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L1-uniqueness of degenerate elliptic operators

by

Derek W. Robinson (Canberra) and Adam Sikora (Sydney)

Abstract. Let Ω be an open subset of Rd with 0 ∈ Ω. Furthermore, let HΩ =
−

Pd
i,j=1 ∂icij∂j be a second-order partial differential operator with domain C∞c (Ω) where

the coefficients cij ∈ W 1,∞
loc (Ω) are real, cij = cji and the coefficient matrix C = (cij)

satisfies bounds 0 < C(x) ≤ c(|x|)I for all x ∈ Ω. If

∞�

0

ds sd/2e−λµ(s)2 <∞

for some λ > 0 where µ(s) =
	s
0
dt c(t)−1/2 then we establish that HΩ is L1-unique,

i.e. it has a unique L1-extension which generates a continuous semigroup, if and only if
it is Markov unique, i.e. it has a unique L2-extension which generates a submarkovian
semigroup. Moreover these uniqueness conditions are equivalent to the capacity of the
boundary of Ω, measured with respect to HΩ , being zero. We also demonstrate that
the capacity depends on two gross features, the Hausdorff dimension of subsets A of the
boundary of the set and the order of degeneracy of HΩ at A.

1. Introduction. In a recent paper [RS11] we established that Markov
uniqueness and L1-uniqueness are equivalent properties for a second-order,
symmetric, elliptic operator with bounded Lipschitz continuous coefficients
cij on an open subset Ω of Rd. Moreover, these properties hold if and only
if the corresponding capacity of the boundary ∂Ω of Ω is zero. In this note
we extend these results to operators with locally bounded coefficients with a
possible growth at infinity. As an illustration of our results we establish that
Markov uniqueness, L1-uniqueness and the capacity condition are equivalent
if the matrix C = (cij) satisfies ‖C(x)‖ ∼ |x|2(log |x|)α as |x| → ∞ with
α ∈ [0, 1]. In addition we give an example with ‖C(x)‖ ∼ |x|2(log |x|)1+ε as
|x| → ∞, where ε > 0 is arbitrarily small, which is Markov unique but not
L1-unique. Our results extend uniqueness criteria previously established for
the special case Ω = Rd (see [Dav85], [Ebe99, Chapter 2], [Sta99, Section 2],
and references therein).
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Let Ω be an open subset of Rd. Define HΩ as the positive symmetric
operator on L2(Ω) with domain D(HΩ) = C∞c (Ω) and action

HΩϕ = −
d∑

i,j=1

∂icij∂jϕ

where ∂i = ∂/∂xi and the coefficients cij satisfy

1. cij = cji ∈W 1,∞
loc (Ω) are real,

2. C(x) = (cij(x)) is a strictly positive-definite matrix for all x ∈ Ω.

Here W s,p
loc (Ω) denotes the local version of the usual Sobolev spaces and

W s,p
loc (Ω) denotes the restriction to Ω of functions in W s,p

loc (Rd). The class of
operators defined above will be denoted by EΩ.

It follows that each HΩ ∈ EΩ is locally strongly elliptic, i.e. for each
relatively compact V ⊂ Ω there are µV , λV > 0 such that µV I ≤ C(x) ≤
λV I for all x ∈ V . There are, however, two potential sources of degeneracy.
It is possible that cij(x)→ 0 as x→ ∂Ω or that cij(x)→∞ as |x| → ∞.

In order to control the possible growth of the coefficients at infinity we
first choose coordinates such that 0 ∈ Ω and then introduce the strictly
positive non-decreasing function c by

(1.1) r ∈ 〈0,∞〉 7→ c(r) = sup{‖C(x)‖ : x ∈ Ω, |x| < r}
where ‖C(x)‖ denotes the norm of the matrix C(x) = (cij(x)). It follows
that ‖C(x)‖ ≤ c(|x|) and c(0+) > 0. The growth conditions will be expressed
either explicitly or implicitly in terms of the asymptotic properties of the
positive increasing function µ given by

(1.2) s ∈ 〈0,∞〉 7→ µ(s) =
s�

0

dt c(t)−1/2.

This function is a lower bound on the Riemannian distance to infinity mea-
sured with respect to the metric C−1. If, for example, c(s) ∼ s2(log s)α as
s→∞ with α ∈ [0, 2〉 then µ(s) ∼ (log s)1−α/2 →∞ as s→∞.

We are interested in criteria for various uniqueness properties of HΩ and
adopt the terminology of [Ebe99]. In particular HΩ, viewed as an opera-
tor on Lp(Ω) for p ∈ [1,∞], is defined to be Lp-unique if it has a unique
extension which generates an Lp-continuous semigroup. Moreover, it is de-
fined to be Markov unique if it has a unique self-adjoint extension on L2(Ω)
which generates a submarkovian semigroup, i.e. an L2-continuous contrac-
tion semigroup S with the property that 0 ≤ Stϕ ≤ 1 whenever 0 ≤ ϕ ≤ 1.
It follows that HΩ is L2-unique if and only if it is essentially self-adjoint
(see [Ebe99, Corollary 1.1.2]). Then the self-adjoint closure is automatically
submarkovian and HΩ is Markov unique. Moreover, if HΩ is L1-unique then
it is Markov unique ([Ebe99, Lemma 1.1.6]).
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First, introduce the positive quadratic form hΩ associated with HΩ by

hΩ(ϕ) =
d∑

i,j=1

�

Ω

dx cij(x)(∂iϕ)(x)(∂jϕ)(x) = (ϕ,HΩϕ)

with domain D(hΩ) = D(HΩ) = C∞c (Ω). Since hΩ is the form of the sym-
metric operator HΩ it is closable with respect to the graph norm ϕ 7→
‖ϕ‖D(hΩ) = (hΩ(ϕ) + ‖ϕ‖22)1/2. In what follows we use the well known re-
lationship between positive closed quadratic forms and positive self-adjoint
operators (see [Kat80, Chapter 6]) together with the corresponding the-
ory of Dirichlet forms and submarkovian operators (see [BH91], [MR92],
[FOT94]). The closure hΩ of hΩ is automatically a Dirichlet form and the
corresponding positive self-adjoint operator, the Friedrichs extension HF

Ω of
HΩ, is submarkovian. Formally HF

Ω corresponds to the self-adjoint exten-
sion of HΩ with Dirichlet conditions on the boundary ∂Ω of Ω. In order to
emphasize this interpretation we adopt the alternative notation HΩ,D = HF

Ω
and hΩ,D = hΩ.

Secondly, we introduce a positive self-adjoint extension of HΩ related to
Neumann boundary conditions. Let χ ∈ C∞c (Ω) with 0 ≤ χ ≤ 1Ω and define
hΩ,χ as the form of the symmetric operator on L2(Ω) with coefficients χcij .
Then hΩ,χ is closable, its closure hΩ,χ is a Dirichlet form and hΩ,χ ≤ hΩ,D.
Next set CΩ = {χ ∈ C∞c (Ω) : 0 ≤ χ ≤ 1Ω}. It follows that CΩ is a convex
set which is directed with respect to the natural order, and if χ, η ∈ CΩ with
χ ≤ η then hΩ,χ ≤ hΩ,η. Now we define hΩ,N by

(1.3) hΩ,N (ϕ) = lim{hΩ,χ(ϕ) : χ ∈ CΩ} = sup{hΩ,χ(ϕ) : χ ∈ CΩ}.

Since hΩ,N is the limit of quadratic forms it is a quadratic form, and since it
is the supremum of a family of closed forms it is a closed form. It is automat-
ically a Dirichlet form satisfying hΩ,N ≤ hΩ,D. If HΩ,N is the positive self-
adjoint operator associated with hΩ,N it readily follows that HΩ,N is a sub-
markovian extension of HΩ and HΩ,N ≤ HΩ,D. If ∂Ω is smooth, or even Lip-
schitz continuous, then HΩ,N corresponds to the extension of HΩ with Neu-
mann boundary conditions but we adopt this definition for general open Ω.

In order to formulate our main result on uniqueness properties we need
two extra definitions.

The operator HΩ ∈ EΩ is defined to be conservative if the submarkovian
semigroup SΩ,D generated by HΩ,D is conservative, i.e. if SΩ,Dt 1Ω = 1Ω for
all t > 0. Moreover, the capacity of the measurable subset A ⊂ Ω relative
to the operator HΩ is defined by

capΩ(A) = inf{‖ψ‖2D(hΩ,N ) : ψ ∈ D(hΩ,N ) and there exists an open set

U ⊂ Rd such that U ⊇ A and ψ ≥ 1 a.e. on U ∩Ω}.
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Thus capΩ corresponds to the capacity relative to the Dirichlet form hΩ,N
as defined in [BH91] or [FOT94].

