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Abstract. We study, in the context of doubling metric measure spaces, a class of
BMO type functions defined by John and Nirenberg. In particular, we present a new
version of the Calderén—Zygmund decomposition in metric spaces and use it to prove the
corresponding John—Nirenberg inequality.

1. Introduction. Besides the well known class BMO of functions of
bounded mean oscillation, F. John and L. Nirenberg defined another, larger
class of functions in their paper [I1]. We call this space the John—Nirenberg
space with exponent p and write JN,,. Whereas the classical John-Nirenberg
lemma shows that any function of bounded mean oscillation has exponen-
tially decaying distribution function, any function in JN,, belongs to weak L.

Unlike BMO, the John—Nirenberg space has not been systematically
studied. In this paper we generalize the definition to doubling metric mea-
sure spaces by replacing the cubes in the original definition by metric space
balls, and, in particular, prove the John-Nirenberg lemma for JN,, in this
setting. We also study properties of this space; for example, we show that
every p-integrable function is in the John—Nirenberg space with the same
exponent, and we provide an example of a function in the weak LP that is
not a John—Nirenberg function.

In the Euclidean case there are a few proofs of the John—Nirenberg in-
equality for JN,. The original proof in [I1], based on an induction argument,
can be found with more details in [§] and [7]. There is an alternative proof
on the real line: see [I8]. We present here a new proof in the Euclidean
case, which is more straightforward than the original argument. The proof
is based on iterating a suitable good-\ inequality. It is interesting that this
proof generalizes directly to the setting of doubling metric measure spaces
via dyadic sets defined by M. Christ; see [I] or [3] for the definition.
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To prove the John-Nirenberg inequality for JN,, in the metric case we
have adapted ideas from A. P. Calderén’s proof of the classical John—Niren-
berg lemma for BMO in the Euclidean setting in [I6], and from the aforemen-
tioned proof in [I§]. To this end, we present a new version of the Calderén—
Zygmund decomposition in metric spaces. The advantage of this version is
that we are able to iterate it efficiently, which is not trivial in the metric
setting. We also get both lower and upper bounds for mean values over the
decomposition balls. Existence of a doubling measure is the only assumption
we need to impose on the space.

Calderén’s method is remarkably flexible as illustrated by a simplified
proof of the so-called parabolic John—Nirenberg inequality by E. Fabes and
N. Garofalo; see [5]. To further demonstrate this flexibility of Calderén’s
technique and the use of our decomposition lemma we also give a new proof
of the classical John—Nirenberg lemma for BMO in doubling metric mea-
sure spaces. The lemma has previously been generalized to doubling metric
measure spaces, for example, in [12], [2], [14], [15].

Addendum. After the paper had been accepted, the authors learned
that the results in [6] and [I3] can also be applied for the class JN,. For
similar results in Orlicz spaces, see [9].

2. Doubling metric measure spaces. Let (X, d, 1) be a metric space
endowed with a metric d and a Borel regular measure . We assume that
an open ball always comes with a center and a radius, i.e.

B =B(z,r)={ye X :d(y,x) <r}.

We denote by AB the A-dilate of B, that is, the ball with the same center
as B but A times its radius. We assume that p is doubling, i.e. all open balls
have positive and finite measure whenever r > 0 and there exists a constant
¢y > 1, called the doubling constant of p, so that

pn(2B) < cuu(B)  for all B in X.

The doubling condition implies a covering theorem, sometimes referred
to as the Vitali covering theorem. Indeed, given any collection of balls with
uniformly bounded radius, there exists a pairwise disjoint, countable sub-
collection of balls whose 5-dilates cover the union of the original collection.
This theorem implies Lebesgue’s differentiation theorem, which guarantees
that any locally integrable function can be approximated at almost every
point by integral averages of the function over a contracting sequence of
balls.

The Hardy-Littlewood maximal function M f of a locally integrable func-
tion f is defined for every x € X by
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M f(z) = sup § | f] dp,

BSzB

where

1
fo=1Yfdu= | fdu,
A n(B) 5
and the supremum is taken over all balls containing x. The Hardy-Littlewood
maximal function satisfies

(2.1) 1M fllp < e(p, I fllp

for every f € LP(X) with 1 < p < oo. For the proof of (2.1)), the Vitali
covering theorem and further information on metric spaces, see, for example,
[10] or [4].

