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Bounded elements in certain topological partial ∗-algebras
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Jean-Pierre Antoine (Louvain-la-Neuve),
Camillo Trapani (Palermo), and Francesco Tschinke (Palermo)

Abstract. We continue our study of topological partial ∗-algebras, focusing on the
interplay between various partial multiplications. The special case of partial ∗-algebras of
operators is examined first, in particular the link between strong and weak multiplications,
on one hand, and invariant positive sesquilinear (ips) forms, on the other. Then the analysis
is extended to abstract topological partial ∗-algebras, emphasizing the crucial role played
by appropriate bounded elements, called M-bounded. Finally, some remarks are made
concerning representations in terms of so-called partial GC∗-algebras of operators.

1. Introduction. Studies on partial ∗-algebras have provided so far
a considerable amount of information about their representation theory and
their structure. In particular, many results have been obtained for concrete
partial ∗-algebras, i.e., partial ∗-algebras of closable operators (called partial
O∗-algebras). A full analysis of these aspects has been developed by Inoue
and two of us and it can be found in the monograph [2], where earlier articles
are cited.

In a recent paper [4], we have started the analysis of spectral properties
of partial ∗-algebras and, in particular, partial O∗-algebras. We continue this
study in the present work, focusing now on the interplay between different
partial multiplications. Indeed, the main feature of partial O∗-algebras is
that they carry two natural multiplications, the weak one and the strong
one. Even though they are, in general, partial ∗-algebras only with respect
to the first one, the interplay of the two multiplications allows a rather
natural definition of inverse of an element and thus a good starting point
for the spectral theory. These two ingredients (the possibility of defining
a strong multiplication and the existence of bounded elements) are then
introduced in the abstract context leading to the notion of topologically
regular partial ∗-algebra. This, in turn, suggests characterizing a special
class of topological partial ∗-algebras, called partial GC∗-algebras, both in
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an abstract version and in an operator version, i.e., as a special class of
partial O∗-algebras.

In the case of a partial O∗-algebra A, the best situation for the spec-
tral theory occurs when A contains sufficiently many bounded elements, i.e.,
bounded operators. The same property will show up here. We will character-
ize an appropriate notion of bounded elements, which we callM-bounded el-
ements. The very name underlines that the construction derives from a (suf-
ficiently large) family M of invariant positive sesquilinear (ips) forms. As a
matter of fact, strong partial multiplication is also derived from this family,
and so are the associated spectral results. For instance, an element x ∈ A
has a finite spectral radius if and only if it is M-bounded. As a result, the
whole picture becomes coherent.

The notion of bounded element of a topological ∗-algebra was first pro-
posed by Allan in 1965 [1] with the goal of developing a spectral theory for
these algebras. Allan’s definition was applied to O∗-algebras by Schmüdgen
[8], but he did not include this topic in his monograph [9]. Bounded ele-
ments in purely algebraic terms have been considered by Vidav [15] and
Schmüdgen [11] with respect to some (positive) cone. This ingenious ap-
proach seems to be unfit for general partial ∗-algebras, since they may fail
to possess a natural positive cone. Of course, if a locally convex partial ∗-
algebra A contains a dense ∗-algebra (like the Ao-regular partial ∗-algebras
considered in Section 4), then it has a natural positive cone, namely, the
closure of the positive cone of Ao. However, we will not pursue this di-
rection here. Finally, Cimprič defines a notion of an element of a ∗-ring
being bounded with respect to a given module. His construction, albeit
in a totally different context, bears some analogy with the one we de-
scribe in Section 4, in particular with the C∗-seminorm used in Proposi-
tion 4.11.

The paper is organized as follows. After some preliminaries about partial
∗-algebras (Section 2), taken mostly from [2] and [4], we discuss in Section 3
the interplay between partial multiplications and sets of ips-forms. We show,
in particular, how strong partial multiplication on the space L†(D,H) may
be characterized in terms of ips-forms. Then, in Section 4, which is the core
of the paper, we show how a sufficient familyM of ips-forms leads one to an
appropriate notion of M-bounded elements and of strong partial multipli-
cation induced byM. The corresponding spectral elements are defined and
they are shown to behave as expected. Finally, in Section 5, we make some
remarks on representations. In particular, we examine under which condi-
tions a partial GC∗-algebra may have a faithful representation by a partial
GC∗-algebra of operators, that is, a representation in some space L†(D,H).
It is worth mentioning that the family M of ips-forms defines in a locally
convex partial ∗-algebra a cone of positive elements, making possible a gen-
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eralization of Schmüdgen’s approach in [11] to the present framework. We
leave this investigation to a future paper.

2. Preliminaries. For general aspects of the theory of partial ∗-algebras
and of their representations, we refer to the monograph [2]. For the conve-
nience of the reader, however, we repeat here the essential definitions, and
the notation given there.

First we recall that a partial ∗-algebra A is a complex vector space with
conjugate linear involution ∗ and a distributive partial multiplication ·, de-
fined on a subset Γ ⊂ A × A, satisfying the property that (x, y) ∈ Γ if,
and only if, (y∗, x∗) ∈ Γ , and (x · y)∗ = y∗ · x∗. From now on we will write
simply xy instead of x · y whenever (x, y) ∈ Γ . For every y ∈ A, the set
of left (resp. right) multipliers of y is denoted by L(y) (resp. R(y)), i.e.,
L(y) = {x ∈ A : (x, y) ∈ Γ} and R(y) = {x ∈ A : (y, x) ∈ Γ}. We denote by
LA (resp. RA) the space of universal left (resp. right) multipliers of A.

In general, a partial ∗-algebra is not associative, but in several situations
a weaker form of associativity holds. More precisely, we say that A is semi-
associative if y ∈ R(x) implies yz ∈ R(x) for every z ∈ RA and

(xy)z = x(yz).

Throughout this paper we will only consider partial ∗-algebras with unit:
this means that there exists an element e ∈ A such that e = e∗, e ∈ RA∩LA
and xe = ex = x for every x ∈ A.

Let H be a complex Hilbert space and D a dense subspace of H. We
denote by L†(D,H) the set of all (closable) linear operators X such that
D(X) = D and D(X∗) ⊇ D. The set L†(D,H) is a partial ∗-algebra with
respect to the following operations: the usual sum X1 +X2, the scalar mul-
tiplication λX, the involution X 7→ X† := X∗�D and the (weak) partial
multiplication X1 �X2 = X†1

∗X2, defined whenever X2 is a weak right multi-
plier of X1 (we shall write X2 ∈ Rw(X1) or X1 ∈ Lw(X2)), that is, whenever
X2D ⊂ D(X†1

∗) and X∗1D ⊂ D(X∗2 ).
It is easy to check that X1 ∈ Lw(X2) if, and only if, there exists Z ∈

L†(D,H) such that

(2.1) 〈X2ξ |X†1η〉 = 〈Zξ | η〉, ∀ξ, η ∈ D.

In this case Z = X1 �X2. The ∗-algebra L†(D,H) is neither associative nor
semi-associative. If I denotes the identity operator of H, we put ID = I�D.
Then ID is the unit of the partial ∗-algebra L†(D,H).

If N ⊆ L†(D,H) we denote by RwN the set of right multipliers of all
elements of N. We recall that

RwL†(D,H) = {A ∈ L†(D,H) : A is bounded and A : D → D∗},
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where
D∗ =

⋂
X∈L†(D,H)

D(X†∗).

We denote by L†b(D,H) the bounded part of L†(D,H), i.e., L†b(D,H) =
{X ∈ L†(D,H) : X is a bounded operator} = {X ∈ L†(D,H) : X ∈ B(H)}.

A †-invariant subspace M of L†(D,H) is called a (weak) partial O∗-
algebra if X � Y ∈ M for every X,Y ∈ M such that X ∈ Lw(Y ). Thus
L†(D,H) is the maximal partial O∗-algebra on D.

The set L†(D) := {X ∈ L†(D,H) : X,X† : D → D} is a ∗-algebra; more
precisely, it is the maximal O∗-algebra on D (for the theory of O∗-algebras
and their representations we refer to [9]).

Some interesting classes of partial O∗-algebras (such as partial GW ∗-
algebras) can be defined with the help of certain topologies on L†(D,H)
and its commutants.

The weak topology tw on L†(D,H) is defined by the seminorms

rξ,η(X) = |〈Xξ | η〉|, X ∈ L†(D,H), ξ, η ∈ D.

The strong topology ts on L†(D,H) is defined by the seminorms

pξ(X) = ‖Xξ‖, X ∈ L†(D,H), ξ ∈ D.

The strong∗ topology ts∗ on L†(D,H) is usually defined by the seminorms

p∗ξ(X) = max{‖Xξ‖, ‖X†ξ‖}, X ∈ L†(D,H), ξ ∈ D.

If N is a †-invariant subset of L†(D,H), the weak unbounded commutant of
N is defined by

N′σ = {Y ∈ L†(D,H) : 〈Xξ |Y †η〉 = 〈Y ξ |X†η〉, ∀X ∈ N, ξ, η ∈ D}.

The weak bounded commutant N′w of N is defined by N′w = {Y ∈ N′σ :
Y is bounded}.

If N is a partial O∗-algebra, the quasi-weak bounded commutant N′qw of
N is defined as follows:

N′qw = {C ∈ N′w : 〈CX†ξ |Y †η〉 = 〈Cξ | (X � Y )η〉,
∀X ∈ L(Y ), ξ, η ∈ D}.

