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Quasiconformal mappings and
exponentially integrable functions

by

Fernando Farroni and Raffaella Giova (Napoli)

Abstract. We prove that a K-quasiconformal mapping f : R2 → R2 which maps the
unit disk D onto itself preserves the space EXP(D) of exponentially integrable functions
over D, in the sense that u ∈ EXP(D) if and only if u ◦ f−1 ∈ EXP(D). Moreover, if f is
assumed to be conformal outside the unit disk and principal, we provide the estimate

1

1 +K logK
≤
‖u ◦ f−1‖EXP(D)

‖u‖EXP(D)

≤ 1 +K logK

for every u ∈ EXP(D). Similarly, we consider the distance from L∞ in EXP and we prove
that if f : Ω → Ω′ is a K-quasiconformal mapping and G ⊂⊂ Ω, then

1

K
≤

distEXP(f(G))(u ◦ f−1, L∞(f(G)))

distEXP(f(G))(u, L∞(G))
≤ K

for every u ∈ EXP(G). We also prove that the last estimate is sharp, in the sense that
there exist a quasiconformal mapping f : D → D, a domain G ⊂⊂ D and a function
u ∈ EXP(G) such that

distEXP(f(G))(u ◦ f−1, L∞(f(G))) = K distEXP(f(G))(u, L
∞(G)).

1. Introduction and main results. Let Ω and Ω′ be domains in Rn.
A homeomorphism f : Ω → Ω′ is a K-quasiconformal mapping for a con-
stant K ≥ 1 if f ∈W 1,n

loc (Ω,Ω′) and
|Df(x)|n ≤ KJf (x) a.e. x ∈ Ω,

where Df stands for the differential of f , the norm |Df | of Df is defined
as

|Df(x)| = sup
ξ∈Rn, |ξ|=1

|Df(x)ξ|,

and Jf denotes the jacobian determinant of f ,
Jf (x) = detDf(x).

When K = 1 we say that f is conformal in Ω.
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If G is a bounded domain in Rn with measure |G| the space EXP(G) is
the set of measurable functions u : G → R such that there exists λ > 0 for
which �

G

exp
|u(x)|
λ

dx <∞,

where the mean value notation
�
G = |G|−1

	
G is used. We recall (see e.g. [3])

that EXP(G) is a Banach space equipped with the norm

(1.1) ‖u‖EXP(G) = sup
0<t<|G|

(
1 + log

|G|
t

)−1

u∗(t),

where u∗ is the non-increasing rearrangement of u,

(1.2) u∗(t) = sup{τ ≥ 0 : µu(τ) > t} ∀t ∈ (0, |G|),
and µu is the distribution function of u,

µu(τ) = |{x ∈ G : |u(x)| > τ}| ∀τ ≥ 0.

In this paper we consider the problem of composing functions in EXP(G)
with quasiconformal mappings and we deal with the case of dimension n = 2.

The results of this paper are in the spirit of the following theorem of H. M.
Reimann [12], featuring the class of functions of bounded mean oscillation.

Theorem 1.1 ([12]). Let Ω and Ω′ be domains in Rn and let f : Ω → Ω′

be a K-quasiconformal mapping. Then there exists a constant C which de-
pends only on n and K such that

1
C
‖u‖BMO(G) ≤ ‖u ◦ f−1‖BMO(G′) ≤ C‖u‖BMO(G),

for every subdomain G of Ω and for every u ∈ BMO(G), with G′ = f(G).

We recall that a locally integrable function u : G→ R has bounded mean
oscillation, u ∈ BMO(G), if

(1.3) ‖u‖BMO(G) = sup
Q

�

Q

|u(x)− uQ| dx <∞.

The supremum in (1.3) is taken over all open cubes Q of G with sides parallel
to the axes, and the notation

uQ =
�

Q

u(x) dx

is used.
We also recall a similar result which holds for the space W 1,n

loc : if Ω and
Ω′ are bounded domains in Rn and f : Ω → Ω′ is a K-quasiconformal
mapping, then

1
K
‖∇u‖Ln(G) ≤ ‖∇(u ◦ f−1)‖Ln(G′) ≤ K‖∇u‖Ln(G)
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for every subdomain G of Ω and for every u ∈ W 1,n
loc (Ω), with G′ = f(G).

