω =
⋃

B∈bsFj

B =
⋃

B∈bsFj

((B ∩ B̃) ∪ (B \ B̃))

gives us

‖Ejf − Ẽjf‖Lp(X )

≤
∑

B∈bsFj

(
‖1
B∩ eB(Ejf − Ẽjf)‖Lp(X ) + ‖1

B\ eB(Ejf − Ẽjf)‖Lp(X )

)
.

For ξ ∈ B ∩ B̃ we have

Ejf(ξ) =
1

µ(B)

�

B

f dµ and Ẽjf(ξ) =
1

µ(B̃)

�

eB
f dµ

and thus using Hölder’s inequality we see that

‖1
B∩ eB(Ejf − Ẽjf)‖Lp(X )

= µ(B ∩ B̃)1/p
∥∥∥∥ 1
µ(B)

�

B

f dµ− 1

µ(B̃)

�

eB
f dµ

∥∥∥∥
≤ 1
µ(B)

∥∥∥ �

B

f dµ−
�

eB
f dµ

∥∥∥+
|µ(B)− µ(B̃)|
µ(B)µ(B̃)

∥∥∥ �

eB
f dµ

∥∥∥
≤ 1
µ(B)

�

B4 eB
‖f(ξ)‖ dµ(ξ) +

|µ(B)− µ(B̃)|
µ(B)µ(B̃)

�

Ω

‖f(ξ)‖ dµ(ξ)

≤ µ(B 4 B̃)1−1/p

µ(B)
‖f‖Lp(X ) +

µ(B 4 B̃)

µ(B)µ(B̃)
‖f‖Lp(X )

≤
(
ε1−1/p +

ε

µ(B̃)

)‖f‖Lp(X )

µ(B)

≤
(
ε1−1/p +

ε

M − ε

)‖f‖Lp(X )

M

whenever ε < M , where M = min{µ(B) : B ∈ bsFN} so that µ(B) ≥ M
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and µ(B̃) ≥M − ε for each B in bsFj . On the other hand,

‖1
B\ eB(Ejf−Ẽjf)‖Lp(X ) ≤ µ(B4B̃)1/p‖Ejf−Ẽjf‖L∞(X ) ≤ ε1/p2‖f‖L∞(X )

for each B in bsFj .
All in all, as every bsFj contains at most N+1 sets, we have established

that
N∑
j=1

‖Ejf − Ẽjf‖Lp(X ) ≤ N(N + 1)
(
ε1−1/p +

ε

M − ε

)‖f‖Lp(X )

M

+N(N + 1)ε1/p2‖f‖L∞(X )

= r(ε,N, f)

and clearly r(ε,N, f)→ 0 as ε→ 0.

Lemma 5.4. If X has RMFp uniformly with respect to Haar filtrations
on (Ω,F , µ), then it has RMFp uniformly with respect to filtrations of finite
algebras on (Ω,F , µ).

Proof. This follows immediately from our earlier observations: Given a
filtration (Fj)∞j=1 of finite algebras and a positive integerN , we can construct
a Haar filtration (F̃j)KN

j=1 so that

F̃1 ⊂ F̃2 ⊂ · · · ⊂ F̃K1 = F1 ⊂ F̃K1+1 ⊂ · · · ⊂ F̃KN
= FN .

For any FN -measurable f we have

R(Ejf(A) : 1 ≤ j ≤ N) ≤ R(Ẽjf(A) : 1 ≤ j ≤ KN ), A ∈ bsFN ,
and the claim follows.

Lemma 5.5. If X has RMFp uniformly with respect to filtrations of fi-
nite algebras on (Ω,F , µ), then it has RMFp uniformly with respect to all
filtrations on (Ω,F , µ).

Proof. Suppose that (Fj)∞j=1 is a filtration, N a positive integer, f a
function in Lp(FN ;X ) and ε > 0. We begin by choosing simple functions
sj ∈ Lp(Fj ;X ), j = 1, . . . , N , so that

‖Ejf − sj‖Lp(X ) <
ε

2j+1
.

For j = 1, . . . , N , let F̃j be the finite algebra generated by s1, . . . , sj and
observe that F̃j ⊂ F̃j+1, i.e. (F̃j)Nj=1 is a filtration. Now

‖M (N)
R f‖Lp =

( �

Ω

R(Ejf(ξ) : 1 ≤ j ≤ N)p dµ(ξ)
)1/p

≤
( �

Ω

R(Ejf(ξ)− Ẽjf(ξ) : 1 ≤ j ≤ N)p dµ(ξ)
)1/p

+ ‖M̃Rf‖Lp ,
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where the maximal operator M̃R satisfies ‖M̃Rf‖Lp ≤ C‖f‖Lp(X ) for a con-
stant C independent of the filtration (F̃j)Nj=1. This independence is crucial,
as F̃j ’s arose from f .