Theorem 1.1. Assume HΩ ∈ EΩ. Consider the following conditions:

I. HΩ is conservative,
II. HΩ is L1-unique,

III. HΩ is Markov unique,
IV. capΩ(∂Ω) = 0.

Then I⇔II⇒III⇒IV.
Conversely, if µ(s)→∞ as s→∞ then IV⇒III. If in turn

(1.4)
∞�

0

ds sd/2e−λµ(s)2 <∞

for one λ > 0 then IV⇒III⇒I and all four conditions are equivalent.

Since µ is a positive increasing function with µ(0+) = 0 the finiteness
restriction (1.4) is a condition on the growth µ at infinity, i.e. an implicit
condition on the possible growth of the coefficients of HΩ. If the coefficients
are uniformly bounded then µ(s) = O(s) as s → ∞ and (1.4) is satisfied.
Then the four conditions of Theorem 1.1 are equivalent. This retrieves the
results of Theorems 1.2 and 1.3 of [RS11].

The theorem is in part a restatement of standard results. The equiva-
lence of conditions I and II was established by Davies [Dav85, Theorem 2.2],
whose arguments were based on earlier results of Azencott [Aze74]. Although
Davies’ assumptions were somewhat different his arguments apply with little
modification to the current setting. The implication II⇒III is a straightfor-
ward result which is established, for example, in [Ebe99, Lemma 1.6]. The
implication III⇒IV follows as in the proof of Theorem 1.2 in [RS11] for
operators with cij ∈W 1,∞(Ω).

In the special case c(s) ∼ s2(log s)α for large s it follows that µ(s) ∼
(log s)1−α/2 and µ(s) → ∞ as s → ∞ for α ∈ [0, 2〉. On the other hand
if α ∈ [0, 1] then (1.4) is satisfied for all sufficiently large λ > 0. Thus
if α ∈ [0, 2〉 then Markov uniqueness of HΩ is equivalent to the capacity
of the boundary being zero, and if α ∈ [0, 1] then it is also equivalent to
L1-uniqueness of HΩ.

Note that if Ω = Rd, the capacity condition is clearly satisfied and
one concludes that HRd is L1-unique whenever (1.4) is satisfied for one large
λ > 0. More generally we establish in Section 4.2 that the capacity condition
depends on the Hausdorff dimension of bounded subsets A ⊂ ∂Ω and the
order of degeneracy of HΩ at A.
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2. Submarkovian extensions. The Friedrichs extension HΩ,D of HΩ

is well known to be the largest submarkovian extension, i.e. the extension
with the minimal form domain. In this section we examine some basic prop-
erties of the smallest submarkovian extension, i.e. the extension with the
maximal form domain (see [FOT94, Section 3.3.3], [Ebe99, Section 3c] or
[RS11, Section 3]). In particular we identify HΩ,N as the smallest submarko-
vian extension.

We begin by discussing the imposition of Neumann boundary conditions
on a general submarkovian extension KΩ of HΩ ∈ EΩ. Let kΩ be the Dirich-
let form corresponding to KΩ. Then D(kΩ) ∩ L∞(Ω) is an algebra. Clearly
C∞c (Ω) ⊆ D(kΩ)∩L∞(Ω). Thus one can define the truncated form kΩ,χ for
each χ ∈ C∞c (Ω) by D(kΩ,χ) = D(kΩ) ∩ L∞(Ω) and

(2.1) kΩ,χ(ϕ) = kΩ(ϕ, χϕ)− 2−1kΩ(χ, ϕ2)

for ϕ ∈ D(kΩ,χ). The kΩ,χ have many properties similar to those of the
forms hΩ,χ. In particular they are Markovian forms satisfying 0 ≤ kΩ,χ ≤ kΩ.
Moreover, if χ1, χ2 ∈ CΩ and χ1 ≤ χ2 then kΩ,χ1 ≤ kΩ,χ2 (see [BH91, Propo-
sition I.4.1.1]). But it is not evident that the kΩ,χ are closable. This, however,
is part of our first result.

Theorem 2.1. Let HΩ ∈ EΩ. Further let KΩ be a submarkovian exten-
sion of HΩ, and kΩ the corresponding Dirichlet form. If χ ∈ C∞c (Ω) then
the truncated form kΩ,χ defined by (2.1) is closable and the closure kΩ,χ
satisfies kΩ,χ = hΩ,χ. Therefore

hΩ,N ≤ kΩ ≤ hΩ,D.
In particular HΩ is Markov unique if and only if hΩ,N = hΩ,D.

Proof. The first step in the proof is a regularity property which ex-
tends a similar result for operators with bounded coefficients given by The-
orem 1.1.IV in [RS11].

Lemma 2.2. Let KΩ be a positive, self-adjoint extension of HΩ. Then

C∞c (Ω)D(KΩ) ⊆ D(HΩ).

Proof. First, if KΩ is a self-adjoint extension of HΩ then HΩ ⊆ KΩ ⊆
H∗Ω. Therefore it suffices to establish that C∞c (Ω)D(H∗Ω) ⊆ D(HΩ). This
property was proved for operators with bounded Lipschitz coefficients in
Theorem 2.1 of [RS11] but the proof is also valid for operators with coef-
ficients which are only locally bounded. For example, if η ∈ C∞c (Ω) with
supp η = K and V is a relatively compact subset of Ω with K ⊂ V then to
deduce that ηD(H∗Ω) ⊆ D(HΩ) it suffices to prove that ηD(H∗V ) ⊆ D(HV )
where HV is the restriction of HΩ to C∞c (V ). Since the coefficients of HV

are uniformly bounded the result follows from Theorem 2.1 of [RS11].
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Next we prove the first statement of Theorem 2.1.

Lemma 2.3. If χ ∈ C∞c (Ω) then kΩ,χ is closable and the closure kΩ,χ
satisfies kΩ,χ = hΩ,χ.

Proof. First C∞c (Ω)D(KΩ) ⊆ D(HΩ) by Lemma 2.2. Now fix ϕ ∈
D(KΩ) ∩ L∞(Ω). Then for each χ ∈ CΩ one has χϕ ∈ D(HΩ). Moreover,

kΩ(ϕ, χϕ) = (KΩϕ, χϕ) = (ϕ,HΩχϕ),

kΩ(χ, ϕ2) = (KΩχ, ϕ
2) = (HΩχ, ϕ

2).

Therefore
kΩ,χ(ϕ) = (ϕ,HΩχϕ)− 2−1(HΩχ, ϕ

2).

Next choose a χ1 ∈ CΩ with χ1 = 1 on suppχ and set ϕ1 = χ1ϕ. It follows
from Lemma 2.2 that ϕ1 ∈ D(HΩ) ∩ L∞(Ω). Moreover,

kΩ,χ(ϕ) = (ϕ,HΩχϕ1)− 2−1(HΩχ, ϕ
2
1)

= (ϕ1, HΩχϕ1)− 2−1(HΩχ, ϕ
2
1) = hΩ,χ(ϕ1).

The first equality is obvious since suppHΩχ ⊂ suppχ. The second equality
follows by approximating ϕ in L2(Ω) by a sequence ϕn ∈ C∞c (Ω) and noting
that

(ϕn, HΩχϕ1) = (HΩϕn, χϕ1) = (HΩχ1ϕn, χϕ1) = (χ1ϕn, HΩχϕ1).

The third equality is also obvious. But for χ and ϕ fixed, hΩ,χ(χ1ϕ) is
independent of the choice of χ1. Moreover, if χ2 is a second choice with
χ2 = 1 on suppχ then χ1 − χ2 = 0 on suppχ and hΩ,χ((χ1 − χ2)ϕ) = 0.
Therefore if χ1 ≤ χ2 ≤ · · · ≤ 1Ω is an increasing family of C∞c -functions
with χn = 1 on suppχ then hΩ,χ((χn − χm)ϕ) = 0 but ‖χnϕ − ϕ‖2 → 0.
This establishes that ϕ ∈ D(hΩ,χ) and hΩ,χ(ϕ) = kΩ,χ(ϕ). Then, however,

hΩ,χ(ϕ) = kΩ,χ(ϕ) ≤ kΩ(ϕ)

for all ϕ ∈ D(KΩ) ∩ L∞(Ω). Since D(KΩ) is a core of kΩ it follows by
continuity that hΩ,χ(ϕ) = kΩ,χ(ϕ) for all ϕ ∈ D(kΩ) ∩ L∞(Ω) = D(kΩ,χ).
Therefore hΩ,χ is a closed extension of kΩ,χ. Thus kΩ,χ is closable and its
closure satisfies kΩ,χ ⊆ hΩ,χ.

But hΩ,χ(ψ) = kΩ,χ(ψ) for all ψ ∈ C∞c (Ω) and C∞c (Ω) is a core of hΩ,χ
by definition. Therefore kΩ,χ ⊇ hΩ,χ. Combination of these conclusions gives
kΩ,χ = hΩ,χ.

One can now immediately deduce Theorem 2.1. The first statement has
been established by Lemma 2.3. Hence

hΩ,N = sup
χ∈CΩ

kΩ,χ.