3. The second John—Nirenberg inequality for a doubling mea-
sure. We begin by recalling the definition of the John-Nirenberg space in
the Euclidean case; see [I1]. Let Qo be a cube in R” and 1 < p < co. An
integrable function f defined on @y belongs to JN,(Qo), the John—Nirenberg
space with exponent p, if there exists Ky < oo such that

(3.1) So1@il[ §1f - fal de]" < K7
( Qi

independent of the family {Q;}°,, where Q; are subcubes of Qg such that
JQ: = Qo and the interiors of @; are disjoint.

Observe that the definition in terms of cubes can be directly generalized
in metric spaces. Indeed, the dyadic structure of the Euclidean cubes can
be transferred to a doubling metric measure space using Christ’s construc-
tion [3]. Then the natural definition is in terms of these dyadic sets. However,
the definition of JN,, in a doubling metric measure space is most natural in
terms of balls. Balls cannot be organized in a simple dyadic way in nested
generations as cubes in R" and we have thus chosen to define the space JN,
so that the definition is compatible with the Vitali covering theorem.

DEFINITION 3.2. Let (X,d, u) be a metric measure space, 1 < p < oo
and By C X be a ball. Let f be a locally integrable function defined on
11By. We say that f belongs to the John—Nirenberg space with exponent p,
and we write f € JN,(By), if there exists Ky < oo such that

>ouB)( §1f - I du)p < K?
i B,

whenever {B;} is a countable collection of balls centered at By and contained
in 11By with the property that the balls %Bi are pairwise disjoint. We will
call the smallest possible constant K; the JN, norm of f.



24 D. Aalto et al.

REMARK 3.3. Observe that JN, is a generalization of BMO. Indeed,
it follows directly from the definitions that a function is of bounded mean
oscillation if and only if its JN, norm is bounded as p tends to infinity.

The next result shows that there are plenty of functions in John—Niren-
berg spaces.

PROPOSITION 3.4. Let 1 < p < oo and f € LP(11By). Then f €
IN,(Bo).

Proof. Let B; be a family of balls that is admissible in the definition
of JN,(By). Write B, = %Bi for the disjoint balls. We know that for every
ball B;,

§ Mfdp> inf Mf(x)> Y |f|dp.
BZ/- TED; B;
Hence,
P P
ZM(Bi)< {1f = fs. du) < 2”0;32#(32)( | Mfdu) :
i B; i B!

Now by Holder’s inequality

M(Bz/')< { Mfdu)p < | (M) dp,

and by the disjointness of the balls B} and the boundedness of the maximal
operator we have

S fppap< § afypdp<e |17,

i B! 11B 11By
which is finite by assumption. This completes the proof. =

Notice that in R™ Proposition follows from the definition simply by
using the Holder inequality.

The John-Nirenberg inequality for JN,(Qo) shows that it is contained
in weak LP(Qp). The following one-dimensional example shows that the
inclusion is strict.

ExaMPLE 3.5. Consider the function f(z) = 2~/ on Qy = (0,2) with
p > 1. It is clear that this function belongs to weak LP(Qp). Let us partition
the interval Qo as Q; = (277,2177), where j = 0, 1,... ., to see that (3.1)) fails.
A simple change of variable z = 277y shows that fq, = 21/p fqo- Similarly,
we set I = |f — fq,lq, and conclude that |f — fq,lq, = 2i/P]. Hence, the
sum in diverges.

The following theorem is our main result.
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THEOREM 3.6. If f € JN,(By), then
(3.7) p{z € Bo: [f(x) = fBy| > A}) < C(Kf/A),
where C' only depends on p and the doubling constant.

To prove the theorem we need two lemmas. The first one is a Calderén—
Zygmund decomposition lemma and the second one is a good-A-type in-
equality. The key idea behind the proof of Theorem [3.6| stems from the
method used in [16].

LEMMA 3.8. Let f be a non-negative locally integrable function on X.
Fiz a ball By = B(xg, R) and assume that

1
Ao > S fdp.
#(Bo) |
Then there ezists a countable, possibly finite, family {B;}; of disjoint balls
centered in By and satisfying 5B; C 11By such that

(i) f(z) < Ao for p-a.e. x € By \ |J,; 5B,
(ii) Ao <§p, f <o,
(ili) ¢;,%Xo < $5m. 1 < do-
The balls satisfying the above conditions are called Calderén—Zygmund balls
at level N\g. Moreover, if \og < A < -+ < Ay, then the Calderon—Zygmund
balls corresponding to different levels A\, may be chosen in such a way that
each Bi(An41) is contained in some 5B;(Ay).