We then estimate( �

Ω

R(Ejf(ξ)− Ẽjf(ξ) : 1 ≤ j ≤ N)p dµ(ξ)
)1/p

≤
( �

Ω

( N∑
j=1

‖Ejf(ξ)− Ẽjf(ξ)‖
)p
dµ(ξ)

)1/p

≤
N∑
j=1

‖Ejf − Ẽjf‖Lp(X )

≤
N∑
j=1

(‖Ejf − sj‖Lp(X ) + ‖Ẽjf − sj‖Lp(X )).

Furthermore, since

‖Ẽjf − sj‖Lp(X ) = ‖Ẽjf − Ẽjsj‖Lp(X ) = ‖Ẽj(Ejf − sj)‖Lp(X )

≤ ‖Ejf − sj‖Lp(X )

we get( �

Ω

R(Ejf(ξ)− Ẽjf(ξ) : 1 ≤ j ≤ N)p dµ(ξ)
)1/p

≤ 2
N∑
j=1

‖Ejf − sj‖Lp(X ) <
N∑
j=1

ε

2j
< ε.

We then show that the assumption on divisibility can be dropped.

Lemma 5.6. If X has RMFp with respect to any filtration on any divisible
measure space with total measure one, then it has RMFp with respect to any
filtration on any measure space with total measure one.

Proof. Suppose that (Fj)∞j=1 is a filtration on a not necessarily divisible
measure space (Ω,F , µ) with µ(Ω) = 1. Now the σ-algebras F̃j = {F×[0, 1] :
F ∈ Fj} form a filtration on the product of (Ω,F , µ) and the unit interval
with Lebesgue measure, which is obviously a divisible measure space. For
f ∈ Lp(Ω;X ) we put f̃(ξ, t) = f(ξ), (ξ, t) ∈ Ω × [0, 1], and observe that
‖f̃‖Lp(X ) = ‖f‖Lp(X ). Also Ẽj f̃(ξ, t) = Ejf(ξ) for all (ξ, t) ∈ Ω × [0, 1], and
so ‖M̃Rf̃‖Lp(X ) = ‖MRf‖Lp(X ).

The results follow immediately for finite measure spaces. Suppose that
(Ω,F , µ) is such. Then the above argument applies to the measure µ(Ω)−1µ
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on (Ω,F) and evidently the conditional expectations are the same in these
two measure spaces. Thus the Rademacher maximal operator remains unal-
tered and the inequality stating the boundedness is only a matter of scaling
by µ(Ω)−1.

Suppose then that X has RMFp uniformly with respect to any filtration
on any finite measure space and let (Ω,F , µ) be a σ-finite measure space
with a filtration (Fj)∞j=1. Since F1 is σ-finite (by definition), we can write Ω
as a union of disjoint sets Ak ∈ F1, k ∈ Z+, each with finite measure. Let us
define for positive integers k the finite measures µk(A) = µ(A ∩ Ak) on F .
The conditional expectation of a function f ∈ Lp(Ω;X ) with respect to Fj
and µk is simply the conditional expectation of 1Ak

f with respect to Fj ,
which further equals 1Ak

Ejf . In symbols

E
(k)
j f = 1Ak

Ejf,

where E(k)
j f denotes the conditional expectation of f with respect to Fj

and µk. Thus

‖MRf‖pLp =
∞∑
k=1

�

Ak

R(Ejf(ξ) : j ∈ Z+)p dµ(ξ)

=
∞∑
k=1

�

Ak

R(E(k)
j f(ξ) : j ∈ Z+)p dµk(ξ)

≤
∞∑
k=1

Cp
�

Ak

‖f(ξ)‖p dµk(ξ) = Cp‖f‖pLp(X ).

So far we have only considered filtrations indexed by positive integers.
Suppose that X has RMFp with respect to any filtration indexed by Z+ on
any σ-finite measure space and let (Fj)j∈Z be a filtration on (Ω,F , µ). Then
X has RMFp with respect to (Fj)∞j=−N with a constant independent of N
and thus by the monotone convergence theorem with respect to (Fj)j∈Z.