But kΩ,χ ≤ kΩ for all χ ∈ CΩ. Therefore hΩ,N ≤ kΩ. Finally kΩ ⊇ hΩ.
Hence kΩ ≤ hΩ = hΩ,D.
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The form hΩ,N has a carré du champ in the sense of [BH91, Section I.4].
This is initially defined as the bilinear form from W 1,2

loc (Ω) ×W 1,2
loc (Ω) into

L1,loc(Ω) given by

Γ (ϕ;ψ)(x) =
d∑

i,j=1

cij(x)(∂iϕ)(x)(∂jψ)(x)

and Γ (ϕ) = Γ (ϕ;ϕ). Then

D(hΩ,N ) =
{
ϕ ∈W 1,2

loc (Ω) : sup
V

�

V

dxΓ (ϕ)(x) <∞
}
,

where the supremum is over all relatively compact subsets V of Ω and

hΩ,N (ϕ) = sup
V

�

V

dxΓ (ϕ)(x)

for all ϕ ∈ D(hΩ,N ). It follows readily that if ϕ ∈ D(hΩ,N ) then Γ (ϕ)
is a positive L1(Ω)-function with ‖Γ (ϕ)‖1 = hΩ,N (ϕ). The foregoing ex-
plicit identification of the form of the minimal extension has been used in
previous discussions of Markov uniqueness: [FOT94, Section 3.3.3], [Ebe99,
Section 3c] or [RS11, Section 3].

A number of properties of general submarkovian extensions follows from
the identification of the minimal extension. If kΩ is the form of the sub-
markovian extension KΩ of HΩ it follows from Theorem 2.1 that D(kΩ) ⊆
D(hΩ,N ). Therefore kΩ has a carré du champ since Γ (ϕ) ∈ L1(Ω) for all
ϕ ∈ D(kΩ). Moreover, kΩ(ϕ) = ‖Γ (ϕ)‖1 for all ϕ ∈ D(kΩ). Further the form
hΩ,N is strongly local in the sense of [FOT94] and hence the restriction kΩ
is also strongly local.

Subsequently we need two Dirichlet form implications of the elliptic reg-
ularity property.

Corollary 2.4. Let KΩ be a submarkovian extension of HΩ ∈ EΩ and
kΩ the corresponding Dirichlet form. Then

C∞c (Ω)D(kΩ) ⊆ D(hΩ).

Proof. If η ∈ C∞c (Ω) and ϕ ∈ D(KΩ) then it follows from Lemma 2.2
that ηϕ ∈ D(HΩ) ⊂ D(KΩ) ⊆ D(kΩ) ⊆ D(hΩ,N ). Moreover,

hΩ(ηϕ) = hΩ,N (ηϕ) ≤ 2
�

Ω

Γ (η)ϕ2 + 2
�

Ω

η2Γ (ϕ)

≤ 2(‖Γ (η)‖∞ + ‖η‖2∞)‖ϕ‖2D(kΩ).

Since D(KΩ) is a core of kΩ with respect to the D(kΩ)-graph norm, this
estimate extends to all ϕ ∈ D(kΩ) by continuity. The statement of the
corollary follows immediately.

Corollary 2.5. If HΩ ∈ EΩ then C∞c (Rd)D(hΩ,N ) ⊆ D(hΩ,N ).
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Proof. Fix ρ ∈ C∞c (Rd) and χ ∈ CΩ. If ϕ ∈ C∞c (Ω), then ρϕ ∈ C∞c (Ω)
and ‖ρϕ‖2 ≤ ‖ρ‖∞‖ϕ‖2. Moreover,

hΩ,χ(ρϕ) ≤ 2‖ρ‖2∞hΩ,χ(ϕ) + 2aρ‖∇ρ‖2∞‖ϕ‖22

where aρ= supx∈supp ρ ‖C(x)‖. Therefore, by continuity, ρD(hΩ,χ)⊆D(hΩ,χ)
and

‖ρϕ‖D(hΩ,χ) ≤ a(ρ)‖ϕ‖D(hΩ,χ)

for all ϕ ∈ D(hΩ,χ) with a(ρ) = 2(aρ‖∇ρ‖2∞ + ‖ρ‖2∞). Since this estimate is
uniform for χ ∈ CΩ it follows that ρD(hΩ,N ) ⊆ D(hΩ,N ) and ‖ρϕ‖D(hΩ,N ) ≤
a(ρ)‖ϕ‖D(hΩ,N ).

3. L1-uniqueness. In this section we prove Theorem 1.1. Much of the
proof consists of refinements of previous arguments.

I⇔II. This equivalence was established by Davies [Dav85, Theorem 2.2]
for a large class of second-order elliptic operators with smooth coefficients.
But his arguments extend to the current situation with only minor modifi-
cations. We omit further details.

II⇒III. This is a general structural result which is proved, for example,
in Lemma 1.1.6 of [Ebe99].

III⇒IV. First note that Markov uniqueness of HΩ is equivalent to the
identity hΩ,N = hΩ,D by Theorem 2.1. But in general hΩ,N ⊇ hΩ,D and
C∞c (Ω) is a core of hΩ,D. Therefore Markov uniqueness of HΩ implies that
C∞c (Ω) is a core of hΩ,N .

Secondly, let ψ ∈ D(hΩ,N ) ∩ L∞(Ω) with ψ = 1 on U ∩ Ω where U is
an open subset containing ∂Ω. Then since C∞c (Ω) is a core of hΩ,N there
is a sequence ψn ∈ C∞c (Ω) such that ‖ψ − ψn‖D(hΩ,N ) → 0 as n → ∞.
Set ϕn = ψ − ψn. Then ϕn ∈ D(hΩ,N ), ‖ϕn‖D(hΩ,N ) → 0 and since ψn has
compact support there is an open subset Un containing ∂Ω such that ϕn = 1
on (U ∩ Un) ∩Ω. Therefore capΩ(∂Ω) = 0.

Combination of the foregoing observations establishes the first statement
of Theorem 1.1. Now we turn to the proof of the second statement.

IV⇒III. Assume µ(s) → ∞ as s → ∞ where µ is defined by (1.1) and
(1.2). Then HΩ is Markov unique if and only if C∞c (Ω) is a core of hΩ,N .
Thus it is necessary to demonstrate that each ϕ ∈ D(hΩ,N ) ∩ L∞(Ω) can
be approximated in the D(hΩ,N )-graph norm by a sequence ϕn ∈ C∞c (Ω).

Fix ϕ ∈ D(hΩ,N )∩L∞(Ω). Next fix ρ ∈ C∞c (R) with 0 ≤ ρ ≤ 1, ρ(s) = 1
if s ≤ 1 and ρ(s) = 0 if s ≥ 2. Then define ρn by ρn(x) = ρ(n−1µ(|x|)). It
follows that ρn(x) = 1 if µ(|x|) ≤ n and ρ(x) = 0 if µ(|x|) ≥ 2n. Moreover,
‖Γ (ρn)‖∞ ≤ b2n−2 with b = ‖ρ′‖∞. Then ρnϕ ∈ D(hΩ,N ) ∩ L∞(Ω) by
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Corollary 2.5 and

‖ϕ− ρnϕ‖2D(hΩ,N ) ≤ 2
�

Ω

ϕ2Γ (ρn) + 2
�

Ω

(1Ω − ρn)2Γ (ϕ) + ‖(1Ω − ρn)ϕ‖22

≤ 2b2n−2‖ϕ‖22 +
�

Ω

(1Ω − ρn)2(2Γ (ϕ) + ϕ2).

The first term on the right hand side clearly tends to zero as n → ∞. But
it follows by construction that (1Ω − ρn)2 → 0 pointwise on Ω. Therefore
the second term also tends to zero by the Lebesgue dominated convergence
theorem. Thus ϕ is approximated by the sequence ρnϕ in the D(hΩ,N )-graph
norm.

Next since capΩ(∂Ω) = 0 one may choose χn ∈ D(hΩ,N ) and open
subsets Un ⊃ ∂Ω such that 0 ≤ χn ≤ 1, ‖χn‖D(hΩ,N ) ≤ n−1 and χn ≥ 1
on Un ∩ Ω. But since hΩ,N is a Dirichlet form one may assume χn = 1 on
Un ∩Ω. Then with ϕn = (1Ω − χn)ρnϕ one has

lim
n→∞

‖ϕ− ϕn‖D(hΩ,N ) ≤ lim
n→∞

‖χnρnϕ‖D(hΩ,N )

by the Cauchy–Schwarz estimate and the conclusion of the previous para-
graph. But

‖χnρnϕ‖2D(hΩ,N ) = hΩ,N (χnρnϕ) + ‖χnρnϕ‖22
and the second term on the right hand side tends to zero as n→∞ because
‖χnρnϕ‖2 ≤ ‖χn‖2‖ϕ‖∞. The first term on the right can be estimated by

hΩ,N (χnρnϕ) ≤ 2
�

Ω

ϕ2Γ (χn) + 4
�

Ω

ϕ2Γ (ρn) + 4
�

Ω

χ2
nΓ (ϕ)

≤ 2‖ϕ‖2∞hΩ,N (χn) + 4b2n−2‖ϕ‖22 + 4
�

Ω

χ2
nΓ (ϕ)

since ‖Γ (ρn)‖∞ ≤ b2n−2. The first term on the right hand side tends to zero
because hΩ,N (χn) ≤ n−1 and the second obviously tends to zero. Finally the
third term tends to zero by an equicontinuity estimate because χ2

n ≤ 1 and
Γ (ϕ) ∈ L1(Ω). Thus one now concludes that ϕ is approximated by the
sequence ϕn in the D(hΩ,N )-graph norm.