Proof. Define a maximal function

Mp, f(x) = sup { fdp,
Bsz p
BCBy
where the supremum is taken over all balls containing x and included in By.
Write
E) = {.%' € By : MBOf(m) > A}

Let us first consider Ay to show how the balls are chosen. By the defi-
nition of Mp, f, for every x € E), there exists a ball B, with « € B, C By
and
(3.9) A< <Ay < §

By
We now take a look at the balls 5% B,, where k € Z, . Note that if a ball B
satisfies By C B C 11By, then by the choice of Ay, we have

1
&fd,uﬁﬁ S fdp <X < An.
B HAB0) 1,
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If B, has radius r, take k£ such that 5k—1r < 2R < 5Fr. Then By C 5B, C
11By and the average of f over 5B, is at most Ay. Consequently, there
exists a smallest n = n, > 1 such that

(3.10) | fdu<ay.
5" B,
Then
(3.11) Av< b ofdp
53 By,

forall j=0,1,...,n—1.

Consider the balls 5"+~ B,. They form a covering of E\ ~ and by the Vi-
tali covering theorem we may pick a countable subfamily of pairwise disjoint
balls B; = 5"+~ B,, with

Exy C | J5B:.
i=1
The balls B; have the required properties. Indeed, by (3.10) and (3.11]), we
have
(3.12) A<} fdu<d b ofdu< i,
57-1B, 57 B,
thus proving (ii). Since 5B; = 5" By,, the first inequality in (iii) has already

been proved in (3.12)), while the second inequality is just (3.10).
It remains to prove (i). We have

[o.¢]
By \ U5Bz C Bo\E)\N.
i=1
This implies that Mp, f(x) < An for p-a.e. v € By \ |, 5B;, from which we
get (i) by Lebesgue’s differentiation theorem.

We have now constructed the desired decomposition at level Ay and turn
to Ay—1. Since E), C E\,_,, for every x € E), we may start from exactly
the same ball B, satisfying as before. For every z € E), , \ E), we
take a ball B, with x € B, C By and

(3.13) Ao <o <Ay < ¥ fdu
By
Now for each ball B, choose the smallest m = m, > 1 satisfying
(3.14) § fdp < An-1.
577LBI

Notice that if B, is a ball corresponding to an x € E),, then n < m (here n
is from (3.10])). Then apply Vitali’s theorem to the balls 5"~ !B, to obtain
a family of balls satisfying conditions (i)—(iii) with Ao replaced by An_1.
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Now let B;(An) by any of the Calder6n—Zygmund balls corresponding
to An. Then B;(Ay) = 5" 1B, for some z; € E),, and B;(A\y) C 5™ !B,
(because n < m). The ball 5™~ !B, is not necessarily a Calderén-Zygmund
ball corresponding to the level A\y_1, but it is one of the balls in the col-
lection from which the Calderén—Zygmund balls were extracted. Vitali’s
theorem shows that 5’”_le is contained in a 5-dilate of some of them, say,
Bj(/\N—l)- Then Bz()\N) C 5Bj(>\N_1).

We continue this procedure. Next, we consider E), ,. For z € Ey, we
take the same ball B, which we used in the first step. For x € Ey,_, \ Ex,
we use the same ball B, which we used in the second step. For every x &
Exy_, \ Exy_, we take a ball B, with € B, C By and

(3.15) /\OS"'S)\N—2< § fd,u
By

and proceed as previously. =

LEMMA 3.16. Assume f € JN,(By) and

A=

— d.
M(BO) HSBO ’f fBo‘ 12

Consider Calderon—Zygmund balls {B;(\)}; and {B;(2))}; for the function
|f — fB,| at levels X and 2), respectively. Suppose that each B;(2)\) is con-
tained in some 5B;j(\). Then

A 1/q
(3.17) S utB ) < EEL (S umo)

where q is the conjugate exponent of p, that is, 1/p+1/q = 1.