This concludes the proof of Theorem 5.1.

6. The weak RMF-property. We start by recalling some terminology.
A stochastic process (a sequence of random variables on some probability
space) X = (Xj)∞j=1 is always adapted to the filtration (Fj)∞j=1, where Fj
is the σ-algebra σ(X1, . . . , Xj) generated by X1, . . . , Xj , in the sense that
each Xj is Fj-measurable. We call a sequence of L1-random variables a
martingale if E(Xk | Fj) = Xj whenever j ≤ k.

Note that for any martingale X = (Xj)∞j=1 we have EXj = EXk for all
j, k ∈ Z+. It is customary to write F0 for the trivial σ-algebra and X0 for
the common expectation of Xj ’s. By defining Yj = Xj −X0 one can restrict
to martingales Y = (Yj)∞j=1 for which Y0 = EYj = 0.
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We say that a stochastic process X = (Xj)∞j=1 is Lp-bounded for p ∈
[1,∞) if ‖X‖pp := supj∈Z+

E‖Xj‖p < ∞ and for p = ∞ if the infimum
‖X‖∞ of all C for which every ‖Xj‖ ≤ C almost surely, is finite. A stochas-
tic process X = (Xj)∞j=1 is said to be simple if the algebras Fj are finite
(i.e. the random variables Xj are simple). A simple martingale is called a
(dyadic/standard) Haar martingale if the algebras Fj form a (dyadic/stan-
dard) Haar filtration.

Given a martingale (Xj)Nj=1 we define its difference sequence (Dj)Nj=1 by
Dj = Xj−Xj−1 for j ≥ 1. Furthermore, if v = (vj)∞j=1 is a real L∞-bounded
stochastic process (on the same probability space), we define

(v ? X)j =
j∑

k=1

vkDk, j ∈ Z+.

If v is predictable with respect to X in the sense that each vj is Fj−1-
measurable (and v1 is constant almost surely), then the martingale transform
v ? X = ((v ? X)j)∞j=1 is itself a martingale.

Definition 6.1. Let 1 < p < ∞. A Banach space E is said to have
UMDp if there exists a constant C such that for every Lp-martingale X =
(Xj)Nj=1 in E we have

E‖(ε ? X)N‖p ≤ CpE‖XN‖p

whenever ε = (εj)Nj=1 is a sequence of signs {−1, 1}.
This property is independent of p in the sense that if a Banach space

has UMDp for one p ∈ (1,∞) then it has UMDp for all p ∈ (1,∞) (see
Maurey [M]). Thus the parameter p can be omitted from the definition.

One can ask how the RMF-property relates to the UMD-property. First
of all, every UMD-space can be shown to be reflexive (see for instance [M]).
Our typical example L(H,E) is usually non-reflexive, but has RMF at least
when H has cotype 2 and E has type 2. More interestingly, James con-
structed in [J] a non-reflexive Banach space E with type 2. Thus E ↪→
L(H,E) can have RMF without being a UMD-space. Bourgain showed
in [Bou] that the Schatten–von Neumann class Sp(H1, H2) is UMD for
1 < p < ∞. As H1 and H2 are spaces of type and cotype 2, it follows
from our earlier observations that Sp(H1, H2) has RMF as a subspace of
L(H1, H2). It has also been shown in [HMP] that Sp(H1, H2) has RMF as
L(C, Sp(H1, H2)).

Let X ⊂ L(H,E) be a Banach space whose norm dominates the operator
norm. For a stochastic process X = (Xj)∞j=1 in X we define the Doob and
Rademacher maximal functions by

X∗ = sup
j∈Z+

‖Xj‖ and X∗R = R(Xj : j ∈ Z+),

respectively.
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The boundedness properties of Doob’s maximal function are well-known:
Every Lp-bounded martingale X satisfies

E|X∗|p ≤ (p′)p‖X‖pp,
where p′ is the Hölder conjugate of p and 1 < p <∞. Furthermore, for every
L1-bounded martingale X we have

P(X∗ > λ) ≤ 1
λ
‖X‖1

whenever λ > 0.
Recall that the RMFp-property is independent of the filtration and of the

underlying measure space in the sense of the previous section (Theorem 5.1).
Regarding the unit interval as a probability space on which the conditional
expectations with respect to dyadic intervals define martingales, we see that
X has RMFp if and only if there exists a constant C such that

E|X∗R|p ≤ Cp‖X‖pp
for any Lp-bounded martingale X in X .