Finally, suppϕn ⊆ Ωn = ((supp ρn) ∩ Ω) ∩ (Ω \ (Un ∩ Ω)) and Ωn is
a relatively compact subset of Ω. Therefore HΩ,N is strongly elliptic in
restriction to Ωn. Consequently ϕn, and hence ϕ, can be approximated by
a sequence of C∞c (Ωn)-functions in the D(hΩ,N )-graph norm.

This completes the proof of the second statement of Theorem 1.1. Now
we turn to the proof of the third statement. By the foregoing it suffices to
prove the following.

III⇒I. The proof is an elaboration of the argument used to demonstrate
the comparable implication in Theorem 1.3 in [RS11].
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Proposition 3.1. Assume HΩ ∈ EΩ is Markov unique. Further assume
that

∞�

0

ds sd/2e−λµ(s)2 <∞

for one λ > 0 where µ(s) =
	s
0 c
−1/2 with c defined by (1.1). Then HΩ is

conservative.

Proof. The proof is in several steps.

Step 1: Ω bounded. If Ω is bounded then HΩ is conservative by Step 1
in the proof of Theorem 1.3 in [RS11]. Therefore we now assume that Ω is
unbounded.

Step 2: Bounded approximation. The second step consists of introduc-
ing an increasing sequence of bounded sets Ωn and conservative operators
HΩ;n ∈ EΩn which approximate HΩ in a suitable manner.

First, fix ρ ∈ C∞c (R) with 0 ≤ ρ ≤ 1, ρ(s) = 1 if |s| ≤ 1 and ρ(s) = 0
if |s| ≥ 2. Then introduce the sequence ρn by ρn(x) = ρ(n−1|x|). Thus
ρn(x) = 1 if |x| ≤ n and ρ(x) = 0 if |x| ≥ 2n. The family of functions ρn is
monotonically increasing. Set Bn = {x ∈ Rd : |x| < n} and Ωn = Ω ∩ B2n.
Note that Ωn is bounded.

Secondly, define HΩ;n ∈ EΩn as the operator with coefficients ρncij acting
on L2(Ωn). Then it follows that HΩ;n is Markov unique since the capacity
of ∂Ωn with respect to the Neumann form associated with HΩ;n is zero.
Therefore HΩ;n is conservative by Step 1. Then if Hn is the extension to
L2(Ω) of the unique submarkovian extension HΩ;n,N (= HΩ;n,D) of HΩ;n

acting on L2(Ωn), i.e. if Hn = HΩ;n,N ⊕0 with L2(Ω) = L2(Ωn)⊕L2(Ωn)⊥,
then Hn is conservative.

Step 3: L2-convergence. The third step is to establish strong conver-
gence on L2(Ω) of the semigroups S(n) generated by the Hn to the semigroup
S generated by the unique submarkovian extension HΩ,N (= HΩ,D) of HΩ.
This follows by a monotone convergence argument. The closed form hn corre-
sponding to Hn on L2(Ω) is given by hn(ϕ) = hΩ;n,N (ϕ) for all ϕ ∈ C∞c (Ω)
and then by closure for all ϕ ∈ D(hn). Since the ρn are a monotonically
increasing family of functions on Rd the forms hn are a monotonically in-
creasing family of Dirichlet forms. If h = supn≥1 hn then h is a Dirichlet
form.

It follows from the monotonic increase of the forms hn that the opera-
tors Hn converge in the strong resolvent sense on L2(Ω) to the operator H
corresponding to h (see, for example, [Kat80, Section VIII.4], or [MR92, Sec-
tion I.3]). Moreover, the semigroups S(n) converge strongly on L2(Ω) to the
submarkovian semigroup S generated by H. It also follows readily that H
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is a submarkovian extension of HΩ. Therefore H = HΩ,N (= HΩ,D), by
Markov uniqueness.

Our next aim is to prove that the semigroups S(n) converge strongly
to S on L1(Ω). Following a tactic used in [RS08], [RS11], we convert the
L2-convergence of the semigroups into L1-convergence by the use of suitable
off-diagonal bounds.

Step 4: L2-off-diagonal bounds. Let

(3.1) Dn =
{
ψ ∈W 1,∞(Ω) :

d∑
i,j=1

ρncij(∂iψ)(∂jψ) ≤ 1
}
.

The corresponding Riemannian (pseudo-)distance is defined by

(3.2) dn(x; y) = sup
ψ∈Dn

(ψ(x)− ψ(y))

for all x, y ∈ Ω. This function has the metric properties of a distance but it
takes the value infinity if either x or y is not in Ωn. Secondly, introduce the
corresponding set-theoretic distance by

dn(A;B) = inf
x∈A, y∈B

dn(x; y)

where A and B are general measurable subsets of Ω. Finally define D by
setting ρn = 1Ω in (3.1). Then D ⊆ Dn and the corresponding Riemannian
distance d(·; ·), defined in analogy with (3.2), satisfies d(x; y) ≤ dn(x; y).

Lemma 3.2. If A,B are open subsets of Ω then

sup
n≥1
|(ϕA, S(n)

t ϕB)| ∨ |(ϕA, StϕB)| ≤ e−d(A;B)2(4t)−1‖ϕA‖2‖ϕB‖2

for all ϕA ∈ L2(A), ϕB ∈ L2(B) and t > 0, with the convention e−∞ = 0.

Bounds of this type have now been derived by many authors (see, for
example, [Aus07], [CGT82], [Dav92], [Gri99], [Stu95], [Stu98]) under a vari-
ety of ellipticity assumptions. A proof applicable in the current context can
be found in [RS08, Section 4]. The bounds for S(n) are initially in terms of
dn(A;B), but dn(A;B) ≤ d(A;B); since the S(n)

t are L2-convergent to St,
the bounds also hold for S.

Next C(x) ≤ c(|x|)I for all x ∈ Ω. Therefore

(3.3) Dn ⊇ D̂n = {ψ ∈W 1,∞(Ω) : ρ(n−1|x|)c(|x|)|(∇ψ)(x)|2 ≤ 1}.
Consequently,

(3.4) d̂n(x; y) = sup
ψ∈ bDn(ψ(x)− ψ(y)) ≤ dn(x; y)

for all x, y ∈ Ω. Moreover, if D̂ is defined by setting ρ = 1Ω in (3.3) and
d̂(·; ·) is defined in analogy with (3.4) then d̂(x; y) ≤ d(x; y) for all x, y ∈ Ω.
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Thus the bounds of Lemma 3.2 are also valid with d(A;B) replaced by
d̂(A;B).

If A,B are bounded open sets with A ⊂ Ω ∩ Bm and B ⊂ Ω ∩ (BM )c

where M > m ≥ 1, define

ρm = sup
x∈Ω∩Bm

d̂(x; 0) and νM = inf
x∈Ω∩(BM )c

d̂(x; 0).

Then it follows from the triangle inequality d̂(x; 0) ≤ d̂(x; y) + d̂(y; 0) that

νM ≤ inf
x∈B

d̂(x; 0) ≤ inf
x∈B

d̂(x; y) + d̂(y; 0) ≤ inf
x∈B

d̂(x; y) + ρm

for all y ∈ A. Therefore

d̂(A;B) ≥ νM − ρm ≥ 0

where the last inequality follows because M > m. But it can be seen directly
from the definition of d̂(·; ·) that

d̂(x; 0) =
|x|�

0

ds c(s)−1/2

for all x ∈ Ω. Therefore

ρm =
m�

0

ds c(s)−1/2 = µ(m) and ν̂M =
M�

0

ds c(s)−1/2 = µ(M).

Hence
d̂(A;B) ≥ µ(M)− µ(m) ≥ 0.

Consequently, one has the following variation of Lemma 3.2.

Lemma 3.3. If M > m ≥ 1 and A,B are bounded open sets with A ⊂
Ω ∩Bm and B ⊂ Ω ∩ (BM )c then

sup
n≥1
|(ϕA, S(n)

t ϕB)| ∨ |(ϕA, StϕB)| ≤ eµ(m)2(4t)−1
e−µ(M)2(8t)−1‖ϕA‖2‖ϕB‖2

for all ϕA ∈ L2(A), ϕB ∈ L2(B) and t > 0.