If N is an O∗-algebra of bounded operators on D, then N′′wσ = N
ts∗ . This

applies, in particular, to the set P := {X ∈ L†b(D,H) : X,X† : D → D},
which is an O∗-algebra of bounded operators on D (it is in fact the bounded
part of L†(D)) and P ⊂ RwL†(D,H). Then P′′wσ = P

ts∗ . The fact that
P′w = CID implies that P

ts∗ = L†(D,H), and thus RwL†(D,H) is ts∗-dense
in L†(D,H).
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In L†(D,H) we can also consider the so-called strong multiplication ◦. It
is defined in the following way:

(2.2)
{
X ◦ Y is well-defined if Y : D → D(X), X† : D → D(Y †),
(X ◦ Y )ξ = X(Y ξ), ∀ ξ ∈ D.

We shall write Y ∈ Rs(X) (or X ∈ Ls(Y )). In general, this strong
multiplication does not make L†(D,H) into a partial ∗-algebra, since the
distributive law fails. However, a subspace M of L†(D,H) may happen to
be a partial ∗-algebra with respect to strong multiplication. In this case we
say, as in [2], that M is a strong partial O∗-algebra.

A ∗-representation of a partial ∗-algebra A in the Hilbert space H is a
linear map π : A → L†(D,H) such that: (i) π(x∗) = π(x)† for every x ∈ A;
(ii) x ∈ L(y) in A implies π(x) ∈ Lw(π(y)) and π(x) � π(y) = π(xy). The
∗-representation π is said to be bounded if π(x) ∈ B(H) for every x ∈ A.

Let ϕ be a positive sesquilinear form on D(ϕ)×D(ϕ), where D(ϕ) is a
subspace of A. Then we have

ϕ(x, y) = ϕ(y, x), ∀x, y ∈ D(ϕ),(2.3)

|ϕ(x, y)|2 ≤ ϕ(x, x)ϕ(y, y), ∀x, y ∈ D(ϕ).(2.4)

We put
Nϕ = {x ∈ D(ϕ) : ϕ(x, x) = 0}.

By (2.4), we have

Nϕ = {x ∈ D(ϕ) : ϕ(x, y) = 0, ∀y ∈ D(ϕ)},
so Nϕ is a subspace of D(ϕ), and the quotient space D(ϕ)/Nϕ := {λϕ(x) ≡
x+Nϕ : x ∈ D(ϕ)} is a pre-Hilbert space with respect to the inner product
〈λϕ(x) |λϕ(y)〉 = ϕ(x, y), x, y ∈ D(ϕ). We denote by Hϕ the Hilbert space
obtained by completion of D(ϕ)/Nϕ.

A positive sesquilinear form ϕ on A×A is said to be invariant, and called
an ips-form, if there exists a subspace B(ϕ) of A (called a core for ϕ) with
the properties

(ips1) B(ϕ) ⊂ RA;
(ips2) λϕ(B(ϕ)) is dense in Hϕ;
(ips3) ϕ(ax, y) = ϕ(x, a∗y) for all a ∈ A and x, y ∈ B(ϕ);
(ips4) ϕ(a∗x, by) = ϕ(x, (ab)y) for all a ∈ L(b) and x, y ∈ B(ϕ).

In other words, an ips-form is an everywhere defined biweight, in the sense
of [2].

To every ips-form ϕ on A with core B(ϕ), there corresponds a triple
(πϕ, λϕ,Hϕ), where Hϕ is a Hilbert space, λϕ is a linear map from B(ϕ)
into Hϕ, and πϕ is a ∗-representation on A in the Hilbert space Hϕ. We
refer to [2] for more details on this celebrated GNS construction.
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Let A be a partial ∗-algebra with unit e. We assume that A is a locally
convex Hausdorff vector space under the topology τ defined by a (directed)
set {pα}α∈I of seminorms. Assume that (1)

(cl) for every x ∈ A, the linear map Lx : R(x) → A with Lx(y) = xy,
y ∈ R(x), is closed with respect to τ , in the sense that if {yα} ⊂ R(x)
is a net such that yα → y and xyα → z ∈ A, then y ∈ R(x) and
z = xy.

Starting from the family of seminorms {pα}α∈I , we can define a second
topology τ∗ on A by introducing the set of seminorms {p∗α(x)}, where

p∗α(x) = max{pα(x), pα(x∗)}, x ∈ A.

The involution x 7→ x∗ is automatically τ∗-continuous. By (cl) it follows
that, for every x ∈ A, Lx is τ∗-closed. And it turns out that the map Ry :
x ∈ L(y) 7→ xy ∈ A is also τ∗-closed.

If Ao is a τ∗-dense subspace of RA, then the restriction Lx�Ao is τ -
closable. Let us denote by L◦x its τ -closure defined on the following subspace
of A:

D(L◦x) = {y ∈ A : ∃{yα} ⊂ Ao, yα
τ→ y, xyα

τ→ z ∈ A}.

In terms of the latter, we may define a new multiplication • on A by{
y ∈ RAo(x)⇔ y ∈ D(L◦x) and x∗ ∈ D(L◦y∗),
x •y := L◦xy = limα(Lx�Ao)yα.

We refer to the multiplication • as the strong multiplication induced by Ao.
Clearly, RAo(x) ⊂ R(x), i.e., if x •y is well-defined, then y ∈ R(x) and
x •y = xy. On the other hand, if y ∈ R(x), x •y need not be defined. The
definition itself implies that x •y is well-defined if and only if y∗ •x∗ is well-
defined, and one has

(x •y)∗ = y∗•x∗.

We remark that in general • does not make A into a partial ∗-algebra,
since the distributive law may fail.

Let A be a partial ∗-algebra with unit e and assume that A is a lo-
cally convex space with respect to a given topology τ . Then A is called
topologically regular if it satisfies (cl) and RA∩LA contains a distinguished
∗-algebra Ao, i.e., Ao is a τ∗-dense ∗-subalgebra of A (containing the unit e)
such that, for the multiplication • induced by Ao, the following associative
law holds, for all x, y, z ∈ A:

if z ∈ R(y), yz ∈ R(x) and y ∈ RAo(x), then z ∈ R(x •y),

(1) Condition (cl) was called (t1) in [4].
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and

(2.5) x(yz) = (x •y)z.

In particular the following semi-associativity with respect to Ao holds: if
x •y is well-defined, then x • (yb) is well defined for every b ∈ Ao and

(x •y)b = x(yb),

which follows easily from (2.5).
An element a ∈ A of a topologically regular partial ∗-algebra A is called

left τ -bounded if there exists γa > 0 such that

(2.6) pα(ax) ≤ γapα(x), ∀x ∈ RA, α ∈ I.
The set of all left τ -bounded elements of A is denoted by Alb. In general,
x ∈ Alb does not imply that x∗ ∈ Alb. For a ∈ Alb we put

‖a‖lb = sup{pα(ax) : α ∈ I, x ∈ RA, pα(x) = 1}.
It is easily seen that ‖ · ‖lb is a norm on Alb [4].

A topologically regular partial ∗-algebra A with a distinguished ∗-sub-
algebra Ao is called a partial GC∗-algebra if

(i) A is τ∗-complete;
(ii) Ao ⊂ Alb and Ao is τ∗-dense in A;

(iii) Alb is a C∗-algebra with respect to the norm ‖ · ‖lb.

3. Partial multiplication vs. ips-forms. We begin by examining in
some detail the topological structure of L†(D,H) (or, more generally, of a
partial O∗-algebra M) when it is endowed with the topology ts or ts∗ .

As already mentioned, L†(D,H) contains a distinguished ∗-algebra P,
which is ts∗-dense. It is easily seen that both left and right multiplication
by any fixed element of P are continuous for the two topologies ts and ts∗ .

Remark 3.1. The semi-associativity with respect to P can be easily
checked as follows, without invoking the topological regularity. Let A1, A2 ∈
L†(D,H) with A1 �A2 well-defined and B ∈ P. Then A2 : D → D(A†∗1 ) and
A1 : D → D(A∗2). Since B : D → D, this implies that A2 �B : D → D(A†∗1 ).
On the other hand, for ξ, η ∈ D,

〈A2 � Bξ |A†1η〉 = 〈Bξ |A†2 � A†1η〉 = 〈ξ |B∗(A†2 � A†1)η〉;

this implies that A†1η ∈ D((A2 � B)∗) = D((A2B)∗). In conclusion, A1 ∈
Lw(A2 � B).

Elements of P are left ts-bounded in the sense of (2.6) (see also [4]); but
the set of all left ts-bounded elements is larger, namely it is L†b(D,H), and
it is a C∗-algebra.
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Another relevant feature of L†(D,H) is the existence of sufficiently many
ips-forms. Indeed, if ξ ∈ D, then every positive sesquilinear form ϕξ with

ϕξ(X,Y ) := 〈Xξ |Y ξ〉
is a ts-continuous (and, a fortiori , ts∗-continuous) ips-form. Here sufficiently
many means that the unique element X ∈ L†(D,H) such that ϕξ(X,X) = 0
for every ξ ∈ D is X = 0.

The family M = {ϕξ : ξ ∈ D} can also be used to describe the weak
multiplication � of L†(D,H). Indeed, we have:

Proposition 3.2. The weak product X � Y of X,Y ∈ L†(D,H) is well-
defined if and only if there exists Z ∈ L†(D,H) such that

(3.1) ϕξ(Y A,X†B) = ϕξ(ZA,B), ∀ξ ∈ D, A,B ∈ P.