Applying ideas from Burkholder [Bur1] we will show that X has RMFp
for some p ∈ (1,∞) if and only if it has weak RMF, i.e. there exists a
constant C such that all L1-bounded martingales X in X satisfy

(6.1) P(X∗R > λ) ≤ C

λ
‖X‖1

whenever λ > 0.
To show the necessity of the weak type inequality (6.1) we invoke the

Gundy decomposition (see Gundy [G] for the original proof).

Theorem 6.2 (Gundy decomposition). Suppose that X is an L1-bounded
martingale in X and that λ > 0. There exists a decomposition X = G+H+B
of X into martingales G, H and B which satisfy

(i) ‖G‖1 ≤ 4‖X‖1 and ‖G‖∞ ≤ 2λ,
(ii) E‖H1‖+

∑∞
j=2 E‖Hj −Hj−1‖ ≤ 4‖X‖1 (H = (Hj)∞j=1),

(iii) P(B∗ > 0) ≤ 3
λ‖X‖1.

Proposition 6.3. If X has RMFp for some p ∈ (1,∞), then it has weak
RMF.

Proof. Taking the Gundy decomposition of X at height λ we may write

P(X∗R > λ) ≤ P(B∗R > λ/3) + P(H∗R > λ/3) + P(G∗R > λ/3),

and estimate each term separately. Firstly P(B∗R > 0) = P(B∗ > 0), since
B∗R = 0 if and only if B∗ = 0. Thus

P(B∗R > λ/3) ≤ P(B∗R > 0) = P(B∗ > 0) ≤ 3
λ
‖X‖1.
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Secondly,

H∗R = R(Hj : j ∈ Z+) = R
( j∑
k=1

(Hk −Hk−1) : j ∈ Z+

)
≤
∞∑
j=1

‖Hj −Hj−1‖,

where the last inequality follows from a simple rearrangement of sums. Hence

P(H∗R > λ/3) ≤ P
( ∞∑
j=1

‖Hj −Hj−1‖ >
λ

3

)
≤ 3
λ

E
∞∑
j=1

‖Hj −Hj−1‖

=
3
λ

∞∑
j=1

E‖Hj −Hj−1‖ ≤
12
λ
‖X‖1.

Thirdly,

P(G∗R > λ/3) ≤
(

3
λ

)p
E|G∗R|p ≤ C

(
3
λ

)p
‖G‖pp

≤ C 3p2p−1

λ
‖G‖1 ≤ C

3p2p+1

λ
‖X‖1,

where the property ‖G‖∞ ≤ 2λ was used to deduce that

‖G‖pp = sup
j∈Z+

E‖Gj‖p ≤ ‖G‖p−1
∞ sup

j∈Z+

E‖Gj‖ ≤ (2λ)p−1‖G‖1.

We then turn to the converse. We obtain the desired results for stan-
dard Haar martingales, but recalling the earlier reduction, this will not be
a restriction. The argument is based on a “good-λ inequality” (Lemma 6.5)
which says roughly that the chance of X∗R being large while X∗ diminishes
is vanishingly small.

Lemma 6.4. If X = (Xj)∞j=1 is a standard Haar martingale, then
(‖Dj‖)∞j=1 is predictable with respect to X.

Proof. For every j ≥ 1 there is exactly one event B ∈ bsFj−1 on which
Xj − Xj−1 is non-zero. As B = B1 ∪ B2 for some B1, B2 ∈ bsFj with
P(B1) = P(B2) and E(Xj−Xj−1 | Fj−1) = 0, there exists a T ∈ X such that
Xj −Xj−1 = 1B1T − 1B2T . Consequently,

‖Dj‖ = ‖Xj −Xj−1‖ = 1B1‖T‖+ 1B2‖T‖ = 1B‖T‖

and so ‖Dj‖ is Fj−1-measurable.

We will need the concept of a stopping time: We say that a random
variable τ in Z+ ∪ {∞} is a stopping time with respect to a stochastic
process X if {τ = j} is in Fj for every positive integer j. In this case we
define

Xτ =
∞∑
j=1

1{τ=j}Xj .
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Observe that Xτ = 0 when τ = ∞. An easy calculation shows that if
τ is a stopping time with respect to an L1-bounded martingale X, then
E‖Xτ‖ ≤ ‖X‖1.