Proof. The bounds on |(ϕA, StϕB)| follow directly from the bounds of
Lemma 3.2, the foregoing observation that d̂(A;B) ≥ µ(M)−µ(m) ≥ 0 and
the estimate

(µ(M)− µ(m))2 ≥ 2−1µ(M)2 − µ(m)2.

Since d̂n(A;B) ≥ d̂(A;B) the bounds on supn≥1 |(ϕA, S
(n)
t ϕB)| follow by

similar reasoning. We omit further details.

Now we are prepared for the key estimate.
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Lemma 3.4. There is a b > 0 such that if M > m ≥ 1 then

sup
n≥1
|(1(BM )c , S

(n)
t ϕ)| ∨ |(1(BM )c , Stϕ)|

≤ beµ(m)2(4t)−1
∞�

M

ds sd/2e−µ(s)2(8t)−1‖ϕ‖2

for all ϕ ∈ L2(Ω ∩Bm) and t > 0.

Proof. The proof is a variation of an argument of [ERSZ07]. Let Cp =
Bp+1 \ Bp. It follows that (BM )c =

⋃
p≥M Cp. If A is a bounded open set

with suppϕ ⊂ A ⊆ Ω ∩Bm then by Lemma 3.3:

|(1(BM )c , Stϕ)| =
∣∣∣∑
p≥M

(1Cp , Stϕ)
∣∣∣

≤ eµ(m)2(4t)−1
∑
p≥M

e−µ(p)2(8t)−1 |Bp+1|1/2‖ϕ‖2.

But the sum is a Riemann approximation to the integral occurring in the
statement of the lemma. Therefore the bounds for |(1(BM )c , Stϕ)| follow

immediately. The bounds for |(1(BM )c , S
(n)
t ϕ)| follow by almost identical

reasoning.

Step 5: L1-convergence. The fifth step consists of proving that the semi-
groups S(n)

t are strongly convergent on L1(Ω) to St (see [RS08, Proposi-
tion 6.2] for a similar result).

Since the semigroups S
(n)
t and St are all submarkovian it suffices to

prove convergence on a subset of L1(Ω) whose span is dense. In particular
it suffices to prove convergence on positive functions in L1(A) ∩ L2(A) for
each bounded open subset A of Ω.

Fix A ⊂ Ω ∩Bm and ϕ ∈ L1(A) ∩ L2(A). Assume ϕ is positive. Then

‖(S(n)
t −St)ϕ‖1 ≤ ‖1BM (S(n)

t −St)ϕ‖1 + ‖1(BM )cS
(n)
t ϕ‖1 + ‖1(BM )cStϕ‖1

≤ |BM |1/2‖(S(n)
t −St)ϕ‖2 + (1(BM )c , S

(n)
t ϕ) + (1(BM )c , Stϕ)

≤ |BM |1/2‖(S(n)
t −St)ϕ‖2

+ 2beµ(m)2(4t)−1
∞�

M

ds sd/2e−µ(s)2(8t)−1‖ϕ‖2

where we have used the positivity of the semigroups and the functions to
express the L1-norms as pairings between L1 and L∞. The last step uses
Lemma 3.4. But the integral is convergent for one t = t0 > 0, by assumption.
Therefore it is convergent for all t ∈ 〈0, t0]. Then since S(n)

t is L2-convergent
to St for all t > 0 and since the last term on the right hand side converges
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to zero as M → ∞ for each t ∈ 〈0, t0] it follows that S(n)
t is L1-convergent

to St for all t ∈ 〈0, t0]. Finally, the semigroup property and contractivity
imply that S(n)

t is L1-convergent to St for all t > 0.

Step 6: Conservation. The conservation property for S now follows
because the approximating semigroups S(n) are conservative, by Step 2, and
are L1-convergent to S, by Step 5. Therefore

(1Ω, Stϕ) = lim
n→∞

(1Ω, S
(n)
t ϕ) = lim

n→∞
(S(n)
t 1Ω, ϕ) = (1Ω, ϕ)

for all ϕ ∈ L1(Ω). Hence St1Ω = 1Ω.

This completes the proof of Proposition 3.1 and the third statement of
Theorem 1.1.

4. Illustrations and examples. In this section we illustrate the fore-
going results with some applications and examples.

Theorem 1.1 established that L1-uniqueness of HΩ ∈ EΩ is a conse-
quence of two distinct properties, a capacity condition on the boundary
and a growth condition on the coefficients. Therefore we separate the initial
discussion into two parts each concentrating on one of these conditions.

4.1. Growth properties. If Ω = Rd then the capacity condition plays
no role and so we begin by considering this case. We continue to use the
function c and the corresponding function µ defined by (1.1) and (1.2), re-
spectively, as measures of the coefficient growth. The following statement
combines the L1-properties which follow from the foregoing with the com-
parable L2-properties established earlier by Davies et al. (see [Dav85] and
references therein).

Proposition 4.1. Let H ∈ ERd. Then the following are valid:

I. If µ(s)→∞ as s→∞ then H is L2-unique.
II. If

	∞
0 ds sd/2e−λµ(s)2 <∞ for one λ > 0 then H is L1-unique.

The second statement is a direct consequence of the second statement of
Theorem 1.1 since one automatically has capΩ(∂Ω) = 0. The first statement
follows from [Dav85, Theorem 3.2]. This theorem asserts thatH is essentially
self-adjoint, i.e. L2-unique, if there exists a strictly positive differentiable
function η over Rd with ‖Γ (η)‖∞ <∞ such that η(x)→∞ as x→∞. But
it follows by assumption that η(x) =

	|x|
0 dt c(t)−1/2 has these properties.

Next we consider a special case of the growth property examined earlier
by Davies [Dav85] and Eberle [Ebe99].

Example 4.2. Assume that c(s) ≤ as2(log s)α for some a > 0, α ≥ 0
and all large s. In this case µ(s) ≥ b(log s)1−α/2 with b > 0 for all large s.
Therefore µ(s) → ∞ as s → ∞ if α < 2 and H is L2-unique by the first
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statement of Proposition 4.1. But Davies has demonstrated by specific ex-
ample, [Dav85, Example 3.5], that if d ≥ 2 and α > 2 then L2-uniqueness
can fail (see also [Ebe99, Chapter 2, Section c]). Finally Theorem 2.3 in
[Ebe99] treats the borderline case α = 2. This theorem establishes that if
c(s) ≤ as2(log s)2 for all large s then H is not only L2-unique but also
Lp-unique for all p ∈ 〈1, 2].

Next if α ≤ 1 then the second statement of Proposition 4.1 establishes
that H is L1-unique. Indeed if α ≤ 1 then µ(s) ≥ b(log s)1−α/2 for s large
and the integral (1.4) is finite for large λ. But L1-uniqueness can fail if
c(s) ∼ s2(log s)α with α > 1 for large s. To verify this let d = 1. Then
there is a strictly positive even ψ ∈ W 2,∞(R) such that x ≥ 0 7→ ψ(x) is
monotonically increasing and

(4.1) ψ(x) = 1− (log(log |x|))−1

for |x| ≥ 3. In particular ψ(x) → 1 as |x| → ∞. Now define c by c(x) =
ψ′(x)−1

	x
0 dsψ(s). Then c is strictly positive and c ∈ W 1,∞

loc (R). Moreover,
c(x) ∼ |x|2(log |x|)(log(log |x|)) as |x| → ∞. But if H is the corresponding
operator on C∞c (R), i.e. if Hϕ = −(cϕ′)′, then (I + H)ψ = ψ − (cψ′)′ = 0.
Therefore the range of I +H is not L1-dense and H is not L1-unique.

Thus within this class of examples the growth bound c(s) ≤ as2(log s) is
optimal for L1-uniqueness and the bound c(s) ≤ as2(log s)2 is optimal for
L2-uniqueness.

Note that if d = 1, Ω = 〈0,∞〉 and one repeats the foregoing con-
struction with ψ positive, strictly increasing, ψ(x) = O(x) as |x| → 0 and
satisfying (4.1) for x ≥ 3, then c is strictly positive and c(x) = O(x) as
x → 0. Moreover, c(x) ∼ x2(log x)(log(log x)) for all large x. Therefore the
corresponding operator H is Markov unique, by [RS10, Theorem 2.7], but
again it is not L1-unique. In fact it is not Lp-unique for any p ∈ [1,∞〉.

The function µ is a lower bound on the Riemannian distance to infinity
measured with respect to the metric C−1 associated with the operator HΩ.
If one has more detailed information on the geometry one can obtain a
stronger conclusion by the same general reasoning. This is illustrated by the
following example of a Grušin-type operator.