Proof. The necessity of the condition follows easily from (2.1). As for
the sufficiency, one can put A = B = ID in (3.1) and use the polarization
identity to get (2.1).

Another characterization of the existence of weak product can be given
in terms of approximation by elements of P.

Proposition 3.3. The weak product X � Y of X,Y ∈ L†(D,H) is well-
defined if and only if there exists a net {Bα} in P such that

(3.2) Bα
ts→ Y and X � Bα converges weakly to some Z ∈ L†(D,H).

Proof. Assume that Y satisfies (3.2). Then, for every ξ, η ∈ D,

〈Y ξ |X†η〉 = lim
α
〈Bαξ |X†η〉 = lim

α
〈X � Bαξ | η〉 = 〈Zξ | η〉.

The statement then follows from (2.1).
On the other hand, assume that X � Y is well-defined and let {Bα} be

a net in P converging to Y . Then, for every ξ, η ∈ D,

lim
α
〈X � Bαξ | η〉 = lim

α
〈Bαξ |X†η〉 = 〈Y ξ |X†η〉 = 〈X � Y ξ | η〉.

The strong multiplication of L†(D,H), given by (2.2), can be conve-
niently described also by means of vector forms defined by the inner product
of H. To prove this we need the following lemma.

Lemma 3.4. Let X ∈ L†(D,H). Then

(i) the operator S(X) := (I +XX∗)−1�D is a weak left multiplier of X
and a weak right multiplier of X†;

(ii) S(X)D is a core for X∗.

Proof. (i) We need to prove that X : D → D(S(X)†∗) and S(X)† : D →
D(X∗). The first condition is trivially satisfied since D(S(X)†∗) = H, the
operator S(X) being symmetric and bounded. For the second, we have

S(X)†D = S(X)D ⊂ S(X)H = D(XX∗) ⊂ D(X∗).
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(ii) First, we check that S(X)D is dense in H. Let η ∈ H be such that
〈S(X)ξ | η〉 = 0 for every ξ ∈ D. Then

〈ξ |S(X)η〉 = 〈S(X)ξ | η〉 = 0, ∀ξ ∈ D.

By the density of D, we get S(X)η = 0. But S(X) is one-to-one, thus η = 0.
To prove that S(X)D is a core for X∗, it is enough to show that the unique
vector {φ,X∗φ} in the graph of X∗ which is orthogonal to {{η,X∗η} : η ∈
S(X)D} is zero. Indeed, putting η = S(X)ξ with ξ ∈ D, we have

〈{φ,X∗φ} | {η,X∗η}〉 = 〈{φ,X∗φ} | {S(X)ξ,X∗S(X)ξ}〉
= 〈φ |S(X)ξ〉+ 〈X∗φ |X∗S(X)ξ〉 = 〈φ |S(X)ξ〉+ 〈φ |XX∗S(X)ξ〉
= 〈φ | (I +XX∗)S(X)ξ〉 = 〈φ | (I +XX∗)(I +XX∗)−1ξ〉
= 〈φ | ξ〉 = 0, ∀ξ ∈ D.

Hence φ = 0. In the previous computation we took into account the fol-
lowing facts: (a) the operator X∗S(X) is bounded; (b) XX∗(I +XX∗)−1 is
everywhere defined and bounded; hence X∗(I+XX∗)−1ξ ∈ D(X) for every
ξ ∈ D.

Theorem 3.5. Let X,Y ∈ L†(D,H). The following statements are equiv-
alent:

(i) X ∈ Ls(Y ).
(ii) X ∈ Lw(Y ) and

(ii1) 〈(X � Y )ξ |Z†η〉 = 〈Y ξ | (X† � Z†)η〉, ∀Z ∈ Lw(X), ξ, η ∈ D;
(ii2) 〈(Y † � X†)ξ |V η〉 = 〈X†ξ | (Y � V )η〉, ∀V ∈ Rw(Y ), ξ, η ∈ D.

Proof. Let X,Y ∈ L†(D,H). The implication (i)⇒(ii) is easy. We prove
that (ii)⇒(i). Let X,Y ∈ L†(D,H) satisfy (ii). We begin by observing that
conditions (ii1) and (ii2) are, respectively, equivalent to the following (2):

Y : D → D((X∗�Z†D)∗), ∀Z ∈ Lw(X);

X† : D → D((Y †∗�VD)∗), ∀V ∈ Rw(Y ).

By Lemma 3.4, S(X) ∈ Lw(X) and since S(X)D is a core for X∗,

(X∗�S(X)D)∗ = (X∗)∗ = X.

Thus, Y : D → D(X). By applying again Lemma 3.4 to the operator Y †

we find that S(Y †) is a right multiplier of Y and S(Y †)D is a core for Y †∗.
Then X† : D → D(Y †). In conclusion, Y ∈ Ls(X).

(2) We remind the reader that if T is not densely defined, then D(T ∗) = {η ∈ H :
∃η∗ ∈ H : 〈Tξ | η〉 = 〈ξ | η∗〉, ∀ξ ∈ D(T )} is not necessarily the domain of a well-defined
operator.



232 J.-P. Antoine et al.

An interesting aspect of the interplay of weak and strong multiplication
in L†(D,H) is the following mixed associativity property [4, Prop. 3.5], which
proves to be useful in many situations.

Proposition 3.6. Let X,Y, Z ∈ L†(D,H). Assume that X �Y , (X �Y )
� Z and Y ◦ Z are all well-defined. Then X ∈ Lw(Y ◦ Z) and

(3.3) X � (Y ◦ Z) = (X � Y ) � Z.

In other words, (2.5) is valid in L†(D,H) with strong partial multiplica-
tion.

Remark 3.7. The partial O∗-algebra L†(D,H) is topologically regular
when endowed with the strong topology ts. Indeed, the multiplication in-
duced by P is a restriction of the strong multiplication of L†(D,H), since
if Y ∈ D(L◦X), then there exists a net {Yα} ⊂ P and Z ∈ L†(D,H) such
that Yαξ → Y ξ and X � Yαξ → Zξ for every ξ ∈ D. This implies that
Y ξ ∈ D(X) and Zξ = XY ξ for every ξ ∈ D. In a similar way, one proves
that, if X† ∈ D(L◦

Y †
), then X†ξ ∈ D(Y †). Hence, if the product of X and

Y induced by P is well-defined, then X ◦ Y is also well-defined and the two
products coincide. The statement then follows from (3.3).

The next two statements are analogues of Propositions 3.2 and 3.3 and
can be proved in a similar way.

Proposition 3.8. The strong product X ◦ Y of X,Y ∈ L†(D,H) is
well-defined if and only if there exists W ∈ L†(D,H) such that

ϕξ(WA,Z†B) = ϕξ(Y A, (X† � Z†)B) if Z ∈ Lw(X), ξ ∈ D, A,B ∈ P,

ϕξ(W †A, V B) = ϕξ(X†A, (Y � V )B) if V ∈ Rw(Y ), ξ ∈ D, A,B ∈ P.

Proposition 3.9. The strong product X ◦ Y of X,Y ∈ L†(D,H) is
well-defined if and only if there exist W ∈ L†(D,H) and a net {Cα} in P

such that Cα
ts→ Y and

ϕξ((X � Cα −W )A,Z†B)→ 0 if Z ∈ Lw(X), ξ ∈ D, A,B ∈ P,

ϕξ((C†α � X† −W †)A, V B)→ 0 if V ∈ Rw(Y ), ξ ∈ D, A,B ∈ P.

The family M = {ϕξ : ξ ∈ D} plays an important role in the preceding
discussion. Even though the elements ofM do not exhaust the family of all
strongly continuous ips-forms on L†(D,H), it is not restrictive to confine the
analysis to them, since every ts-continuous ips-form on L†(D,H) is a linear
combination of elements of M. Indeed:

Theorem 3.10. Let M be a partial O∗-algebra on D, and M0 a ∗-algebra
of bounded operators contained in M and strongly∗ dense in M.
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(i) Every strongly continuous invariant positive sesquilinear form ϕ on
D ×D, with core M0, can be represented as

(3.4) ϕ(X,Y ) =
n∑
i=1

〈SiXξi |SiY ξi〉, X, Y ∈M,

for some vectors ξ1, . . . , ξn in D and positive operators S1, . . . , Sn
such that S2

1 , . . . , S
2
n ∈M′qw.

(ii) If M = L†(D,H) and M0 = P, then

ϕ(X,Y ) =
n∑
i=1

〈Xξi |Y ξi〉, X, Y ∈M,

for some vectors ξ1, . . . , ξn in D.

Proof. The strong continuity of ϕ implies that there exist ξ1, . . . , ξn ∈ D
such that

|ϕ(X,Y )| ≤
n∑
i=1

pξi(X) ·
n∑
i=1

pξi(Y ).

Let H⊕ :=
⊕n

i=1H, the direct sum of n copies of H. We will write ⊕ξi
instead of (ξ1, . . . , ξn), ξi ∈ H. Let D⊕ =

⊕n
i=1D.

We define a ∗-representation π of M in L†(D⊕,H⊕) by

π(X)(⊕ηi) = ⊕Xηi, ηi ∈ D, i = 1, . . . , n.

Let us consider the following subspaces of
⊕n

i=1H:

E = {π(X)(⊕ξi) : X ∈M}, E0 = {π(A)(⊕ξi) : A ∈M0}.
The strong ∗-density of M0 implies that E0 = E .

Define
Θ(π(X)(⊕ξi), π(Y )(⊕ξi)) := ϕ(X,Y ).

