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Hardy spaces for the Laplacian
with lower order perturbations

by

Tomasz Luks (Angers)

Abstract. We consider Hardy spaces of functions harmonic on smooth domains in
Euclidean spaces of dimension greater than two with respect to the Laplacian perturbed
by lower order terms. We deal with the gradient and Schrödinger perturbations under
appropriate Kato conditions. In this context we show the usual correspondence between
the harmonic Hardy spaces and the Lp spaces (or the space of finite measures if p = 1) on
the boundary. To this end we prove the uniform comparability of the respective harmonic
measures for a class of approximating domains and the relative Fatou theorem for harmonic
functions of the perturbed operator.

1. Introduction. Let L be the operator of the form L = 1
2∆+ b(·) · ∇

on a C1,1 domain D in Rd, d ≥ 3, where b is a vector field such that |b|
belongs to the Kato class K loc

d+1(D) and |b|2 belongs to K loc
d (D). We study

the Hardy spaces hpL(D), 1 ≤ p ≤ ∞, of harmonic functions of L on D
and we extend the results obtained in [CrZ] for the positive solutions of
Lu ≡ 0. In the case of the classical harmonic functions of the Laplacian,
i.e. when b ≡ 0, this topic has been intensively studied (see [DK], [JK1],
[JK2], [L], [S1], [S2]). The basic properties of the classical Hardy spaces on
the ball and the half-space in Rd are described in [ABR]. The case of smooth
bounded domains is discussed in [S2], Lipschitz domains are considered in
[DK] and [JK2] and the so-called nontangentially accessible domains in [JK1].
A typical theorem in the theory of Hardy spaces says that a function u
harmonic on D belongs to the Hardy space hp(D) for a given p ∈ (1,∞] if
and only if u is the Poisson integral of some function f ∈ Lp(∂D, σ) where
σ is the surface measure. For p = 1, f should be a finite complex Borel
measure on ∂D. To address the operators more general than 1

2∆, we note
that this topic is considered by Widman in [W1] in the case of the half-space
and elliptic operators with continuous or Hölder continuous coefficients. The
Schrödinger operator 1

2∆ − c with nonnegative potential c is considered in
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[K1] for the ball and in [K2] for the half-space. Recently, similar properties
have been obtained by Michalik and Ryznar for Lipschitz domains in the
case of the so-called singular α-harmonic functions (see [MR1]). We should
note there is also a different line of research on Hardy spaces featuring the
maximal functions of the corresponding semigroups; see for example [CKS],
[DzZ1] or [DzZ2]. The focus of the present note is however in the spirit of
[L] and [S2].

The starting point for our results is the paper [CrZ], where the authors
have proved that for Lipschitz domains the harmonic measure and Green
function of L are comparable with the harmonic measure and Green function
of 1

2∆. In the case of C1,1 domains similar results were obtained in [HS] for
elliptic operators with coefficients which are Hölder continuous up to the
boundary of D. In [IR] Ifra and Riahi have shown analogous properties for
the operator div(A(·)∇) + b(·) · ∇, where A is a uniformly elliptic matrix
with Lipschitz continuous coefficients, but their methods make a restrictive
assumption of smallness of the Kato norm of b, at the same time relaxing
the condition |b|2 ∈ K loc

d (D). Finally, some of the results were generalized by
Kim and Song in [KiS2] to the operators of the form L+ µ · ∇+ ν, where L
is uniformly elliptic and the measures µ, ν belong to the corresponding Kato
classes. We wish to note, however, that the papers mentioned above in this
paragraph do not address Hardy spaces.

The main objective of this note is an extension of the hp-theory to L-
harmonic functions on a C1,1 domain D, with L satisfying the assumptions
of [CrZ]. Our definition of the L-harmonic Hardy spaces hpL(D) corresponds
to the one introduced by Stein in [S2] (see Section 4), and we prove the
following theorem.

Theorem 1.1. Let u be L-harmonic on a bounded C1,1 domain D ⊂ Rd,
where d ≥ 3. Then

(i) u ∈ h1
L(D) if and only if u = PL[µ] with a unique µ ∈ M(∂D).