The proof of this result can be found in [4, 8, 10, 13, 14].
We denote by D the unit disk {x ∈ R2 : |x| < 1} and we prove the

following result.

Theorem 1.2. Let f : R2 → R2 be a K-quasiconformal principal map-
ping that is conformal outside D and maps D onto itself. Then

1
1 +K logK

‖u‖EXP(D) ≤ ‖u ◦ f−1‖EXP(D)(1.4)

≤ (1 +K logK)‖u‖EXP(D)

for every u ∈ EXP(D).

Here and in what follows we call a quasiconformal mapping f : R2 → R2

principal if it is conformal outside D and satisfies the following normaliza-
tion:

|f(x)− x| = O(1/|x|) if |x| > 1.

Observe that our result gives that if f is a conformal mapping, then (1.4)
reduces to the equality

‖u ◦ f−1‖EXP(D) = ‖u‖EXP(D) for every u ∈ EXP(D).

The Luxemburg norm of a function u ∈ EXP(G) is defined as

(1.5) ‖u‖EXP(G) = inf
{
λ > 0 :

�

G

exp
|u(x)|
λ

dx ≤ 2
}
.

We recall that (see e.g. [3] and [11]) the Luxemburg norm is equivalent
to the norm defined in (1.1). We also remark that L∞(G) is not a dense
subspace of EXP(G) (see e.g. [11]). Appealing to the results in [5] and [7],
we find that the distance to L∞(G) in EXP(G) evaluated with respect to
the Luxemburg norm (1.5) is given by

distEXP(G)(u, L
∞(G)) = inf

{
λ > 0 :

�

G

exp
|u(x)|
λ

dx <∞
}

for every u ∈ EXP(G).
Our next result compares the distances from L∞ of u and u ◦ f−1. We

note that the estimates we provide are sharp (see Example 3.3 below).

Theorem 1.3. Let Ω and Ω′ be bounded domains in R2 and let f :Ω→Ω′

be a K-quasiconformal mapping. Then

(1.6) distEXP(G′)(u ◦ f−1, L∞(G′)) ≤ K distEXP(G)(u, L
∞(G))

and

(1.7)
1
K

distEXP(G)(u, L
∞(G)) ≤ distEXP(G′)(u ◦ f−1, L∞(G′)),

for every subdomain G of Ω and for every u ∈ EXP(G), with G′ = f(G).
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As for Theorem 1.2, if f is a conformal mapping then (1.6) and (1.7)
reduce to the equality

distEXP(G′)(u ◦ f−1, L∞(G′)) = distEXP(G)(u, L
∞(G))

for every u ∈ EXP(G).

2. Preliminary results. We review some of the standard facts on qua-
siconformal mappings in dimension n = 2. Our main sources are [2, 10, 13].

From now on Ω and Ω′ are domains in R2. It is well-known that if
f : Ω → Ω′ is a K-quasiconformal mapping then it is differentiable a.e., the
inverse f−1 is a K-quasiconformal mapping and for a.e. x ∈ Ω,

Df−1(f(x)) = (Df(x))−1,

and

(2.1) Jf−1(f(x)) =
1

Jf (x)
.

It will be convenient to recall the following version of the change of variables
formula.

Lemma 2.1. Let Ω and Ω′ be domains in R2 and let f : Ω → Ω′ be a
K-quasiconformal mapping. If w ∈ L1(Ω′) then (w ◦ f)Jf ∈ L1(Ω) and

(2.2)
�

Ω

w(f(z))Jf (z) dz =
�

Ω′

w(y) dy.

For later use, we recall K. Astala’s theorem on the distortion of area
under a quasiconformal mapping (see [1]), in the form appropriate for our
purposes (see [6]).

Theorem 2.2 ([1, 6]). Let f : R2 → R2 be a K-quasiconformal prin-
cipal mapping, that is, conformal outside the unit disk D. Then, for every
measurable subset E ⊂ D,

(2.3) |f(E)| ≤ Kπ1−1/K |E|1/K .
All constants in (2.3) are sharp. We also recall that if f is a quasiconfor-

mal mapping defined in a planar domain Ω then

(2.4) Jf ∈ Lploc(Ω) if p < pK =
K

K − 1
,

and the exponent pK = K/(K − 1) is the best possible. This is a direct
consequence of the area distortion estimate (see again [1]).