The sesquilinear form Θ is bounded on E × E and extends to E × E . Then
there exists a positive bounded operator T on the Hilbert space E such that

Θ(π(X)(⊕ξi), π(Y )(⊕ξi)) = 〈T (⊕Xξi) | ⊕Y ξi〉.
The condition ϕ(X � A,B) = ϕ(A,X† � B) implies the equality

〈Tπ(X � A)⊕ ξi |π(B)⊕ ξi〉 = 〈Tπ(A)⊕ ξi |π(X† � B)⊕ ξi〉,
or

(3.5) 〈T (π(X) � π(A))⊕ ξi |π(B)⊕ ξi〉
= 〈Tπ(A)⊕ ξi | (π(X†) � π(B))⊕ ξi〉.

Now, for every X ∈M, we define an operator πE on E0 by

πE(X)(π(A)⊕ ξi) := (π(X) � π(A))⊕ ξi, A ∈M0.
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It is easily seen that πE(X) ∈ L†(E0, E). With this notation, (3.5) reads

〈TπE(X)(π(A)⊕ ξi) |π(B)⊕ ξi〉 = 〈Tπ(A)⊕ ξi | (πE(X†)(π(B)⊕ ξi)〉.
Hence T ∈ πE(M)′w.

Now we extend T to a bounded operator T⊕ on H⊕ by defining it to be
0 on the orthogonal complement of E .

Now we prove that T⊕ ∈ π(M)′w. Recalling that π(M0) is a ∗-algebra
of bounded operators, we begin by showing that T⊕ ∈ π(M0)

′
(the ordi-

nary commutant of bounded operators). Let PE denote the projection of
H⊕ onto E . Since every π(A), A ∈ M0, leaves E invariant, it follows that
π(A)PE = PEπ(A) for every A ∈M0. Moreover, if ⊕ηi ∈ H⊕, there exists a
sequence {Bn} in M0 such that PE ⊕ ηi = limn→∞ π(Bn) ⊕ ξi. From these
facts, we get

T⊕π(A)PE ⊕ ηi = T⊕π(A)( lim
n→∞

π(Bn)⊕ ξi) = lim
n→∞

T⊕π(A)π(Bn)⊕ ξi

= lim
n→∞

π(A)T⊕π(Bn)⊕ ξi = π(A)T⊕PE ⊕ ηi.

Moreover, from the definition of T⊕ we find that T⊕π(A)(I − PE) ⊕ ηi =
T⊕(I −PE)π(A)⊕ ηi = 0 and thus T⊕ ∈ π(M0)

′
. Since M0

s∗ ⊇M, it follows
that π(M)′w = π(M0)′w = π(M0)

′
and we finally conclude that T⊕ ∈ π(M)′w.

On the other hand, the condition ϕ(X† � A, Y B) = ϕ(A, (X � Y ) � B),
whenever X � Y is defined, implies, in a similar way, that T⊕ ∈ π(M)′qw.
Let now Ti denote the projection of T onto the subspace generated by Xξi,
X ∈ M, and then extended to H by defining it to be 0 on the orthogonal
complement. It is easily seen that T⊕ ∈ π(M)′qw if and only if Ti ∈M′qw for
each i. Hence,

ϕ(X,Y ) =
n∑
i=1

〈TiXξi |Y ξi〉, ξi ∈ D, Ti ∈M′qw .

If we put Si = T
1/2
i , then we get the representation (3.4). If M = L†(D,H),

then (ii) follows from the equality L†(D,H)′qw = CI.

With a similar proof, one also gets

Theorem 3.11. Let M be a partial O∗-algebra on D. Every strongly
continuous linear functional Φ can be represented as

Φ(X) =
n∑
i=1

〈Xξi | ηi〉, X ∈M,

with ξ1, . . . , ξn ∈ D and η1, . . . , ηn ∈ H.

In [4] we gave the following definition of a partial GC∗-algebra of oper-
ators.



Bounded elements in topological partial ∗-algebras 235

Definition 3.12. A partial O∗-algebra M on D is called a partial GC∗-
algebra of operators over M0 if

(i) M is ts∗-closed;
(ii) M contains a ts∗-dense ∗-algebra M0 of bounded operators on D;

(iii) Mlb = M ∩ L†b(D,H) =: Mb is a C∗-algebra.

Remark 3.13. Every partial GC∗-algebra of operators is topologically
regular. Indeed, the argument used in Remark 3.7 can be easily adapted
to the present situation. Hence, every partial GC∗-algebra of operators is a
partial GC∗-algebra in the sense of Section 2.

Clearly L†(D,H) fulfills the conditions of this definition if M0 = P.
So it is natural to consider under which conditions a locally convex partial
∗-algebra A[τ ] can be represented in a partial GC∗-algebra of operators.
Some results in this direction were given in [4], but a deeper analysis shows
that the conditions given there were sometimes unnecessarily strong. The
crucial point for the existence of a nice ∗-representation of A[τ ] is that it
possesses a sufficient family of ips-forms as L†(D,H) itself does. This will
be the starting point of the present discussion.

4. Sufficient families of ips-forms; M-bounded elements

Definition 4.1. Let A be a partial ∗-algebra endowed with a locally
convex topology τ generated by a directed set {pα}α∈I of seminorms. We
say that A[τ ] is Ao-regular if there exists a ∗-algebra Ao ⊂ RA with the
following properties:

(d1) Ao is τ -dense in A;
(d2) for every b∈Ao, the maps x 7→xb and x 7→bx, x∈A, are continuous.

Remark 4.2. We warn the reader that an Ao-regular partial ∗-algebra
A[τ ] is not necessarily a locally convex partial ∗-algebra in the sense of [2],
since the definition of the latter requires stronger conditions (for instance,
the continuity of the involution and of the multiplication x 7→ xb for every
fixed b ∈ RA).

Let nowM be a family of positive sesquilinear forms on A×A for which
the conditions (ips1), (ips3) and (ips4) are satisfied with respect to Ao and
such that every ϕ ∈ M is τ -continuous, i.e., there exist pα and γ > 0 such
that

|ϕ(x, y)| ≤ γpα(x)pα(y).

Then (ips2) is also satisfied, and therefore Ao is a core for every ϕ ∈ M, so
that every ϕ ∈M is an ips-form.

As announced above, the crucial condition is that A possesses sufficiently
many ips-forms. Hence, as in [4], we introduce
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Definition 4.3. A family M of ips-forms on A × A with the above
properties is sufficient if the conditions x ∈ A and ϕ(x, x) = 0 for every
ϕ ∈M imply x = 0.

This definition is not empty, as the following examples show. Take Lp[0, 1]
with its usual norm as a partial ∗-algebra andM the family of all continuous
ips-forms on it, with core the algebra C([0, 1)]) of continuous functions. Then
for 1 ≤ p < 2 the family M is trivial, so is not sufficient. For p ≥ 2, the
family M is sufficient. In the example Lp[0, 1] ⊕ Lr[0, 1] for 1 ≤ p < 2 and
r ≥ 2, the corresponding family of continuous ips-forms is neither sufficient,
nor trivial.

Of course, if the familyM is sufficient, any larger familyM′ ⊃M is also
sufficient. The maximal sufficient family is obviously the set PAo(A) of all
continuous ips-forms with core Ao, but we prefer to use the present notion,
since it provides more flexibility.

When A possesses a sufficient family M of ips-forms, we can define an
extension of multiplication in the following way.

We say that the weak product x � y is well-defined if there exists z ∈ A
such that

ϕ(ya, x∗b) = ϕ(za, b), ∀a, b ∈ Ao, ϕ ∈M.

In this case, we put x � y := z.
The following result is immediate.

Proposition 4.4. If the partial ∗-algebra A possesses a sufficient fam-
ily M of ips-forms, then A is also a partial ∗-algebra with respect to weak
multiplication.

From now on we will consider only the case where A possesses a sufficient
family M of ips-forms.

Remark 4.5. The sesquilinear forms of M define the topologies gener-
ated by the following families of seminorms:

τMw : x 7→ |ϕ(xa, b)|, ϕ ∈M, a, b ∈ Ao;
τMs : x 7→ ϕ(x, x)1/2, ϕ ∈M;
τMs∗ : x 7→ max{ϕ(x, x)1/2, ϕ(x∗, x∗)1/2}, ϕ ∈M.

From the continuity of ϕ ∈ M it follows that all the topologies τMw , τMs
(and also τMs∗ if the involution is τ -continuous) are coarser than the initial
topology τ .

Proposition 4.6. The weak product x � y is defined if and only if there

exists a net {bα} in Ao such that bα
τ−→ y and xbα

τMw−−→ z ∈ A.

Proof. Assume that x � y is defined. From the τ -density of Ao, there
exists a net {bα} in Ao such that bα

τ−→ y. Then for every c, c′ ∈ Ao
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one has ϕ((xbα)c, c′) = ϕ(bαc, x∗c′) → ϕ(yc, x∗c′) = ϕ((x � y)c, c′), that

is, xbα
τMw−−→ x � y. Conversely, assume that there exists a net {bα} in

Ao such that bα
τ−→ y and xbα

τMw−−→ z ∈ A. Then, for every a, a′ ∈ Ao,
ϕ(ya, x∗a′) = limα ϕ(bαa, x∗a′) = limα ϕ((xbα)a, a′) = ϕ(za, a′), that is,
x � y is defined.