Let d = 2 and Ω = Ω+∪Ω− with Ω± = {x = (x1, x2) : ±x1 > 0}. Define
the Grušin operator H by D(H) = C∞c (Ω) and

(Hϕ)(x) = −∂1(c1(x1)∂1ϕ)(x)− c2(x1)(∂2
2ϕ)(x),

where c1, c2 ∈ W 1,∞
loc (R \ {0}) are strictly positive and ci(x) ∼ |x|(2δi,2δ′i)

with δi, δ
′
i ≥ 0. Here we use the notation of [RS06], [RS08]. Specifically

s(α,α
′) = sα if α ≤ 1 and s(α,α

′) = sα
′

if α ≥ 1, and functions f, g satisfy the
relation f ∼ g if there are a, a′ > 0 such that af ≤ g ≤ a′f . We assume that
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δ1, δ
′
1 < 1 but there are no upper bounds on δ2 and δ′2. Thus H ∈ EΩ with

C(x) =

(
c1(x1) 0

0 c2(x1)

)
.

Therefore ‖C(x)‖ = c1(x1) ∨ c2(x1) ≤ a|x1|2(δ′1∨δ′2) ≤ a|x1|2(1∨δ′2) for all
|x1| ≥ 1. Although the asymptotic growth of C is dictated by c2, which be-
haves asymptotically like |x1|2δ

′
2 , the uniqueness properties are independent

of the magnitude of δ′2.

Proposition 4.3. Let H denote the Grušin operator defined above.

I. If δ1 ∈ [0, 1/2〉 then H is not Markov unique and consequently not
L1-unique.

II. If δ1 ∈ [1/2, 1〉 then H is L1-unique and consequently Markov unique.

Proof. The first statement of the proposition follows from the obser-
vations at the end of Section 6 of [RS08] and in particular from Proposi-
tion 6.10.

Some care has to be taken in comparing the current statements with
those of [RS08]. The operator H is defined on C∞c (R2 \ {x1 = 0}) but the
operator Hδ studied in [RS08] corresponds to the extension of H to C∞c (R2).
The Friedrichs extension Hδ,D of Hδ is the self-adjoint extension HN of H
which satisfies the Neumann-type boundary condition (c1∂1)(0+, x2) =
(c1∂1)(0−, x2) on the line of degeneracy x1 = 0. The Friedrichs extension HD

of H is, however, the self-adjoint extension with the Dirichlet-type boundary
condition ϕ(0+, x2) = ϕ(0−, x2). If δ1 ∈ [0, 1/2〉 then these extensions are
distinct, and in addition there are extensions with analogous Robin bound-
ary conditions sandwiched between the minimal extension HN (= Hδ,D) and
the maximal extension HD. But if δ1 ∈ [1/2, 1〉 then HN = HD and all the
operators coincide (see [RS08, Proposition 6.10]).

The proof of L1-uniqueness for δ1 ∈ [1/2, 1〉 is by reasoning similar to
that used to prove Proposition 3.1 and it does not require an upper bound
on δ′2. The argument follows the lines of the proof of Theorem 6.1 of [RS08],
details of which are given in [RS06]. First, Markov uniqueness follows from
Proposition 6.10 of [RS08]. Secondly, one deduces that H is conservative by
the arguments given in [RS06]. The semigroup S generated by HN (= HD)
is approximated on L2(Ω) by semigroups S(N,ε) generated by the Grušin
operators with coefficients (C ∧NI) + εI. Then S and SN,ε satisfy L2-off-
diagonal bounds with respect to the corresponding Riemannian distances
by [RS08, Proposition 4.1]. But if N ≥ 1 ≥ ε > 0 then these distances are
all larger than the Riemannian distance d1(·; ·) corresponding to the Grušin
operator with coefficients (c1 +1, c2 +1). Therefore S and the approximants
S(N,ε) all satisfy L2-off-diagonal bounds with respect to d1(·; ·). Since the
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operator with coefficients (c1 + 1, c2 + 1) has δ1 = 0 = δ2 it follows that
d1(·; ·) is independent of δ1 and δ2.

Next let B1,r = {x ∈ R2 : d1(0;x) < r}. Then if ϕ ∈ L2(B1,m) it follows
by L2-off-diagonal bounds, similar to those of Lemma 3.2, as in the proof of
Lemma 3.4, that

|(1(BM )c , S
(N,ε)
t ϕ)| ∨ |(1(BM )c , Stϕ)|

≤
∑
p≥M
|B1,p+1|1/2e−d1(Cp;B1,m)2(4t)−1‖ϕ‖2,

where Cp = B1,p+1\B1,p. But d1(Cp;B1,m) ≥ p−m by the triangle inequality.
Moreover, it follows from Proposition 5.1 of [RS08] that there is an a > 0
such that |B1,p| ≤ a2pD

′
with D′ = 1 + (1 + δ′2 − δ′1)(1− δ′1)−1. Therefore

|(1(BM )c , S
(N,ε)
t ϕ)| ∨ |(1(BM )c , Stϕ)| ≤ a

∑
p≥M

pD
′/2e−(p−m)2(4t)−1‖ϕ‖2

and the estimate is uniform for all N ≥ 1 and ε ∈ 〈0, 1]. Finally the S(N,ε)

are conservative, since their generators are strongly elliptic, and they are
L2-convergent to S. But

‖(S(N,ε)
t − St)ϕ‖1 ≤ |B1,M |1/2‖(S(N,ε)

t − St)ϕ‖2
+ (1(BM )c , S

(N,ε)
t ϕ) + (1(BM )c , Stϕ)

for all positive ϕ ∈ L2(B1,m). Therefore taking the limits N → ∞, ε → 0
and M → ∞ one deduces that the S(N,ε) are L1-convergent to S. Hence S
is conservative and H is L1-unique by Theorem 1.1.

4.2. Capacity estimates. In this subsection we suppose that Ω is a
proper subset of Rd and examine the capacity condition capΩ(∂Ω) = 0. It
follows from the general additivity properties of the capacity (see [BH91] or
[FOT94]) that capΩ(∂Ω) = 0 if and only if capΩ(A) = 0 for all bounded
measurable subsets A of ∂Ω. The capacity capΩ(A) depends on two gross
features of A and HΩ, the dimension of the set and the order of degeneracy
of HΩ at A.

First, let A ⊂ Ω be a measurable subset with |A| = 0. Further, let Hs
denote the Hausdorff measure on Rd and dH(A) the Hausdorff dimension
of the set A. It follows that Hs(A) = ∞ if s ∈ [0, dH(A)〉, Hs(A) = 0 if
s ∈ 〈dH(A),∞〉, but at the critical point s = dH(A) the measure can take
any value in [0,∞].

Secondly, the operator HΩ ∈ EΩ is defined to be degenerate of order
γ(A) if for each bounded measurable subset B ⊂ A there is an open subset
U containing B and a number b > 0 such that 0 < C(x) ≤ bd(x;B)γ(A)I for
all x ∈ U ∩Ω, where d(x;B) denotes the Euclidean distance of x from B.
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The next proposition is an extension of Proposition 4.2 in [RS11].

Proposition 4.4. Let A ⊂ ∂Ω be a measurable subset with |A| = 0.
Assume HΩ ∈ EΩ is degenerate of order γ(A) on A. If either γ(A) ≥ 2, or
dH(A) < d + γ(A) − 2, or dH(A) = d + γ(A) − 2 and Hd+γ(A)−2(A) < ∞,
then capΩ(A) = 0.

Proof. If γ(A) ≥ 2 then capΩ(A) = 0 by the proof of Proposition 4.2 of
[RS11]. Therefore in the proof of the second and third statements we may
assume γ(A) ≤ 2.

The proofs of these latter statements are by adaptation of well known re-
sults for the Laplacian (see, for example, [EvG92, Theorem 2 in Section 4.7.1
and Theorem 3 in Section 4.7.2] or [MZ97, Section 2.1.7]). Consider the sec-
ond statement of the proposition.

It suffices to establish that capΩ(B) = 0 for each bounded measurable
subset B of A. Let Br = B(y; r) be the Euclidean ball of radius r centred
at y with B ∩ Br 6= ∅. Then d(x;B) ≤ 4r for all x ∈ B2r. Therefore there
is a number b > 0 which is independent of y such that ‖C(x)‖ ≤ brγ(A) for
all x ∈ B2r ∩ Ω. Next fix η ∈ C∞c (B2r) with 0 ≤ η ≤ 1, η = 1 on Br and
|∇η| ≤ 2r−1. Then

‖η‖2D(hΩ) ≤
�

B2r∩Ω
(‖C(x)‖ |(∇η)(x)|2 + |η(x)|2) ≤ |B2r|(4brγ(A)−2 + 1).