3. Proofs of Theorems 1.2 and 1.3. Before we give the proofs of
Theorems 1.2 and 1.3 we recall the following fundamental lemma which
provides a precise connection between the spaces BMO(G) and EXP(G) for
G a bounded domain in Rn.
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Lemma 3.1 ([9]). Let G be a bounded domain in Rn and let u : G → R
be a measurable function. Then u ∈ EXP(G) if and only there exists v ∈
BMO(G) such that

|u(x)| ≤ v(x) a.e. x ∈ G.

Moreover, there exists a constant C which depends only on n such that

‖v‖BMO(G) ≤ C distEXP(G)(u, L
∞(G)).

Theorem 1.1 and Lemma 3.1 are the key ingredients in the proof of the
following result, which is the starting point of our study.

Lemma 3.2. Let Ω be a domain in Rn and let f : Ω → Rn be a quasicon-
formal mapping. Let G be any bounded subdomain of Ω and let G′ = f(G).
Then u ∈ EXP(G) if and only if u ◦ f−1 ∈ EXP(G′).

Proof. Since both f and f−1 are quasiconformal mappings it is sufficient
to prove that u ◦ f−1 ∈ EXP(G′) if u ∈ EXP(G). From Lemma 3.1, to the
function u ∈ EXP(G) there corresponds a function v ∈ BMO(G) such that
|u(x)| ≤ v(x) for a.e. x ∈ G. As a consequence of Theorem 1.1 the function
v◦f−1 belongs to BMO(G′). Clearly |u(f−1(y))| ≤ v(f−1(y)) for a.e. y ∈ G′.
The result immediately follows from Lemma 3.1.

Proof of Theorem 1.2. The proof is based on Theorem 2.2. Let u ∈
EXP(D). First, we notice that for every τ > 0,

{y ∈ D : |u(f−1(y))| > τ} = f({x ∈ D : |u(x)| > τ}).

We compare the distribution functions of u and u ◦ f−1 by means of the
area distortion estimate (2.3) and we obtain

µu◦f−1(τ) = |{y ∈ D : |u(f−1(y))| > τ}|
= |f({x ∈ D : |u(x)| > τ})|
≤ Kπ1−1/Kµu(τ)1/K .

Since for every t ∈ (0, π),

{τ ≥ 0 : µu◦f−1(τ) > t} ⊂
{
τ ≥ 0 : µu(τ) >

tK

KKπK−1

}
,

it follows from the definition of non-increasing rearrangement (1.2) that

(u ◦ f−1)∗(t) ≤ u∗
(

tK

KKπK−1

)
.(3.1)
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We deduce directly from the definition of the norm (1.1) that

u∗
(

tK

KKπK−1

)
≤ ‖u‖EXP(D)

(
1 + log

π
tK

KKπK−1

)
= ‖u‖EXP(D)

(
1 +K logK

π

t

)
= ‖u‖EXP(D)

(
1 +K logK +K log

π

t

)
.

Thus, from (3.1) we get

(u ◦ f−1)∗(t) ≤ ‖u‖EXP(D)

(
1 +K logK +K log

π

t

)
.

Our aim is to prove that there exists a constant c = c(K) which depends on
K such that

(3.2) 1 +K logK +K log
π

t
≤ c(K)

(
1 + log

π

t

)
∀t ∈ (0, π).

It will be sufficient to prove that the function

γ(t) =
1 +K logK +K log π

t

1 + log π
t

∀t ∈ (0, π),

is bounded in the interval (0, π) by some constant which only depends on K.
To this end, we observe that

γ′(t) =
1 +K logK −K
t
(
1 + log π

t

)2 ∀t ∈ (0, π).

We define
ψ(K) = 1 +K logK −K ∀K ∈ [1,∞).

Since
ψ′(K) = logK ≥ 0 ∀K ∈ [1,∞),

we have
ψ(K) ≥ ψ(1) = 0 ∀K ∈ [1,∞),

and therefore γ is increasing in (0, π). Then

γ(t) ≤ γ(π) = 1 +K logK ∀t ∈ (0, π),

and inequality (3.2) holds with

c(K) = 1 +K logK.