Proof. We may assume Ky = 1 and fp, = 0. We partition the family
{Bj(2)\)}; as follows. First collect those balls which are contained in 5B (\).
From the remaining balls we collect those which are contained in 5Bs () and
continue similarly. In other words,

{Bj(2A)}; = U{B (2N)} e

where
Ji={j: B;j(2)A) C5B1(\)},
Jo={j: Bj(2)\) C5Ba(N), j & J1},
Js ={j: Bj(2\) C5B3(N\), j ¢ J1 U Ja},
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We have

(318) 22 w(B;2N) <> N (fldu=>>" | Ifldp,
J J Bj(2\) i jeJdi B;j(2X)

where

S| Ifldu< VoI + X = | fsmon ] du
(

j€Ji Bj(2)) J€J; Bj(2))

<> f = fomooldn+ > | Ndp

j€J; Bj(2)) JE€J; Bj(2))

< S |f_f5Bi()\)‘dN+)‘ZN(Bj(2)‘))-

JE€J;

-~

<.

-~

Now we sum over ¢ to obtain

2>\Zu @) <D = Beaylde+ 2 p(B;j(2)
J

7 5Bi()\)

By Holder’s inequality and the normalization Ky = 1 we get

SV 1= fmoyldu

i 5B;()\)
= > uBM)Y BB {1 = fipol du
i 5B;(A)
< (S ueB o) " (a7 {17~ S ldn)’)
i ( 5B;(A)

<a( S umon) ",

whence
1/q
2)‘2/‘ (20) <c3/q<z,u ) A (B, (27
J

This finishes the proof. =

Proof of Theorem We wish to iterate the estimate (3.17). We still

assume Ky =1 and fp, = 0, whence

p(Bo) (§ 1f1dn)" <1 and p(U1Bo)( § If = fumldn) <1

Bo 11Bg
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Therefore,
1
w(Bo) Volfldu<e, & 1f = fusyldp+ ¢ § | fiisl du
PAB0) 1, 11Bo Bo
< (HCB;L)UP‘FC?L g |f—fllBo|d,U+Cf] § | fldp
K 0 Bo Bo
ct c4
<—FE ¢ |f - f11B!dM+7
(o) /7 1§BO L (B e
< G
= u(Bo)'r’
where Cq = 302. We choose
Ch
A= ———".
" u(Bo)'
Now let A > A\g and take N € Z, such that
(3.19) 2NN\ < A < 2N,

Then apply the decomposition lemma at levels A\g < 2Xg < 22X < --- < 2N )
to obtain N + 1 families of Calderén—Zygmund balls. Observe that for n =
0,1,...,N — 1 each B;(2"*1)) is contained in some 5B;(2"\).

First notice that

p({z € Bo: |f(x)] > A}) < p({z € Bo : [ f ()| > 2V Ao})
<ZN5B 2N)\0 <C#Z,u 2N)\0

Then use (3.17) and the fact that

1

1+q + (=

—N

g N = p—pg

to estimate

03/q CS/q 1/q CS/q 1/q
Z'“ QN)\O © u u )
- 2N—1/\0 2N—2/\0 2N—3)\0
3/q N\ 1/¢N 1 q-
Ccy 1
<2°Ao> (Ao S ’f'd“>

37 43N p—pa~ N a N

c 1 1

L (L
g(N) Ao Ao
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Here g(1) =1 and for N > 2,

1 94~ +2¢ 24 (N=1)g~ (V=1
g(N) — o(N—T)(p—pa~ ™)
We have the estimate
Czq_1+~-+3q_N C

<
g(N) = o(N-1)p’
where the constant C' only depends on p and the doubling constant.
Moreover, the choice of Ay gives

1\ " cr N\ N N
_ A . q —_ (Pq Pq
<AO> (AO | |f|du> S(u( 0)> u(Bo)d =0T <o

11Bo
Now combine the previous estimates and use (3.19) to get

C 1\? C C
u({ € By |f(@)] > A} < 2(N)<)\0> - v < o

Here C'is a constant depending only on p and on the doubling constant. For
0 < A < A\p we use the trivial estimate

cY c?
p({z € Bo: |f(z)| > A}) < u(Bo) = 7% <5

4. Euclidean case. In this section we give a new proof for the second
John—Nirenberg inequality in R". See Lemma 3 in [I1].

THEOREM 4.1 (John—Nirenberg inequality II). If f is a function satisfy-
ing (3.1)), then f— fo, is in weak LP(Qo), i.e., there exists C' > 0 depending
only on n and p such that
(4.2) {z € Qo: [f(2) = fQol > A} < C(Kf/A)P
for all A > 0.