In the case of L†(D,H), the weak multiplication � coincides with the
weak multiplication defined here by means of ips-forms (Proposition 3.2).
By analogy, from now on we will always assume the following:

(wp) xy exists if and only if x � y exists. In this case xy = x � y.

Then, of course, L(x) = Lw(x) and R(x) = Rw(x).

The first result is that if A is a partial ∗-algebra with a sufficient family
M of ips-forms, and satisfying (wp), then it satisfies condition (cl) with
respect to the topology τMs .

Proposition 4.7. Let A be a partial ∗-algebra with a sufficient family
M of ips-forms, and satisfying (wp). Then, for every x ∈ A, the linear map
Lx : R(x) → A with Lx(y) = xy, y ∈ R(x), is closed with respect to τMs ,

in the sense that if yα
τMs−−→ y with yα ∈ R(x) and xyα

τMs−−→ z ∈ A, then
y ∈ R(x) and z = xy.

Proof. Let yα
τMs−−→ y with yα ∈ R(x) and xyα

τMs−−→ z ∈ A. Then, again
by (ips4), for every ϕ ∈M,

ϕ((xyα − z)a, a′) = ϕ((xyα)a, a′)− ϕ(za, a′) = ϕ(yαa, x∗a′)− ϕ(za, a′)
→ ϕ(ya, x∗a′)− ϕ(za, a′) = 0.

Hence, since M is sufficient, y ∈ R(x) and z = xy.

Remark 4.8. It is clear that the statement of Proposition 4.7 holds for
any topology finer than τMs , and then, in particular, for the initial topology
τ of A.

Now we are ready to introduce the appropriate notion of bounded ele-
ments.

Definition 4.9. Let A be a partial ∗-algebra with a sufficient familyM
of ips-forms, and satisfying (wp). An element x ∈ A is called M-bounded if
there exists γ > 0 such that

|ϕ(xa, b)| ≤ γϕ(a, a)1/2ϕ(b, b)1/2, ∀ϕ ∈M, a, b ∈ Ao.

Proposition 4.10. Let A[τ ] be an Ao-regular partial ∗-algebra satisfying
condition (wp). Then an element x ∈ A is M-bounded if and only if there
exists γ ∈ R such that ϕ(xa, xa) ≤ γ2ϕ(a, a) for all ϕ ∈M and a ∈ Ao.
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Proof. Assume that x ∈ A is M-bounded. By the density of Ao, there
exists a net {xα} ⊂ Ao such that τ -limα xα = x. The continuity of ϕ then
implies

|ϕ(xa, xb)| = lim
α
|ϕ(xa, xαb)| ≤ γϕ(a, a)1/2 lim

α
ϕ(xαb, xαb)1/2

= γϕ(a, a)1/2ϕ(xb, xb)1/2.

In particular, it follows that

ϕ(xa, xa) ≤ γϕ(a, a)1/2ϕ(xa, xa)1/2,

that is, ϕ(xa, xa) ≤ γ2ϕ(a, a).
Conversely, we have

|ϕ(xa, b)| ≤ ϕ(xa, xa)1/2ϕ(b, b)1/2 ≤ γϕ(a, a)1/2ϕ(b, b)1/2.

From the last proposition, it follows obviously that an element x of A is
M-bounded if and only if x is left τMs -bounded in the sense of [4]. Define

qM(x) := inf{γ > 0 : ϕ(xa, xa) ≤ γ2ϕ(a, a), ∀ϕ ∈M, a ∈ Ao}
= sup{ϕ(xa, xa)1/2 : ϕ ∈M, a ∈ Ao, ϕ(a, a)1/2 = 1}

Hence qM coincides with the norm ‖ · ‖lb obtained by giving A the topology
τMs (see also [6] for a similar approach).

Proposition 4.11. Let x, y be M-bounded elements of A. Then:

(i) x∗ is M-bounded and qM(x) = qM(x∗);
(ii) if xy is well-defined, then xy is M-bounded and

qM(xy) ≤ qM(x) qM(y).

Proof. The first part of (i) is a direct consequence of the definition,
and the second part follows from the fact that |ϕ(xa, b)| = |ϕ(a, x∗b)| =
|ϕ(x∗b, a)|, by Proposition 4.10 and the definition of qM(x). Moreover,

|ϕ((xy)a, b)| = |ϕ(ya, x∗b)| ≤ ϕ(ya, ya)1/2ϕ(x∗b, x∗b)1/2

≤ qM(x)qM(y)ϕ(a, a)1/2γ2ϕ(b, b)1/2.

Taking the sup on the l.h.s., we get the inequality of (ii).

Proposition 4.12. qM is an unbounded C∗-norm on A with domain
D(qM) := {x ∈ A : x is M-bounded}.

Proof. This can be deduced from [14], or computed directly.

The existence of a sufficient family M of ips-forms allows the definition
of a stronger multiplication on A, which will play a role similar to strong
partial multiplication on L†(D,H).
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Definition 4.13. If the family M of ips-forms is sufficient, we say that
the strong product x • y is well-defined (and write x ∈ Ls(y) or y ∈ Rs(x)) if
x ∈ L(y) and:

(sm1) ϕ((xy)a, z∗b) = ϕ(ya, (x∗z∗)b), ∀z ∈ L(x), ϕ ∈M, a, b ∈ A0;
(sm2) ϕ((y∗x∗)a, vb) = ϕ(x∗a, (yv)b), ∀v ∈ R(y), ϕ ∈M, a, b ∈ A0.

The following characterization is immediate.

Proposition 4.14. If the familyM of ips-forms is sufficient, the strong
product x•y is well-defined (and x ∈ Ls(y) or y ∈ Rs(x)) if and only if there
exists w ∈ A such that

ϕ(wa, z∗b) = ϕ(ya, (x∗z∗)b) whenever z ∈ L(x), ϕ ∈M, a, b ∈ Ao,

ϕ(w∗a, vb) = ϕ(x∗a, (yv)b) whenever v ∈ R(y), ϕ ∈M, a, b ∈ Ao.

In this case, we put x • y := w.

Remark 4.15. The uniqueness of w results from the sufficiency of the
familyM. Clearly, if A has a unit, then x • y = w implies that xy is defined
and x • y = xy = w.

Proposition 4.16. The strong product x • y of x, y ∈ A is well-defined

if and only if there exist w ∈ A and a net {cα} in Ao such that cα
τMs−−→ y

and

ϕ((x � cα − w)a, z∗b)→ 0 if z ∈ L(x), ϕ ∈M, a, b ∈ Ao,

ϕ((c∗α � x∗ − w∗)a, vb)→ 0 if v ∈ R(y), ϕ ∈M, a, b ∈ Ao.

Proof. If x • y is well-defined, then xy is well-defined. Then, by Proposi-

tion 4.6, there exists a net {cα} ⊂ Ao such that cα
τMs−−→ y and xcα

τMw−−→ xy.
Hence, by (ips4) and by the continuity of every ϕ ∈M,

ϕ((xcα − xy)a, a′) = ϕ(x(cα − y)a, a′) = ϕ((cα − y)a, x∗a′)→ 0

and
ϕ((c∗αx

∗ − y∗x∗)a, a′) = ϕ(x∗a, (cα − y)a′)→ 0.

The converse is straightforward.

Proposition 4.17. Let x, y be M-bounded elements of A. Then x • y is
well-defined if and only if xy is well-defined.

Proof. If x • y is well-defined, then xy is obviously well-defined. Assume
that xy is well-defined. Then by Proposition 4.11, xy is bounded. Let z ∈
L(x). For ϕ ∈ M we denote by πϕ the corresponding GNS representation.
Then, as is easily seen, for everyM-bounded element z, πϕ(z) is a bounded
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operator. Hence, for every a, b ∈ Ao and ϕ ∈M,

|ϕ((xy)a, z∗b)| = |〈πϕ(xy)λϕ(a) |πϕ(z∗)λϕ(b)〉|
= |〈πϕ(x) � πϕ(y)λϕ(a) |πϕ(z∗)λϕ(b)〉|
≤ ‖πϕ(x)‖ ‖πϕ(y)λϕ(a)‖ ‖πϕ(z∗)λϕ(b)‖.

This implies that πϕ(z∗)λϕ(b) ∈ D(πϕ(x)∗). Hence,

ϕ((xy)a, z∗b) = 〈πϕ(y)λϕ(a) |πϕ(x)∗πϕ(z∗)λϕ(b)〉
= 〈πϕ(y)λϕ(a) |πϕ(x∗) � πϕ(z∗)λϕ(b)〉
= 〈πϕ(y)λϕ(a) |πϕ(x∗z∗)λϕ(b)〉 = ϕ(ya, (x∗z∗)b).

Condition (sm2) is proved in a similar way.

Proposition 4.18. Let x, y be M-bounded elements of A. Then, for
every ϕ ∈M, πϕ(x) � πϕ(y) is well-defined.

Proof. Indeed, for every a, b ∈ Ao,

|〈πϕ(y)λϕ(a) |πϕ(x∗)λϕ(b)〉| = |ϕ(ya, x∗b) ≤ ϕ(ya, ya)1/2ϕ(x∗b, x∗b)1/2

≤ qM(x)qM(y)ϕ(a, a)1/2ϕ(b, b)1/2.

Then, by the representation theorem for bounded sesquilinear forms in
Hilbert space, there exists Zϕ ∈ B(Hϕ) such that

〈πϕ(y)λϕ(a) |πϕ(x∗)λϕ(b)〉 = 〈Zϕλϕ(a) |λϕ(b)〉.
This implies that πϕ(x) � πϕ(y) is well-defined.