Therefore (3.1) gives

(u ◦ f−1)∗(t) ≤ (1 +K logK)‖u‖EXP(D)

(
1 + log

π

t

)
∀t ∈ (0, π).
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Hence, the inequality

(3.3) ‖u ◦ f−1‖EXP(D) ≤ (1 +K logK)‖u‖EXP(D) ∀u ∈ EXP(D)

holds if f is a K-quasiconformal principal mapping. Recalling that the in-
verse of a K-quasiconformal principal mapping is also a K-quasiconformal
principal mapping, it follows that

(3.4) ‖v ◦ f‖EXP(D) ≤ (1 +K logK)‖v‖EXP(D) ∀v ∈ EXP(D).

If we substitute v = u ◦ f−1 with u ∈ EXP(D) into (3.4) (observe that v
belongs to EXP(D) by Lemma 3.2), we have

(3.5) ‖u‖EXP(D) ≤ (1 +K logK)‖u ◦ f−1‖EXP(D) ∀u ∈ EXP(D).

Inequalities (3.3) and (3.5) show that (1.4) holds, completing the proof.

Proof of Theorem 1.3. Let λ be such that

(3.6) λ > p′ distEXP(G)(u, L
∞(G)),

where
1
p

+
1
p′

= 1 and 1 < p <
K

K − 1
.

Since (
exp
|u(x)|
λ

)p′

= exp
|u(x)|
λ/p′

,

from (3.6) it follows that

(3.7) exp
|u|
λ
∈ Lp′(G).

Recalling that Jf ∈ Lp(G) (see (2.4)), we deduce from (3.7) that

exp
|u|
λ
Jf ∈ L1(G).

It follows directly from the change of variables formula (2.2) and also from
the identity (2.1) that

�

G′

exp
|u(f−1(y))|

λ
dy =

�

G

exp
|u(x)|
λ

Jf (x)dx <∞.

Therefore

(3.8) distEXP(G′)(u ◦ f−1, L∞(G′)) ≤ p′ distEXP(G)(u, L
∞(G)).

Passing to the limit in (3.8) for p approaching K/(K − 1) we finally get
(1.6). Recalling that the inverse of a K-quasiconformal mapping is also a
K-quasiconformal mapping, it follows that

(3.9)
distEXP(G)(v ◦ f, L∞(G)) ≤ K distEXP(G′)(v, L

∞(G′)) ∀v ∈ EXP(G′).



202 F. Farroni and R. Giova

If we substitute the function v = u ◦ f−1 with u ∈ EXP(G) into (3.9)
(observe that v ∈ EXP(G′) by Lemma 3.2), we have

distEXP(G)(u, L
∞(G)) ≤ K distEXP(G′)(u ◦ f−1, L∞(G′)) ∀u ∈ EXP(G),

and this proves (1.7).

Now we prove, by means of an example, that equality can occur in in-
equality (1.6).

Example 3.3. Here and in what follows let 0 < R ≤ 1 and

DR = {x ∈ R2 : |x| < R}.

For every K ≥ 1 we show that there exist a K-quasiconformal mapping
f : D→ D and a function u ∈ EXP(DR) such that

(3.10) distEXP(f(DR))(u ◦ f−1, L∞(f(DR))) = K distEXP(DR)(u, L
∞(DR)).

Let f : D→ D be the K-quasiconformal mapping defined as

f(z) =
z

|z|1−1/K
,

and let
u(x) = −2 log |x|.

Then u ∈ EXP(DR) and

distEXP(DR)(u, L
∞(DR)) = 1.

This follows from the fact that if λ > 1 then
�

DR

e|u(x)|/λ dx =
λ

(λ− 1)R2/λ
<∞,

while e|u|/λ 6∈ L1(DR) for 0 < λ ≤ 1. We notice that the inverse of f is given
by

f−1(y) = |y|K−1y.

Therefore, the function v = u ◦ f−1 is given by

v(y) = −2K log |y|.

Then v ∈ EXP(DR) and arguing as for u one has

distEXP(DR)(v, L
∞(f(DR))) = K.

This proves (3.10).
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