Let @@ be a cube in R™ with sides parallel to the coordinate axes, and

denote by | S| the Lebesgue measure of a set S. The dyadic mazimal function
of f is defined as

(4.3) M?f(x) = sup § | f(y)| dy,
Q> Q
where the supremum is taken over all dyadic cubes Q) containing x. More-
over, for A > 0 we define Eg(\) = {z € Q : Mf(z) > A}
We recall a decomposition lemma; see [17, Chapter IV, Section 3.1].

LEMMA 4.4. Let Qg be a cube and let f € L'(Qo). Suppose that

§ 1f ()] dz <
Qo
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Then Eg,(A) = Upey Qk, where {Qy} is a collection of cubes whose interiors
are disjoint, such that

1) |f(z)] <X forae z € Qo\Ury Qk,
(i) A< SQ |f(z)|dx < 27X for all Q in the collection {Qy},
(i) [EauN] <A [y, o [F(@)] da

The following good-\ inequality is the core of our proof.

LEMMA 4.5. For a function f € JN,(Qo) and a number 0 < b < 27" we
have

(4.6) [{z € Qo MU(f — fo,)(x) > N}|
< 1w € Qo M(F — fo,)(a) > DA}
for all A\ > b1 §Q0 |f(z) — fo,|dz, where a = 1/(1 — 2™b).

Proof. Without loss of generality, we assume that fgo, = 0; then (4.6
becomes

aK
(4.7) [Bao (W] < =% - [Eqq(bX)] /1.

First, we apply Lemma[4.4{to | f(x)| on Qo with X replaced by bA to get a
collection {Qj}x>1 of countable disjoint dyadic cubes such that Eg,(bA) =
Urey Q. It follows that Eg,(A) = Up—; Eg, (X) since Eg,(A\) C Eg,(bA).

Moreover, let € Qp be such that M9f(z) > X. Then there exists a
dyadic cube () containing x with

(4.8) S fdx > A
Q
Since Q) is the maximal dyadic cube such that the first inequality in (ii)
holds for bA, @ C Qi and it follows from that M?(fxq,)(x) > A
Moreover, M[(f — fo,)x0.) (%) > (1—2"b) by the second inequality in (ii).
Then fix a k; if ng |(f — fo,)|dz < (1 —2"b)\, we apply Lemmaﬁ to
|(f — fo,)xq.| on Q with A replaced by (1 — 2"b)\. By (iii) we have

(4.9) |Eq, (M| < [{z € Qs MU(f — fo,)xq.](x) > (1 —2"b)A}|
S Sklf—kalda:
1/q
N (16—2162‘”17))\ (|Qk’1/p_1 ng |f = fo.l d:c)_

Otherwise
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|Qxl < V 1f = fqul dx,

1
1-—2n
(1—27)A

k

and (4.9) holds as well.
By adding these inequalities for all k, we get, by the Holder inequality,

|<Z ‘Q’;‘nb (171 § 15 = faul de)
Qk

1/ /
T al) e ! 7 faddz] )}
1
< W\EQO(M)I1 1Ky
since @y are disjoint. =

We are now ready to prove the John—Nirenberg lemma.

Proof of Theorem[{.1, Without loss of generality we may assume fg, =0.
Let b = 2-(*t1 and define

_ Ky
T Qo
Let )
A> i S |f(z)|dx
Qo

and let j be the smallest integer satisfying b=7n < \. We iterate the estimate
(4.7) 7 times to get

| EA(Qo)| < |Eq, (b~/n)l

1 1/¢71
< aKy aKy /q”' aKy /a Eo( )|1/qj
~— \bin ) \bitly b—1n @l

1/q 1/¢7~t 1/q
(W) () Give]
bA b2\ b\ 4
0
where the third inequality comes from the weak type inequality (iii) in

Lemma 4.4 and from the definition of j.
Observe that

9 .
14+ —+- +7__p
q

By the definition of JN,, and 1 we have

1
= | 1fldz < 0|Qul.
g

0



John—Nirenberg lemmas 33

Hence,

K p(l—q77) )
EaWi< (1) v e
AlQo|'/P

p/¢
Kf ’

— 9p(1=a7))g(n+1)(p*~1/¢") <Kf>p
A

By the definition of  and j we have
AQY” ks _ omin-2)
Ky —
Since
(1 —2)g77 <q°p
we can now conclude

< 9p+(n+1)(pP*+(p/a)*) p
[EQy(M)] <2 (K /AP

This proves the theorem for large values of \.
For A < K/(b|Qo|'/P), we have

|Eqo ()] < 1Qo| < 2 TVP(K/A)P
as desired. m

Observe that this proof can be generalized to the metric setting via
Christ’s dyadic sets and by a Calderén—Zygmund decomposition lemma by
Aimar et al.; see Theorems 2.6 and 3.1 in [I].