Lemma 6.5. Suppose that X has weak RMF. Then for all δ ∈ (0, 1) and
β > 2δ+ 1 there exists an α(δ) > 0 which tends to zero as δ ↘ 0 and which
is such that for all Lp-bounded standard Haar martingales X in X we have

P(X∗R > βλ, X∗ ≤ δλ) ≤ α(δ)P(X∗R > λ)

whenever λ > 0.

Proof. Let X = (Xj)∞j=1 be an Lp-bounded standard Haar martingale
in X . Define the stopping times

τ1 = min{j ∈ Z+ : R(Xk : 1 ≤ k ≤ j) > λ}
τ2 = min{j ∈ Z+ : R(Xk : 1 ≤ k ≤ j) > βλ}
σ = min{j ∈ Z+ : ‖Xj‖ > δλ or ‖Dj+1‖ > 2δλ}

where Lemma 6.4 guarantees that {σ = j} ∈ Fj for each j ∈ Z+. Define

vj = 1{τ1<j≤τ2∧σ},

and note that {τ1 < j ≤ τ2 ∧ σ} is the intersection of the complements of
{τ2 ∧ σ > j} and {τ1 > j − 1}, both of which lie in Fj−1. Hence v = (vj)∞j=1

is predictable and so v ? X is a martingale. When τ1 < τ2 ∧ σ we calculate

(v?X)j =
j∑

k=1

vkDk =
τ2∧σ∧j∑
k=τ1+1

(Xk−Xk−1) =


0, 1 ≤ j ≤ τ1,
Xj −Xτ1 , τ1 < j ≤ τ2 ∧ σ,
Xτ2∧σ−Xτ1 , j > τ2 ∧ σ.

We first show that

{X∗R > βλ, X∗ ≤ δλ} ⊂ {(v ? X)∗R > (β − 2δ − 1)λ}.

Suppose that X∗R > βλ and X∗ ≤ δλ. Now τ2 < ∞ and as ‖Dj+1‖ ≤
‖Xj+1‖+ ‖Xj‖ ≤ 2δλ for all j, we also have σ =∞. Since for every j,

R(Xk : 1 ≤ k ≤ j) ≤ R(Xk : 1 ≤ k ≤ j − 1) + ‖Dj‖,

we have

R(Xk : 1 ≤ k ≤ τ2 − 1) ≥ R(Xk : 1 ≤ k ≤ τ2)− ‖Dτ2‖ > (β − 2δ)λ > λ.

Thus τ1 < τ2 and

(v ? X)j =


0, 1 ≤ j ≤ τ1,
Xj −Xτ1 , τ1 < j ≤ τ2,
Xτ2 −Xτ1 , j > τ2.
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Hence

(v ? X)∗R = R(Xj −Xτ1 : τ1 < j ≤ τ2)
≥ R(Xj : τ1 < j ≤ τ2)− ‖Xτ1‖
≥ R(Xj : 1 ≤ j ≤ τ2)−R(Xj : 1 ≤ j ≤ τ1)− ‖Xτ1‖
≥ R(Xj : 1 ≤ j ≤ τ2)−R(Xj : 1 ≤ j < τ1)− 2‖Xτ1‖
> βλ− λ− 2δλ > (β − 2δ − 1)λ,

as required.
We then aim to find a suitable upper bound for ‖v ? X‖1. To do this,

consider the cases {τ1 < τ2 ∧ σ} and {τ1 ≥ τ2 ∧ σ} separately. In the former
case, an earlier calculation gives

‖(v ? X)j‖ ≤ ‖Xτ2∧σ∧j‖+ ‖Xτ1‖,
where ‖Xτ1‖ ≤ δλ. Furthermore

‖Xτ2∧σ∧j‖ ≤ ‖Xτ2∧σ∧j−1‖+ ‖Dτ2∧σ∧j‖ ≤ δλ+ 2δλ

and so ‖(v ?X)j‖ ≤ 4δλ for all j ∈ Z+. In the latter case each vj is 0 and so
(v?X)j = 0. This happens in particular in the event {τ1 =∞} = {X∗R ≤ λ}.
Thus in conclusion

(v ? X)∗ ≤ 4δλ1{τ1<∞}
and so

‖v ? X‖1 ≤ E(v ? X)∗ ≤ 4δλP(X∗R > λ).

Putting all these estimates together we get

P(X∗R > βλ, X∗ ≤ δλ) ≤ P((v ? X)∗R > (β − 2δ − 1)λ)

≤ C

(β − 2δ − 1)λ
‖v ? X‖1

≤ 4Cδ
β − 2δ − 1

P(X∗R > λ).