Remark 4.19. We emphasize that this does not imply that there exists
z ∈ A such that πϕ(x) � πϕ(y) = πϕ(z). This fact will motivate a further
restriction on the family M: see Definition 4.26 below.

It is natural to ask under which assumptions Ao itself consists of bounded
elements.

Proposition 4.20. Let A[τ ] be Ao-regular. Assume that the directed
family {pα}α∈I defining the topology τ has the property that, for every α ∈ I,

(4.1) lim inf
n→∞

(pα((a∗a)2
n
))2
−n

<∞, ∀a ∈ Ao.

Then every a ∈ Ao is M-bounded.

Proof. Let a, b ∈ Ao. By the Cauchy–Schwarz inequality, we have

ϕ(ab, ab) = ϕ(b, a∗ab) ≤ ϕ(b, b)1/2ϕ(a∗ab, a∗ab)1/2

= ϕ(b, b)1/2ϕ(b, (a∗a)2b)1/2.

Iterating, one obtains first

ϕ(ab, ab) ≤ ϕ(b, b)1/2+1/4ϕ((a∗a)2b, (a∗a)2b)1/4,
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and then the following Kaplansky-like inequality:

ϕ(ab, ab) ≤ ϕ(b, b)1−2−(n+1)
ϕ((a∗a)2

n
b, (a∗a)2

n
b)2
−(n+1)

.

By the continuity of ϕ and of the right multiplication by b ∈ Ao, we can find
a continuous seminorm p such that

ϕ(ab, ab) ≤ ϕ(b, b)1−2−(n+1)
(p((a∗a)2

n
))2
−n
p(b)2

−n
.

On the other hand, there exist α and γ > 0 such that p(x) ≤ γpα(x) for
every x ∈ A. Hence,

ϕ(ab, ab) ≤ ϕ(b, b)1−2−(n+1)
γ2−n+1

(pα((a∗a)2
n
))2
−n
pα(b)2

−n
.

Taking the lim inf of the r.h.s., we finally obtain

ϕ(ab, ab) ≤ γaϕ(b, b), ∀b ∈ Ao,

where γa := lim infn→∞(pα((a∗a)2
n
))2
−n

.

Example 4.21. As shown in Section 3, L†(D,H)[ts] is a P-regular partial
∗-algebra. The seminorms defining ts satisfy (4.1), since the elements of P
are bounded operators in Hilbert space. Indeed, if A ∈ P,

‖(A∗A)2
n
ξ‖ ≤ ‖A‖2n+1‖ξ‖, ∀ξ ∈ D,

and so (4.1) holds in this case.

The following mixed associativity in A, similar to (2.5), can be easily
proved by using Definition 4.14.

Proposition 4.22. Let x, y, z ∈ A. Assume that x � y, (x � y) � z and
y • z are all well-defined. Then x ∈ L(y • z) and

x � (y • z) = (x � y) � z.

As we have seen in Section 2, the τMs∗ -density of Ao and Proposition 4.7
imply the existence of a strong multiplication induced by Ao. But this mul-
tiplication is, in general, only a restriction of the multiplication • defined
above. However, let us assume that A is semi-associative with respect to Ao,
by which we mean that

(4.2) (xa)b = x(ab), a(xb) = (ax)b, ∀x ∈ A, a, b ∈ Ao.

In other words, (A,Ao) is a quasi ∗-algebra. In that case, Proposition 4.22
implies the topological regularity of A[τ ].

Proposition 4.23. Let A be semi-associative with respect to Ao. Then
A[τMs ] (and hence A[τ ]) is topologically regular.

Proof. By Proposition 4.7, the operator of left multiplication Lx defined
on R(x) is τ -closed, for every x ∈ A. Let y ∈ D(L◦x), where L◦x denotes the
closure of the restriction of Lx to Ao. Then there exists a net {yα} ⊂ Ao and

w ∈ A such that yα
τMs−−→ y and xyα

τMs−−→ w. Thus, x ∈ L(y), and by (ips4),
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ϕ((xy)a, z∗b) = lim
α
ϕ((xyα)a, z∗b) = lim

α
ϕ(x(yαa), z∗b)

= lim
α
ϕ(yαa, (x∗z∗)b) = ϕ(ya, (x∗z∗)b), ∀ϕ ∈M, a, b ∈ Ao.

Hence (sm1) holds. The proof of (sm2) is similar.

Remark 4.24. If A is semi-associative with respect to Ao, then Ao ⊂
Rs A, the set of universal strong right multipliers of A.

An element x has a strong inverse if there exists x−1 ∈ A such that
x • x−1 = x−1 • x = e. The mixed associativity of Proposition 4.22 implies
that if a strong inverse of x exists, then it is unique.

Theorem 4.25. Let A[τ ] be an Ao-regular partial ∗-algebra satisfying
condition (wp) and letM be the set of all continuous ips-forms with core Ao.
Let π be a (τ, ts)-continuous ∗-representation of A (that is, π : A[τ ] →
L†(D,H)[ts] continuously). Then an element x ∈ A is M-bounded if and
only if π(x) is a bounded operator.

Proof. Let us define the following positive sesquilinear form:

ϕξ(x, y) := 〈π(x)ξ |π(y)ξ〉.
The conditions (ips3) and (ips4) are easily verified. By the continuity of π,

|ϕξ(x, y)| = |〈π(x)ξ |π(y)ξ〉| ≤ ‖π(x)ξ‖ ‖π(y)ξ‖ ≤ γpα(x)pα(y)

for some γ > 0. Thus ϕξ is an ips-form and ϕξ ∈M.
If x is M-bounded, by definition we have

ϕξ(xa, xa) ≤ qM(x)2ϕξ(a, a), ∀ξ ∈ D, a ∈ Ao.

For a = e, one has ϕξ(x, x) = ‖π(x)ξ‖2 ≤ qM(x)ϕξ(e, e) = qM(x)‖ξ‖2.
Conversely, suppose that π(x) is bounded for every (τ, ts)-continuous

*-representation π of A. In particular, the GNS representation πϕ defined
by ϕ ∈M is (τ, ts)-continuous, so it is bounded on Dϕ := {λϕ(a) : a ∈ Ao}.
Then there exists γ > 0 such that ‖πϕ(x)ξ‖2 ≤ γ2‖ξ‖2 for all ξ ∈ Dϕ. Since
ξ = λϕ(a) for all a ∈ Ao, we have ‖πϕ(x)λϕ(a)‖2 ≤ γ2‖λϕ(a)‖2 for some
a ∈ Ao, i.e., ϕ(xa, xa) ≤ γ2ϕ(a, a) and x is M-bounded.

We expect thatM-bounded elements can also be characterized in terms
of their spectral behavior. For this, some additional assumptions on the
family M of ips-forms are needed.

Definition 4.26. Let M be a family of continuous ips-forms on A×A.
For every ϕ ∈M, let πϕ denote the corresponding GNS representation. We
say that M is well-behaved if

(wb1) M is sufficient;
(wb2) for every ϕ ∈M and every a ∈ A, also ϕa ∈M, where ϕa(x, y) :=

ϕ(xa, ya);
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(wb3) if x, y ∈ A and πϕ(x) � πϕ(y) is well-defined for every ϕ ∈ M,
then there exists z ∈ A such that πϕ(x) � πϕ(y) = πϕ(z) for every
ϕ ∈M;

(wb4) A is τMs∗ -complete.

To give an example, if M = L†(D,H)[ts∗ ] or if M is any partial GC∗-
algebra of operators, the family

M := {ψξ : ξ ∈ D, ψξ(X,Y ) = 〈Xξ |Y ξ〉, X, Y ∈M}
is well-behaved.

Proposition 4.27. If M is well-behaved, then D(qM) is a C∗-algebra
with the strong multiplication • and the norm qM.

Proof. By Proposition 4.18, if x, y ∈ D(qM), then πϕ(x) � πϕ(y) is well-
defined. Thus, by (wb3), there exists z ∈ A such that πϕ(x) � πϕ(y) = πϕ(z)
for every ϕ ∈M. Then, for every ϕ ∈M and a, b ∈ Ao,

ϕ(ya, x∗b) = 〈πϕ(y)λϕ(a) |πϕ(x∗)λϕ(b)〉
= 〈πϕ(x) � πϕ(y)λϕ(a) |λϕ(b)〉
= 〈πϕ(z)λϕ(a) |λϕ(b)〉 = ϕ(za, b).

Hence xy is well-defined and, by Proposition 4.17, x • y is also well-defined.
Since qM is a C∗-norm on D(qM), we only need to prove the completeness
of D(qM) to get the result.

Let {xn} be a Cauchy sequence with respect to the norm qM. Then {x∗n}
is Cauchy too. Hence, by (wb2), for every ϕ ∈M and a ∈ Ao we have

ϕ((xn − xm)a, (xn − xm)a)→ 0 as n,m→∞,
ϕ((x∗n − x∗m)a, (x∗n − x∗m)a)→ 0 as n,m→∞.

Therefore, {xn} is also Cauchy with respect to τMs∗ . Then, by (wb4), there

exists x ∈ A such that xn
τM
s∗−−→ x. Since

ϕ(xa, xa) = lim
n→∞

ϕ(xna, xna) ≤ lim sup
n→∞

qM(xn)2ϕ(a, a)

and lim supn→∞ qM(xn)2 < ∞ (by the boundedness of the sequence
{qM(xn)}), we conclude that x is M-bounded. Finally, by the Cauchy con-
dition, for every ε > 0, there exists nε ∈ N such that qM(xn − xm) < ε for
all n,m > nε. This implies that

ϕ((xn − xm)a, (xn − xm)a) < εϕ(a, a), ∀ϕ ∈M, a ∈ Ao.