Since γ(A) ≤ 2 it follows that there is a c > 0, whose value is independent
of the coefficients of HΩ, such that ‖η‖2D(hΩ) ≤ (b + 1)crd+γ(A)−2 for all
r ≤ 1. Moreover, the estimate is uniform in y. Now let Bri = B(yi; ri) be
a countable family of balls with ri ≤ δ ≤ 1 such that Bri ∩ B 6= ∅ and
B ⊂

⋃
iBri . Then

capΩ(B) ≤
∑
i

capΩ(Bri ∩Ω) ≤ (b+ 1)c
∑
i

r
d+γ(A)−2
i

by the foregoing estimate. Therefore

capΩ(B) ≤ (b+ 1)cHd+γ(A)−2(B) ≤ (b+ 1)cHd+γ(A)−2(A).

But if d + γ(A) − 2 > dH(A) then Hd+γ(A)−2(A) = 0 and it follows that
capΩ(B) = 0.

Finally consider the third statement of the proposition. The proof follows
from the reasoning used for the Laplacian in [EvG92] and [MZ97]. It is based
on the estimates ‖∇η‖22 ≤ crd−2 for the function η ∈ C∞c (Br) introduced in
the foregoing paragraph. These estimates are now replaced by the bounds
hΩ(η) ≤ (b + 1)crd+γ(A)−2. Care has to be taken, however, as the capacity
in [EvG92] and [MZ97] is defined by the seminorm ϕ 7→ ‖∇ϕ‖2 and not the
graph norm ϕ 7→ (‖∇ϕ‖22 + ‖ϕ‖22)1/2.
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Again it suffices to prove that capΩ(B) = 0 for each bounded measurable
subset of A. As a preliminary, note thatHd+γ(A)−2(B) ≤ Hd+γ(A)−2(A) <∞
by assumption. Now we follow the reasoning of [EvG92, Section 4.7.2].

Let V1 be an open set with B ⊂ V1 ⊂ Bδ where Bδ is the δ-neighbourhood
of B, i.e. Bδ = {x ∈ Rd : d(x;B) < δ}, and δ ∈ 〈0, 1]. Then follow-
ing [EvG92] one constructs a sequence of open sets Vn with B ⊂ Vn and
Vn+1 ⊂ Vn together with a sequence of C∞-functions ηn with 0 ≤ ηn ≤ 1,
supp ηn ⊂ Vn, ηn = 1 on Vn+1 and

hΩ(ηn) ≤ a(Hd+γ(A)−2(B) + 1).

The value of the positive constant a depends on d, B and the constant b
occurring in the bounds on ‖C(x)‖. Next one sets TN =

∑N
n=1 n

−1 and
ψN = T−1

N

∑N
n=1 n

−1ϕn. Note that 0 ≤ ψN ≤ 1, ψN = 1 on VN+1 ⊃ B and
suppψN ⊂ V1 ⊂ Bδ. Now it follows that

capΩ(B) ≤ ‖ψN‖2D(hΩ) ≤ T
−2
N

N∑
n=1

n−2hΩ(ϕn) + ‖ψN‖22

≤ a(Hd+γ(A)−2(B) + 1)T−2
N

N∑
n=1

n−2 + |Bδ|.

where we have used supp |∇ϕn| ⊂ Vn \ Vn+1. But TN →∞ as N →∞ and
|Bδ| → |B| = 0 as δ → 0. Thus taking the limit N → ∞ followed by the
limit δ → 0 one concludes that capΩ(B) = 0.

Optimal application of Proposition 4.4 depends on verification that the
Hausdorff measure is finite at the critical value of discontinuity. This is not
always the case. If, however, B is bounded and is the graph of a Lipschitz
function then dH(B) = d − 1 and Hs(B), at the critical value s = dH(B),
is equal to the (finite) surface area of B (see [EvG92, Sections 2.4.2 and
3.3.4]). Therefore one has the following corollary of Proposition 4.4 and
Theorem 1.1.

Corollary 4.5. Assume HΩ ∈ EΩ and ∂Ω is locally Lipschitz. Further
assume the coefficients of HΩ satisfy the growth condition (1.4) and, in
addition, ‖C(x)‖ → 0 as x→ ∂Ω. Then HΩ is L1-unique.

Proof. Let B ⊂ ∂Ω be a bounded measurable subset which is the graph
of a Lipschitz function. Then γ(B) ≥ 1 because the cij ∈ W 1,∞

loc (Ω) tend
to zero on ∂Ω. Hence one can apply the third statement of Proposition 4.4
with dH(B) = d − 1 and γ(B) = 1. It follows that capΩ(B) = 0. Since this
conclusion holds for all possible choices of B one deduces from the additivity
properties of the capacity that capΩ(∂Ω) = 0. Then L1-uniqueness follows
from Theorem 1.1.
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Finally we note that if γ(A) ≥ 2 then one even has a simple criterion for
L2-uniqueness.

Lemma 4.6. Assume HΩ ∈ EΩ and |∂Ω| = 0. If γ(A) ≥ 2 for all bounded
measurable A ⊂ ∂Ω and if µ(s)→∞ as s→∞ then H is L2-unique.

Proof. Let ρn denote the functions introduced in the proof of IV⇒III
in Theorem 1.1. Since µ(s) → ∞ as s → ∞ it follows that ρn converges
pointwise to 1Ω as n → ∞. Moreover, ‖Γ (ρn)‖∞ ≤ b2n−2. Next define χn
on [0,∞〉 by χn(s) = 1 if s ∈ [0, n−1〉, χn(s) = − log s/log n if s ∈ [n−1, 1]
and χn(s) = 0 if s ≥ 1. Then define ξn onΩ by ξn(x) = χn(d(x; ∂Ω)). Finally
define ηn by ηn = ρn(1Ω − ξn). It follows that ηn converges pointwise to 1Ω
as n→∞. In addition

‖Γ (ηn)‖∞ ≤ 2‖Γ (ρn)‖∞ + 2a‖Γ (ξn)‖∞ ≤ 2b2n−2 + 2a(log n)−2 → 0

as n → ∞, where we have used ‖Γ (ξn)‖∞ ≤ a(log n)−2. The latter esti-
mate follows from the degeneracy assumption. Hence HΩ is L2-unique by
Proposition 6.1 of [RS11], with p = 2, and a regularization argument.

Note that in Lemma 4.6 there is no restraint on the dimension of the
boundary ∂Ω. Therefore the conclusion is valid for sets Ω with arbitrarily
rough boundaries, in particular for fractal boundaries. The result is, however,
not optimal if the boundary is smooth. Indeed if d = 1 and Ω = 〈0,∞〉
then a degeneracy of order 1 at the origin is necessary and sufficient for
L1-uniqueness and a degeneracy of order 3/2 is necessary and sufficient for
L2-uniqueness (see [RS10, Theorem 2.7]).

4.3. Negligible sets. The foregoing discussion indicates that sets of
Hausdorff dimension lower than d − 2 are insignificant for L1-uniqueness.
In this subsection we establish a precise statement of this nature for non-
degenerate operators on Rd and also derive an analogous statement for L2-
uniqueness.

Proposition 4.7. Let H ∈ ERd with d ≥ 2 and assume the coefficients
of H satisfy the growth condition (1.4). Further let Γ be a submanifold of Rd

with dH(Γ ) = m. The following conditions are equivalent:

I. m ≤ d− 2.
II. C∞c (Rd \ Γ ) is an L1-core of H.

Proof. The proof is based on the observation that both conditions of the
proposition are equivalent to the capacity of the set Γ being zero. But there
are three different capacities involved in the argument.
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Let A ⊂ Γ be a measurable subset. First define cap(A) as the capacity
of the set measured with respect to H. Explicitly

(4.2) cap(A) = inf{‖ψ‖2D(h) : ψ ∈ D(h) and there exists an open set

U ⊂ Rd such that U ⊇ A and ψ ≥ 1 a.e. on U}

with h the closed quadratic form associated withH. Secondly, letΩ = Rd\Γ ,
set D = C∞c (Rd\Γ ) and introduce HΩ = H|D. Then HΩ ∈ EΩ and we define
capΩ(A) as the capacity measured with respect to HΩ. Thus capΩ(A) is
given by (4.2) with h replaced by hΩ,N . Thirdly, define cap1,2(A) as the
capacity given by (4.2) but with D(h) replaced by W 1,2(Rd). It can be
understood as the capacity associated with the form of the Laplacian.

In fact only two of these capacities are distinct in general. Since hΩ,N ⊇
h it follows that capΩ(A) ≤ cap(A). But both of these capacities can be
calculated with functions which are equal to one in an open neighbourhood
of A and on such functions the two forms coincide. Therefore capΩ(A) =
cap(A).

After these preliminary definitions the proof of the proposition consists
of establishing three equivalences.