Fixing a β > 2δ + 1 we may take

α(δ) =
4Cδ

β − 2δ − 1
.

The previous lemma allows us to deduce the strong type inequality from
the weak type inequality:

Proposition 6.6. Suppose that X has weak RMF and let 1 < p < ∞.
Then there exists a constant C such that for any Lp-bounded standard Haar
martingale X in X we have E|X∗R|p ≤ Cp‖X‖

p
p.

Proof. Let X = (Xj)Nj=1 be a standard Haar martingale in X (note that
it suffices to prove the claim for finite martingales independently of N). We



Rademacher maximal function 25

apply the good-λ inequality and write

E|X∗R|p = βp
∞�

0

pλp−1P(X∗R > βλ) dλ

≤ βpα(δ)
∞�

0

pλp−1P(X∗R > λ) dλ+ βp
∞�

0

pλp−1P(X∗ > δλ) dλ

= βpα(δ)E|X∗R|p +
βp

δp
E|X∗|p,

where E|X∗|p ≤ Cp‖X‖pp and E|X∗R|p is finite. Choosing δ so small that
βpα(δ) < 1 we get

E|X∗R|p ≤
βpCp

(1− βpα(δ))δp
‖X‖pp.

We collect our results as follows:

Theorem 6.7. The following conditions are equivalent:

(i) X has RMFp for all p ∈ (1,∞).
(ii) X has RMFp for some p ∈ (1,∞).
(iii) X has weak RMF.

Proof. Trivially the first condition implies the second. That the third
follows from the second was Proposition 6.3. In Proposition 6.6 we showed
that the weak RMF-property implies that for any p ∈ (1,∞), E|X∗R|p .
‖X‖pp whenever X is an Lp-bounded standard Haar martingale in X . As was
noted before, the filtration of dyadic intervals on [0, 1) can be “embedded”
in a standard Haar filtration. Thus the weak RMF-property is sufficient for
the Lp-boundedness, 1 < p < ∞, of the Rademacher maximal operator on
the unit interval. By Theorem 5.1 this implies RMFp for all p ∈ (1,∞).

7. RMF-property and concave functions. The existence of a bi-
concave function v : E × E → R for which

v(x, y) ≥
∥∥∥∥x+ y

2

∥∥∥∥p − Cp∥∥∥∥x− y2

∥∥∥∥p
can be shown to be equivalent to E being a UMD-space (see [Bur2]). These
ideas have been applied (again in [Bur2]) to prove the boundedness of Doob’s
maximal operator and we will now use them to study the Rademacher max-
imal function. More precisely, we will show that for a fixed p ∈ (1,∞),
a constant C satisfies E|X∗R|p ≤ C‖X‖pp for all finite simple martingales
X = (Xj)Nj=1 in X if and only if there exists a suitable majorant for the
real-valued function

u(T , T ) = R(T )p − C‖T‖p,
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defined for finite subsets T of operators in X and T ∈ X . Observe that
E|X∗R|p − C‖X‖

p
p ≤ 0 can equivalently be written as

Eu({Xj}Nj=1, XN ) ≤ 0,

since ‖X‖pp = E‖XN‖p.

Proposition 7.1. The estimate

Eu({Xj}Nj=1, XN ) ≤ 0

holds for all finite simple martingales X = (Xj)Nj=1 in X if and only if there
exists a function v satisfying

(i) v(T , T ) ≥ u(T , T ),
(ii) v({T}, T ) ≤ 0,
(iii) v(T ∪ {T}, T ) = v(T , T ),
(iv) v(T , ·) is concave,

for all finite subsets T of X and all T ∈ X .

The proof of sufficiency is based on the following lemma.

Lemma 7.2. Suppose that v is as in Proposition 7.1 and (Xj)Nj=1 is a
simple martingale in X . Then, for all 2 ≤ k ≤ N , we have

Ev({Xj}kj=1, Xk) ≤ Ev({Xj}k−1
j=1 , Xk−1).

Proof. Let us fix a k and write Fj for the σ-algebra generated by
X1, . . . , Xj . By the simplicity of (Xj)Nj=1, the set {Xj}k−1

j=1 has a finite num-
ber s of different possibilities T1, . . . , Ts ⊂ X so that the event Ar of Tr
happening is in Fk−1. Now, using the third property of v we get

v({Xj}kj=1, Xk) = v({Xj}k−1
j=1 ∪ {Xk}, Xk) = v({Xj}k−1

j=1 , Xk)

=
s∑
r=1

1Arv(Tr, Xk)

and so the fourth property with the aid of Jensen’s inequality implies

E(v(Tr, Xk) | Fk−1) ≤ v(Tr,E(Xk | Fk−1)) = v(Tr, Xk−1).