If we fix n > nε and let m→∞, we obtain

ϕ((xn − x)a, (xn − x)a) ≤ εϕ(a, a), ∀ϕ ∈M, a ∈ Ao.

This, in turn, implies that qM(xn − x) ≤ ε, and completes the proof.
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Let us now introduce the usual spectral elements adapted to the present
situation.

Definition 4.28. Let x ∈ A. The resolvent ρM(x) of x is defined by

ρM(x) :=
{
λ ∈ C : (x− λe)−1 exists in D(qM)

}
.

The corresponding spectrum of x is defined as σM(x) := C \ ρM(x).

As in [12], it can be proved that if M is well-behaved, then (a) ρM(x)
is an open subset of the complex plane; (b) the map λ ∈ ρM(x) 7→
(x − λe)−1 ∈ D(qM) is analytic in each connected component of ρM(x);
(c) σM(x) is nonempty.

As usual, we define the spectral radius of x ∈ A by

rM(x) := sup{|λ| : λ ∈ σM(x)}.
Theorem 4.29. Assume that M is well-behaved and let x ∈ A. Then

rM(x) <∞ if and only if x ∈ D(qM).

Proof. If x ∈ D(qM), then σM(x) coincides with the spectrum of x as
an element of the C∗-algebra D(qM) and so σM(x) is compact. Conversely,
assume that rM(x) <∞. Then the function λ 7→ (x− λe)−1 is qM-analytic
in the region |λ| > rM(x). Therefore it has there a qM-convergent Laurent
expansion

(x− λe)−1 =
∞∑
k=1

ak
λk
, |λ| > rM(x),

with ak ∈ D(qM) for each k ∈ N. As usual

ak =
1

2πi

�

γ

(x− λe)−1

λ−k+1
dλ, k ∈ N,

where γ := {λ ∈ C : |λ| = R for some R > rM(x)} and the integral on the
r.h.s. is meant to converge with respect to qM.

For every ϕ ∈M and b, b′ ∈ Ao, we have

ϕ(akb, x∗b′) =
1

2πi

�

γ

ϕ((x− λe)−1b, x∗b′)
λ−k+1

dλ

=
1

2πi

�

γ

ϕ((x− λe)−1b, (x∗ − λe)b′)
λ−k+1

dλ

+
1

2πi

�

γ

ϕ((x− λe)−1b, λb′)
λ−k+1

dλ

=
1

2πi

�

γ

ϕ(b, b′)
λ−k+1

dλ+
1

2πi

�

γ

ϕ((x− λe)−1b, b′)
λ−k

dλ = ϕ(ak+1b, b
′).

This implies that xak is well-defined for every k ∈ N, and xak = ak+1.
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In particular,

ϕ(a1b, x
∗b′) =

1
2πi

�

γ

ϕ((x− λe)−1b, x∗b′) dλ

=
1

2πi
ϕ
((�

γ

(x− λe)−1dλ
)
b, x∗b′

)
=

1
2πi

ϕ(−b, x∗b′).

Hence xa1 = −x. Thus finally x = −a2 ∈ D(qM).

In our previous paper [4], we have introduced a notion of strong inverse
based on the multiplication obtained by closure, and this has allowed us to
derive a number of spectral properties. Now the notion of strong multipli-
cation • defined here (Definition 4.13) allows us to obtain similar results. In
particular, Proposition 4.13 of [4] may be generalized as follows.

Proposition 4.30. Assume that A is topologically regular over Ao and
let x ∈ A. Then every λ ∈ C such that |λ| > qM(x) belongs to ρM(x).

Proof. Let x−1 be the strong inverse by closure of x ∈ A so that x−1 ∈
L(x)∩R(x). Of course, we may assume that x ∈ D(qM). Then the following
analogue of (sm1) holds true:

ϕ((xx−1)a, z∗b) = ϕ(a, z∗b) = ϕ(x−1a, (x∗z∗)b),
∀z ∈ L(x), ϕ ∈M, a, b ∈ Ao.

Let indeed x−1 ∈ D(L◦x). Then there exists a net {wα} ⊂ Ao such that

wα
τMs−−→ x−1 and xwα

τMs−−→ e. Then, using the continuity of ϕ ∈ M and of
multiplication by Ao, and (ips4), we have

ϕ(x−1a, (x∗z∗)b) = lim
α
ϕ(wαa, (x∗z∗)b) = lim

α
ϕ((xwα)a, z∗b) = ϕ(a, z∗b).

In the same way, one proves the following analogue of (sm2):

ϕ((x−1∗x∗)a, vb) = ϕ(x∗a, (x−1v)b), ∀v ∈ R(y), ϕ ∈M, a, b ∈ Ao.

Since x • x−1 = x−1 • x = e, one shows in the same way, for x ∈ D(L◦x−1),
that

ϕ((x−1x)a, z∗b) = ϕ(a, z∗b) = ϕ(x−1a, (x−1∗z∗)b),
∀z ∈ L(x), ϕ ∈M, a, b ∈ Ao,

and

ϕ((x∗x−1∗)a, vb) = ϕ(x−1∗a, xvb), ∀v ∈ R(y), ϕ ∈M, a, b ∈ Ao.

Thus we have proved that if x−1 is the strong inverse by closure of x ∈ A, as
defined in [4], then x−1 is also the strong inverse with respect to the strong
multiplication • (the converse is not true in general).

Combining this fact with Proposition 4.13 of [4], we can conclude that
(x− λe)−1 exists as a strong inverse, which proves the statement.
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Remark 4.31. The previous proposition implies that, for every x ∈ A,
rM(x) ≤ qM(x) for every choice of the sufficient family M. Clearly, if x 6∈
D(qM), then both rM(x) and qM(x) are infinite.

5. Existence of faithful representations. The lesson of Theorem 4.25
is essentially that the notion of M-bounded element given above is reason-
able: as for the case of locally convex ∗-algebras, a good notion of bound-
edness of an element is equivalent to the boundedness of the operators
representing it. This definition will be even more significant if the locally
convex partial ∗-algebra under consideration possesses sufficiently many
∗-representations. This fact is expressed, in the case of locally convex ∗-
algebras, through the notion of ∗-semisimplicity which we will extend to
locally convex partial ∗-algebras in a natural way.

A ∗-representation of a partial ∗-algebra A is a ∗-homomorphism π :
A → L†(D,H). If A[τ ] is Ao-regular, then, by definition, it has a τ∗-dense
distinguished ∗-subalgebra Ao. Clearly, π(Ao) is a ∗-algebra of operators, but
in general π(Ao) 6⊂ L†(D). However, we can always guarantee this property
by changing the domain. Indeed:

Proposition 5.1. Let A be an Ao-regular partial ∗-algebra and let π be
a ∗-representation of A with domain D in H. Put

D1 :=
{
ξ0 +

n∑
i=1

π(bi)ξi : bi ∈ Ao, ξ0, . . . , ξn ∈ D; n ∈ N
}

and define

π1(a)
(
ξ0 +

n∑
i=1

π(bi)ξi
)

:= π(a)ξ0 +
n∑
i=1

π(a) � π(bi)ξi.

Then π1 is a ∗-representation of A with domain D1 ⊃ D and π(Ao)⊂L†(D1).

The proof of this proposition is given in Appendix A. Thus we can con-
clude that it is not restrictive to suppose that π(Ao) ⊂ L†(D).

Now we can state the result announced at the end of Section 3.

Theorem 5.2. Let A be an Ao-regular partial ∗-algebra, with a sufficient
family M of ips-forms, in particular, a partial GC∗-algebra. Then:

(i) A has a faithful, (τ, ts)-continuous representation into a partial GC∗-
algebra of operators.

(ii) Assume, in addition, that the family M is well-behaved. Then A
has a faithful, (τ, ts)-continuous representation onto a partial GC∗-
algebra of operators.

Proof. (i) For every ϕ ∈M , let (πϕ, λϕ,Hϕ) be the corresponding GNS
construction. Define, as usual, H :=

⊕
ϕ∈MHϕ and
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D(π) :=
{
ξ = (λϕ(a)), a ∈ Ao :

∑
ϕ∈M

‖πϕ(x)λϕ(a)‖2 <∞, ∀x ∈ A
}
.

Then, putting
π(x)ξ := (πϕ(x)λϕ(a)), a ∈ Ao,

one defines a faithful representation of A.
Taking into account the continuity of ϕ ∈M and of multiplication by Ao,

we have
‖πϕ(x)λϕ(a)‖2 = ϕ(xa, xa) ≤ p(xa)2 ≤ p′(xa)

for some τ -continuous seminorms p, p′. This implies that π is (τ, ts)-conti-
nuous. So, by Theorem 4.25, if x ∈ D(qM), then π(x) is bounded and one
checks directly that

‖π(x)‖ ≤ qM(x).

(ii) Now suppose M is well-behaved. Then D(qM) is a C∗-algebra, and
hence

‖π(x)‖ = qM(x), ∀x ∈ D(qM),

and π(D(qM)) is a C∗-algebra.
Moreover, if Ao ⊂ D(qM), then D(qM) is τ∗-dense in A. Hence, if x ∈ A,

there exists a net {xα} ⊂ Ao such that xα
τ∗−→ x. This implies that xα

τ−→ x

and x∗α
τ−→ x∗.