I ⇔ cap1,2(Γ ) = 0. This is the key observation of the proof. It is a
standard property of the Laplacian (see, for example, Corollary 5.1.15 of
[AH96]).

cap1,2(Γ ) = 0 ⇔ cap(Γ ) = 0. Let A ⊂ Γ be a bounded measurable
set. Assume cap(Γ ) = 0. Hence cap(A) = 0. Then since C∞c (Rd) is a core
of h there exist a sequence χn ∈ C∞c (Rd) and a decreasing sequence of
bounded open subsets Un ⊃ A such that 0 ≤ χn ≤ 1, χn = 1 on Un and
h(χn) + ‖χn‖22 ≤ n−1. Now fix an η ∈ C∞c (Rd) such that 0 ≤ η ≤ 1 and
η = 1 on U1 and hence on each Un. Set ϕn = χnη. It follows that ϕn ∈ D(h),
0 ≤ ϕn ≤ 1, ϕn = 1 on Un and h(ϕn)+‖ϕn‖22 ≤ an−1 with a = 2(‖∇η‖2∞+1).
Moreover, if K = supp η then suppϕn ⊆ K for all n. But it follows from
local boundedness and strict positivity of the matrix of coefficients C that
there exist µK , νK > 0 such that

µK‖ϕ‖2W 1,2(Rd) ≤ ‖ϕ‖
2
D(h) ≤ νK‖ϕ‖

2
W 1,2(Rd)

for all ϕ ∈W 1,2(K). Therefore if cap(A) = 0 then cap1,2(A) = 0 by the lower
bound. The converse implication is similar, with the capacities interchanged
and using the upper bound. Since A was an arbitrary bounded subset of Γ
the desired conclusion follows immediately.

cap(Γ ) = 0⇔ II. First, observe that H is L1-unique by the second state-
ment of Proposition 4.1. But H is L1-unique if and only if H1 is the genera-
tor of an L1-continuous semigroup. Now suppose condition II is valid. Then
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H
1 = HΩ

1. Therefore HΩ
1 is the generator of an L1-continuous semigroup.

Consequently, HΩ is L1-unique. But L1-uniqueness of HΩ is equivalent to
capΩ(Γ ) = 0 by Theorem 1.1, which in turn is equivalent to cap(Γ ) = 0.

Conversely, if HΩ is L1-unique then HΩ
1 is the generator of an L1-

continuous semigroup. But H1 is also a generator and H
1 ⊇ HΩ

1 by defini-
tion. Since a semigroup generator cannot have a proper generator extension
one must have H1 = HΩ

1 = H|D
1
. Thus D is an L1-core of H.

It follows from the assumptions of Proposition 4.7 and the first statement
of Proposition 4.1 that H is L2-unique, i.e. H is essentially self-adjoint. Then
the closed form h associated with H is the form of the L2-closure H of H.
Therefore h(ϕ) = ‖H1/2

ϕ‖22 for all ϕ ∈ D(h) = D(H1/2). This observation
provides a relation between L1- and L2-cores.

Corollary 4.8. Under the assumptions of Proposition 4.7, the follow-
ing conditions are equivalent:

I. C∞c (Rd \ Γ ) is an L1-core of H.
II. C∞c (Rd \ Γ ) is an L2-core of H1/2.

Proof. Again set Ω = Rd \ Γ , D = C∞c (Rd \ Γ ) and HΩ = H|D. Then
HΩ ∈ EΩ. Moreover, it follows from the proof of Proposition 4.7 that con-
dition I is equivalent to the condition capΩ(Γ ) = 0. But condition II is also
equivalent to this capacity condition by the proof of Theorem 1.1.

There is also an L2-version of Proposition 4.7.

Proposition 4.9. Assume H ∈ ERd with d ≥ 4 and that µ(s) → ∞
as s → ∞. Further let Γ be a submanifold of Rd with dH(Γ ) = m. The
following conditions are equivalent:

I. m ≤ d− 4.
II. C∞c (Rd \ Γ ) is an L2-core of H.

Proof. It follows from the first statement of Proposition 4.1 that H is es-
sentially self-adjoint. Then we define the capacity Cap(A) of the measurable
subset A ⊂ Rd associated with the self-adjoint L2-closure H by

(4.3) Cap(A) = inf{‖ψ‖2
D(H)

: ψ ∈ D(H) and there exists an open set

U ⊂ Rd such that U ⊇ A and ψ ≥ 1 a.e. on U}.
Analogously we define cap2,2(A) as the capacity measured with respect to
the W 2,2(Rd)-norm, i.e. cap2,2(A) is given by (4.3) but with D(H) replaced
by W 2,2(Rd). We will argue that both conditions of the proposition are
equivalent to Cap(Γ ) = 0 or, equivalently, Cap2,2(Γ ) = 0. The reasoning is
similar to the proof of Proposition 4.7.
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I ⇔ cap2,2(Γ ) = 0. This equivalence is again a consequence of Corol-
lary 5.1.15 of [AH96].

cap2,2(Γ ) = 0 ⇔ Cap(Γ ) = 0. If A is a bounded measurable subset
of Γ with Cap(A) = 0 then there exist a sequence χn ∈ C∞c (Rd) and a
decreasing sequence of bounded open subsets Un ⊃ A such that 0 ≤ χn ≤ 1,
χn = 1 on Un and ‖χn‖2D(H)

≤ n−1. But the sequence χn can be modified
by a variation of the argument used in the proof of Proposition 4.7 to yield
a sequence with similar properties but with each element of the sequence
supported by a fixed compact set K. Explicitly, fix η ∈ C∞c (Rd) such that
0 ≤ η ≤ 1 and η = 1 on U1 and hence on each Un. Let K = supp η and set
ϕn = χnη. It follows that 0 ≤ ϕn ≤ 1, suppϕn ⊆ K, ϕn = 1 on Un and
‖ϕn‖2 ≤ ‖χn‖2. But

Hϕn = (Hχn)η + χn(Hη) + 2Γ (χn; η)

where Γ (·; ·) is the carré du champ associated with H. Therefore

‖Hϕn‖22 ≤ 3(‖Hη‖2∞ + ‖η‖2∞)‖χn‖2D(H)
+ 12

�
Γ (χn; η)2.

But �
Γ (χn; η)2 ≤

�
Γ (χn)Γ (η) ≤ |Γ (η)|∞h(χn) ≤ 2−1|Γ (η)|∞‖χn‖2D(H)

.

Combining these estimates one deduces that there is an a > 0 such that
‖ϕn‖2D(H)

≤ a‖χn‖2D(H)
≤ an−1 for all n.

Next since the coefficients cij ∈ W 1,∞
loc (Ω) and C = (cij) > 0 it follows

that there exist µK , νK > 0 such that

νK‖ϕ‖2W 2,2(Rd) ≥ ‖ϕ‖
2
D(H)

≥ µK‖ϕ‖2W 2,2(Rd)

for all ϕ ∈ C∞c (K) (see, for example, the appendix of [RS11]). Therefore
replacing ϕ by ϕn and taking the limit n→∞ one deduces from the lower
bound in this estimate that cap2,2(A) = 0. Since this is valid for all bounded
measurable subsets of Γ it follows that Cap(Γ ) = 0 implies cap2,2(Γ ) = 0.
The proof of the converse is similar.

Cap(Γ ) = 0 ⇔ II. First suppose condition II is valid. Secondly, fix
ψ ∈ C∞c (Rd) ⊂ D(H) with ψ = 1 on an open neighbourhood of the bounded
subset A ⊂ Γ . Then, by condition II, there is a sequence ψn ∈ C∞c (Rd \ Γ )
such that ‖ψ − ψn‖D(H) → 0 as n → ∞. Set ϕn = ψ − ψn. It follows that
ϕn ∈ D(H), ϕn = 1 on an open neighbourhood Un of A and ‖ϕn‖D(H) → 0
as n→∞. Therefore Cap(A) = 0. Since this holds for an arbitrary bounded
subset A of Γ it follows that Cap(Γ ) = 0.

Conversely, suppose Cap(Γ )=0. Therefore Cap(A)=0 for each bounded
measurable subset A of Γ . Then since C∞c (Rd) is a core of H, by definition,
there exist a sequence χn ∈ C∞c (Rd) and a sequence of open subsets Un of A
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such that 0 ≤ χn ≤ 1, χn = 1 on Un and ‖χn‖D(H) → 0 as n → ∞. Now
fix ψ ∈ C∞c (Rd) and set ψn = (1− χn)ψ. It follows that ψn ∈ C∞c (Rd \ Γ ).
Moreover, ψ − ψn = χnψ. But

H(ψ − ψn) = (Hχn)ψ + χn(Hψ) + 2Γ (χn;ψ)

and consequently

‖H(ψ − ψn)‖22 ≤ 3(‖Hψ‖2∞ + ‖ψ‖2∞ + 2‖Γ (ψ)‖∞))‖χn‖2D(H)
.

Since ‖ψ − ψn‖2 ≤ ‖ψ‖∞‖χn‖2 it follows that ‖(ψ − ψn)‖D(H) → 0 as
n → ∞. Therefore each ψ ∈ C∞c (Rd) can be approximated by a sequence
ψn ∈ C∞c (Rd \ Γ ) in the D(H)-graph norm. But as C∞c (Rd) is a core of H
one concludes that C∞c (Rd \ Γ ) is also a core.
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