Thus

Ev({Xj}kj=1, Xk) =
s∑
r=1

E(1Arv(Tr, Xk)) =
s∑
r=1

E(1ArE(v(Tr, Xk) | Fk−1))

≤
s∑
r=1

E(1Arv(Tr, Xk−1)) = Ev({Xj}k−1
j=1 , Xk−1),

where the second equality relies on Ar’s belonging to Fk−1.
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Proof of Proposition 7.1. With the aid of Lemma 7.2, the existence of a
desired v is now readily seen to imply that

Eu({Xj}Nj=1, XN ) ≤ Ev({Xj}Nj=1, XN ) ≤ Ev({Xj}N−1
j=1 , XN−1)

≤ · · · ≤ Ev({X1}, X1) ≤ 0.

On the other hand, the validity of Eu({Xj}Nj=1, XN ) ≤ 0 for finite simple
martingales enables us to construct the auxiliary function v with the desired
properties by defining

v(T , T ) = sup Eu({Xj}Nj=1 ∪ T , XN ),

where the supremum is taken over all finite and simple martingales (Xj)Nj=1

(where N is allowed to vary) for which X1 = T almost surely. Let us check
that the required properties are satisfied. For the first property, take N = 1
and X1 = T almost surely to see that

u(T , T ) = R(T )p − C‖T‖p ≤ R(T ∪ {T})p − C‖T‖p

= E(R(T ∪ {X1})p − C‖X1‖p) ≤ v(T , T ).

For the third one, it suffices to note that if X1 = T almost surely, then {T} ⊂
{Xj}Nj=1 almost surely and so v(T ∪{T}, T ) = v(T , T ). The second property
follows from the assumption and the third property: Let X = (Xj)Nj=1 be a
simple martingale with X1 = T almost surely. Now

Eu({Xj}Nj=1 ∪ ∅, XN ) ≤ 0

and so v(∅, T ) ≤ 0. By the third property,

v({T}, T ) = v(∅, T ) ≤ 0.

To see that v(T , ·) is concave, take operators T1 and T2 and put T =
αT1 + (1 − α)T2 for some 0 < α < 1. We need to show that v(T , T ) ≥
αv(T , T1) + (1 − α)v(T , T2). To do this, take m1 and m2 such that mi <

v(T , Ti). Now there exist finite simple martingales (X(i)
j )Nj=1 (defined on the

unit interval) such that X(i)
1 = Ti almost surely and

Eu({X(i)
j }

N
j=1 ∪ T , X

(i)
N ) > mi.

Let X1 = T almost surely and define

Xj(t) =


X

(1)
j−1

(
t

α

)
, t ∈ [0, α),

X
(2)
j−1

(
t− α
1− α

)
, t ∈ [α, 1),

for j = 2, . . . , N + 1.
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X1 = T

X2 = X
(1)
1 = T1 X2 = X

(2)
1 = T2

X3 = X
(1)
2 X3 = X

(2)
2

Fig. 3. The construction of X1, X2 and X3

A moment’s reflection assures us that (Xj)N+1
j=1 is also a simple martin-

gale. Now

v(T , T ) > Eu({Xj}N+1
j=1 ∪ T , XN+1) ≥ Eu({Xj}N+1

j=2 ∪ T , XN+1)

=
α�

0

u

({
X

(1)
j

(
t

α

)}N
j=1

∪ T , X(1)
N

(
t

α

))
dt

+
1�

α

u

({
X

(2)
j

(
t− α
1− α

)}N
j=1

∪ T , X(2)
N

(
t− α
1− α

))
dt

= α

1�

0

u({X(1)
j (s)}Nj=1 ∪ T , X

(1)
N (s)) ds

+ (1− α)
1�

0

u({X(2)
j (s)}Nj=1 ∪ T , X

(2)
N (s)) ds

> αm1 + (1− α)m2.

Letting mi → v(T , Ti) we get concavity. The proof of Proposition 7.1 is now
complete.