5. John—Nirenberg inequality for a doubling measure. In this
section we give a new proof of the John—Nirenberg lemma in a doubling
metric measure space. The result is by no means sharper or more general
than the results in the literature. Nevertheless, we hope that the current
proof will further increase the understanding of the phenomenon.

We recall that a locally integrable function f: X — R is in BMO(X) if
there exists a constant ¢ such that

(5.1) b= feldu<ec
B

for all balls B in X. The space is equipped with the seminorm

I£lls = sup §|f - f5ldp.
BCXB

If we define an equivalence relation

f~g ifand only if f — g = constant,
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then BMO(X)/~ is a normed space. As is common, we continue denot-
ing this space by BMO(X) and speak of functions instead of equivalence
classes.

THEOREM 5.2. Let f € BMO(X). Then
w{z € B:|f — f5l > A}) < cop(B)e 2N/l
or all balls B C X and A > 0 with with c1, co not depending on f and .
f g

Proof. Take f € BMO(X). We may assume that ||f[| = 1. We first
notice that

1
ﬁ S |f—fB|dﬂ§Cf§ § \f—f11B!dM+cﬁ\fB—an|
p 11B 11B
<cp+cp §If = fusldp < 2c.
B

Thus, the expression on the left-hand side above is bounded uniformly in B.
Now fix a ball By and assume fp, = 0. If {B;}; is the Calder6n-Zygmund
decomposition at level A > 2c2, given by Lemma then

(i) [f(@)] < A for p-a.e. x € Bo \ U, 5Bj,
(i) A< %Bj IfI <A,
(ili) ¢,°X < §5Bj 1F] < A

We deduce by (i) that
(63)  p({z € Bo: |f (@) > M) <3 nB)) <€,y u(By).

Analogously to Calderén’s proof in [16], we wish to study the size of > y w(Bj).

Apply the decomposition lemma at levels A > ~ > ZCi. Denote the corre-
sponding Calderén-Zygmund balls by {B;(\)}; and {Bg(y)}x, which we
choose in a similar way to the proof of Lemma We write {Bj(\)}; as
a disjoint union

{Bi(N}; = U{BiMYjen
k

where Jp’s are defined as in the proof of Lemma but with 2\ replaced
by A, and A by 7. By (ii), we may now write

(54) A B <> N A=Y | [fldn.
J J BN k €tk B;(X)

Moreover, we have
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> S [flde <>V 1A+ 5 = [ fsme || da

j€J B ]EJkB
< V= Fpaplde+ ) | yda
Jj€Jk Bj J€Jk Bj
<\ Uf = Fuldz+7 ) u(By)
5Bk (v) JEJk
< u(5Be(y) +7 Y u(By) < Su(Br(v) +v > u

JEJg j€Jk

Now sum over k and use ([5.4) to obtain
A T u(Bi(N) < B> uBr(1) +v > m(B;i(N)
J k J

Thus, we see that

(5:5) A=) Z u(Bi(N) < b > i(Br(7))

k

whenever A > ~ > 202. Now set a = 202 > 202 and replace A and 7~
respectively by A+a and A. We have shown that if A\ > ¢ and the Calderén—
Zygmund balls corresponding to A and A\ + a are chosen in such a way that
each ball B;(\ + a) is contained in some 5By (), then

Z,u /\+CL Z,UJBk

Now let A > a and take N € Z such that Na < XA < (N + 1)a. Then apply
the decomposition lemma at each level a < 2a < --- < Na. From the above
estimate and (| we get

p({z € By : |f( )l >A}) <p({z € Bo:|f(z)] > Na})
<C#ZM i(Na)) <c32 N‘HZ,LL (a))

J
< cfiTN“u(llBo) < el M elos2) ()
= dcTe(MoED/ay ().

For 0 < A < a we have

u({z € By : |f(2)] > A}) < u(Bo) < deje™ 82 u(Bo)
< dcTem(osD/ay(py)

Hence the John-Nirenberg inequality holds with ¢; =4¢/, and ¢o = (log 2) /a. =
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