Then, since π is (τ, ts)-continuous, we deduce that π(xα)ξ → π(x)ξ and
π(x∗α)ξ → π(x∗)ξ for all ξ ∈ D(π). This implies that π(xα)ξ

ts∗−−→ π(x)ξ.
Hence, π(D(qM)) is ts∗-dense in π(A).

The construction of π implies that π(A) is a partial ∗-algebra. Assume
indeed that π(x)�π(y) is well-defined. Then πϕ(x)�πϕ(y) is well-defined for
every ϕ ∈ M. Hence there exists a z ∈ A such that πϕ(x) � πϕ(y) = πϕ(z).
This in turn implies that π(x) � π(y) = π(z).

In general, however, π(A) need not be complete with respect to ts∗ .
Assume that {π(xα)} is a net in π(A) with

π(xα)
ts∗−−→ Z ∈ L†(D(π),H).

Then, by the definition of π,

πϕ(xα)
ts∗−−→ Zϕ, where Zϕξϕ = (Z(ξϕ))ϕ.

This implies that, for every a ∈ Ao,

πϕ(xα)λϕ(a)→ Zϕλϕ(a), πϕ(x∗α)λϕ(a)→ Z∗ϕλϕ(a).

Hence

ϕ((xα − xβ)a, (xα − xβ)a) = ‖πϕ(xα − xβ)λϕ(a)‖2 → 0
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for α, β “large” enough and every a ∈ Ao. Similarly,

ϕ((x∗α − x∗β)a, (x∗α − x∗β)a) = ‖πϕ(x∗α − x∗β)λϕ(a)‖2 → 0.

SinceM is well-behaved, {xα} is a τMs∗ -Cauchy net. Thus there exists x ∈ A
such that

ϕ(xα − x, xα − x)→ 0, ∀ϕ ∈M.

By (wb2), it follows that

ϕ((xα − x)a, (xα − x)a)→ 0, ∀ϕ ∈M, a ∈ Ao.

Consequently, πϕ(xα)
ts∗−−→ πϕ(x) for all ϕ ∈M, and hence π(xα) ts−→ π(x).

Thus π(A) is ts∗-closed and hence ts∗-complete, if one remembers that
L†(D,H)[ts∗ ] is complete. This concludes the proof.

For topological ∗-algebras the set of elements which belong to the inter-
section of the kernels of all continuous ∗-representations is called the ∗-radical
of A (see e.g. [5, 7]).

In a previous paper [3], we have introduced the notions of the alge-
braic ∗-radical and of an algebraically ∗-semisimple partial ∗-algebra. In the
present context, the presence of a sufficient family of continuous ips-forms
allows one to introduce similar concepts at the topological level as well. Thus
the notion of ∗-radical has a natural extension to our case.

Let in fact A[τ ] be an Ao-regular partial ∗-algebra. We define the ∗-radical
of A by

R∗(A) := {x ∈ A : π(x) = 0 for all (τ, ts∗)-continuous ∗-representations π}.
We put R∗(A) := A if A[τ ] has no (τ, ts∗)-continuous ∗-representations.

Proposition 5.3. Let A[τ ] be an Ao-regular partial ∗-algebra and PAo(A)
the set of all τ -continuous ips-forms with core Ao. For an element x ∈ A
the following statements are equivalent:

(i) x ∈ R∗(A).
(ii) ϕ(x, x) = 0 for every ϕ ∈ PAo(A).
(iii) x∗x is well-defined and x∗x = 0.

Proof. (i)⇒(ii). Assume that, for all x ∈ A, x 6= 0, there exists a con-
tinuous ips-form with core Ao such that ϕ(x, x) > 0. Let (πϕ,Hϕ, λϕ) be
the corresponding GNS construction. The GNS ∗-representation is (τ∗, ts∗)-
continuous. Indeed, if a ∈ Ao, we have

‖πϕ(x)λϕ(a)‖2 = ϕ(xa, xa) ≤ γ2p∗α(xa) ≤ γ′p∗β(x).

On the other hand,

‖πϕ(x∗)λϕ(a)‖2 = ϕ(x∗a, x∗a) ≤ γ2p∗α(x∗a) ≤ γ′′p∗β(x∗) = γ′′′p∗β(x).

Finally, ‖πϕ(x)λϕ(e)‖2 = ϕ(x, x) > 0, and this implies πϕ(x) 6= 0.
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(ii)⇒(iii). Assume that ϕ(x, x) = 0 for all ϕ ∈ PAo(A). For a ∈ Ao,
we have ϕa(x, x) = 0, since clearly ϕa ∈ PAo(A). By the Cauchy–Schwarz
inequality, it follows that ϕ(xa, xb) = 0 for all a, b ∈ Ao. By (wp), this means
that x∗ � x = x∗x is well-defined and x∗x = 0.

(iii)⇒(i). Assume now that x∗x is well-defined and x∗x = 0. If π is a
(τ, ts∗)-continuous ∗-representation of A, then π(x∗) � π(x) = π(x)† � π(x) is
well-defined and equals 0. Hence, for every ξ ∈ D(π),

‖π(x)ξ‖2 = 〈π(x)ξ |π(x)ξ〉 = 〈π(x)ξ |π(x)ξ〉 = 〈π(x)† � π(x)ξ | ξ〉
= 〈π(x∗) � π(x)ξ | ξ〉 = 〈π(x∗x)ξ | ξ〉 = 0.

Hence π(x) = 0.

Clearly if A possesses a sufficient family M of τ -continuous ips-forms,
then PAo(A) itself is sufficient, and Proposition 5.3 implies thatR∗(A)={0}.
Conversely, if R∗(A) = {0}, then PAo(A) is sufficient. Our choice of consid-
ering a sufficient family M instead of the whole PAo(A) is motivated by
the fact that characterizing the space PAo(A) in concrete examples is much
more difficult than choosing a sufficient subfamily.

As for the case of topological algebras, it is natural, in the light of the
previous discussion, to call an Ao-regular partial ∗-algebra A[τ ] ∗-semisimple
if R∗(A) = {0}. We hope to carry out a more detailed analysis of this
situation in another paper.

Appendix A. Proof of Proposition 5.1. The argument is very sim-
ilar to that given in [10, Proposition 1] in a different context. To lighten
notation, we assume that π(e) = ID. The general case can be proved by a
slight modification of the argument below. Note that all the sums considered
are finite.

We have to check that π1(a) is well-defined for every a ∈ A and that π1

is a ∗-representation of A. We have〈∑
i

(π(a) � π(bi))ξi
∣∣∣∑

j

π(cj)ηj
〉

=
∑
i,j

〈π(abi)ξi |π(cj)ηj〉 =
∑
i,j

〈ξi |π(abi)†π(cj)ηj〉

=
∑
i,j

〈ξi |π(b∗i a
∗) � π(cj)ηj〉 =

∑
i,j

〈ξi |π((b∗i a
∗)cj)ηj〉

=
∑
i,j

〈ξi | (π(b∗i ) � π(a∗cj))ηj〉 =
∑
i

〈
π(bi)ξi

∣∣∣∑
j

(π(a∗cj)ηj
〉
.

Hence, if
∑

i π(bi)ξi = 0, then ξ :=
∑

i(π(a) � π(bi))ξi is orthogonal to
every element of D1, which is dense in H. Thus ξ = 0. This proves that
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π1(a) is, for every a ∈ A, a well-defined linear map of D1 into H. Clearly,
π1(Ao) ⊂ L†(D). Moreover, the above equalities also imply that〈

π1(a)
(∑

i

π(bi)ξi
) ∣∣∣∑

j

π(cj)ηj
〉

=
〈∑

i

π(bi)ξi
∣∣∣π1(a∗)

∑
j

π(cj)ηj
〉
.

Hence, π1(a)† = π1(a∗).
Let now a1, a2 ∈ A with a1a2 well-defined. We have to prove that the

product π1(a1) � π1(a2) is well-defined and π1(a1) � π1(a2) = π1(a1a2):〈
π1(a1a2)

(∑
π(bi)ξi

) ∣∣∣∑π(cj)ηj
〉

=
∑
i,j

〈π(a1a2) � π(bi)ξi |π(cj)ηj〉.

On the other hand,〈
π1(a2)

(∑
π(bi)ξi

) ∣∣∣π1(a1)†
∑

π(cj)ηj
〉

=
∑
i,j

〈π(a2) � π(bi)ξi |π(a∗1) � π(cj)ηj〉 =
∑
i,j

〈π(a2bi)ξi |π(a∗1cj)ηj〉.

Now, since c∗j ((a1a2)bi) = (c∗j (a1a2))bi, we have∑
i,j

〈π(a2bi)ξi |π(a∗1cj)ηj〉 =
∑
i,j

〈π(c∗ja1) � π(a2bi)ξi | ηj〉

=
∑
i,j

〈(π†(cj) � π(a1)) � π(a2bi)ξi | ηj〉

=
∑
i,j

〈π†(cj) � (π(a1) � π(a2bi))ξi | ηj〉

=
∑
i,j

〈(π(a1) � π(a2bi))ξi |π(cj)ηj〉

=
∑
i,j

〈((π(a1) � π(a2)) � π(bi)ξi |π(cj)ηj〉

=
〈(∑

π(a1a2)
)

� π(bi)ξi
∣∣∣∑π(cj)ηj

〉
=
〈
π1(a1a2)

∑
π(bi)ξi

∣∣∣∑π(cj)ηj
〉
.

This proves the statement.
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