Remark. Had we assumed in Proposition 7.1 that Eu({Xj}Nj=1, XN )
≤ 0 holds only for standard Haar martingales, we would have obtained a
function v satisfying properties (1)–(3) but for which v(T , ·) is only midpoint
concave. Indeed, suppose that the supremum in the definition of v is taken
over finite standard Haar martingales and observe that properties other
than concavity follow exactly as above. In the proof of midpoint concavity,
let T = (T1 + T2)/2 and define (Xj)2N+1

j=1 as follows:

X1 = T almost surely,

X2(t) =

{
X

(1)
1 (2t) = T1, t ∈ [0, 1/2),

X
(2)
1 (2t− 1) = T2, t ∈ [1/2, 1),

X2j−1(t) =

{
X

(1)
j (2t), t ∈ [0, 1/2),

X2j−2(t), t ∈ [1/2, 1),
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X2j(t) =

{
X2j−1(t), t ∈ [0, 1/2),
X

(2)
j (2t− 1), t ∈ [1/2, 1).

X1 = T

X2 = X
(2)
1 = T2

X3 = X
(1)
2 X3 = X2 = T2

X4 = X3 X4 = X
(2)
2

X2 = X
(1)
1 = T1

Fig. 4. The construction of X1, X2, X3 and X4

This way (Xj)2N+1
j=1 becomes a standard Haar martingale and calculations

as in the proof of Proposition 7.1 give us v(T , T ) ≥ v(T , T1)/2+v(T , T2)/2.

In conclusion, we state:

Theorem 7.3. Let 1 < p < ∞. Then X has RMFp if and only if there
exists a function v such that for some constant C,

(i) v(T , T ) ≥ R(T )p − C‖T‖p,
(ii) v({T}, T ) ≤ 0,
(iii) v(T ∪ {T}, T ) = v(T , T ),
(iv) v(T , ·) is midpoint concave,

for all finite subsets T of X and all T ∈ X .

Proof. If X has RMFp, there exists a constant C is such that E|X∗R|p ≤
C‖X‖pp for all standard Haar martingales X = (Xj)Nj=1 in X . Equivalently,

E(R(Xj : 1 ≤ j ≤ N)p − C‖XN‖p) ≤ 0

for standard Haar martingales X = (Xj)Nj=1, which by Proposition 7.1 en-
ables us to construct a desired v.

To show the converse, we first sketch a proof of the known fact that
midpoint concave functions that are locally bounded from below are actually
concave. Suppose that a function f : X → R is midpoint concave but not
concave. Then there exist T0, T1 ∈ X such that even though

f((1− α)T0 + αT1) ≥ (1− α)f(T0) + αf(T1)

holds (by induction from midpoint concavity) for all α of the dyadic form
m2−k with k ≥ 1 and m ∈ {1, . . . , 2k}, it does not hold for some α′ ∈ (0, 1).
Assuming with no loss of generality that f(T1) ≥ f(T0), we claim that such
an f cannot be locally bounded from below. Let us write Tα = (1−α)T0+αT1
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and cα = (1− α)f(T0) + αf(T1) for α ∈ (0, 1) so that δ = cα′ − f(Tα′) > 0.
One can now express α′ as the midpoint of an interval [α, α′′] ⊂ (0, 1), where
α is dyadic and so close to α′ that

f(Tα)− f(Tα′) ≥ (1− α)f(T0) + αf(T1)− f(Tα′) ≥ δ/2.
By midpoint concavity of f we have f(Tα′) ≥ (f(Tα) + f(Tα′′))/2 and so

f(Tα′′) ≤ f(Tα′)− (f(Tα)− f(Tα′)) ≤ cα′ − 3δ/2 ≤ cα′′ − 3δ/2,

where the last inequality follows from α′′ ≥ α′ by our assumption f(T1) ≥
f(T0). Hence, starting with an α′ ∈ (0, 1) such that f(Tα′) ≤ cα′ − δ we find
an α′′ ∈ (0, 1) for which f(Tα′′) ≤ cα′′ − 3δ/2. Continuing this way we see
that f cannot be locally bounded from below since the numbers c(α) are
bounded from above by f(T1).

Suppose then that there exists a function v with the listed properties.
By the first property, v(T , ·) is locally bounded from below. Hence v is
concave and by Proposition 7.1 we have E|X∗R|p ≤ C‖X‖pp for all finite
simple martingales X = (Xj)Nj=1. By Theorem 5.1 (or just by Lemma 5.5),
X has RMFp.

Observe that this is another way to see that to have the condition
E|X∗R|p ≤ C‖X‖pp for finite simple martingales it suffices to check it for
standard Haar martingales.
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