Furthermore, there exists a constant c1 depending on D and b such
that, for every µ ∈M(∂D),

c−1
1 ‖µ‖ ≤ ‖PL[µ]‖h1 ≤ c1‖µ‖.

(ii) u ∈ hpL(D) for a given p ∈ (1,∞] if and only if u = PL[f ] with
a unique f ∈ Lp(∂D, σ). Furthermore, there exists a constant c2
depending on D and b such that, for every f ∈ Lp(∂D, σ),

c−1
2 ‖f‖p ≤ ‖PL[f ]‖hp ≤ c2‖f‖p.

Moreover, our results extend to the operators considered in [HS], [IR],
[KiS2] and [R] (see Remark 5.5). In order to study the Hardy spaces of L-
harmonic functions we adapt the ideas introduced in [MR1]. As we proceed,
we need some strong assertions about the comparability of the harmonic
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measures of 1
2∆ and L on C1,1 domains. In particular we prove that the

corresponding Poisson kernels are uniformly comparable for the sets {x ∈ D :
dist(x, ∂D) > r}, when r is sufficiently small. Another important tool is the
relative Fatou theorem for ratios of positive harmonic functions. We extend
it to the operator L applying the methods of [Wu].

At the end of the paper we give an extension of our results to the
Schrödinger operator 1

2∆+ q, which may be of independent interest. In this
part, we work under the assumptions q ∈ K loc

d (D) and the gaugeability of
(D, q) (see [ChuZ] and [CrFZ]).

The hp-theory for diffusion operators may also be considered for Lip-
schitz domains; here the use of probabilistic techniques introduced in [MR1]
seems suitable. A part of the relevant properties of Hardy spaces should
then follow from martingale theory. On the other hand a purely analytic
approach to this problem seems to be difficult and may be an objective of
further research based on the Green function estimates of [B] and available
estimates of gradients of nonnegative harmonic functions (see for example
[BKN]). In this context, some results for the classical harmonic functions
can be found in [DK], [JK1] and [JK2], but they are based on different
characterizations of hp-spaces than the one considered in Theorem 1.1.

The paper is organized as follows. In Section 2 we give basic definitions
and facts concerning the classical potential theory and recall some of the re-
sults of [CrZ]. In Section 3 we prove the uniform comparability of the Poisson
kernels of L and 1

2∆ on a class of subdomains of D. The correspondence be-
tween L-harmonic Hardy spaces and Lp spaces for 1 < p ≤ ∞ and with the
space of finite measures for p = 1 is given in Section 4. In Section 5 we prove
analogous results for the Schrödinger operator 1

2∆+ q.

2. Preliminaries. By Rd we denote the d-dimensional Euclidean space
with norm | · |. Here and throughout the paper we consider dimensions d ≥ 3.
Let ∂B denote the boundary of B and let δB(x) = dist(x, ∂B). All constants
in this paper are (strictly) positive and we use the convention that constants
denoted by small letters may differ in each lemma, while constants denoted
by capital letters do not change. The notation c = c(a, b) means that the
constant c depends only on a and b. All functions are assumed to be com-
plex valued unless stated otherwise. In this paper, by a domain we mean a
connected open subset of Rd.

Let D be a bounded domain. We say that D is a C1,1 domain if there
exist constants r, λ depending only on D such that for every z ∈ ∂D there
is a function F : Rd−1 → R and an orthonormal coordinate system y =
(y1, . . . , yd) such that

D ∩B(z, r) = {y : yd > F (y1, . . . , yd−1)} ∩B(z, r),
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where F is differentiable and ∇F is a Lipschitz function with the Lipschitz
constant not greater than λ.

Equivalently, we may define a C1,1 domain D as a bounded domain
satisfying the following geometric condition, called the ball condition (see
[AKSZ]): there exists a constant r = r(D) such that for each y ∈ ∂D there
are balls B(cy, r) ⊂ D and B(c̃y, r) ⊂ Dc, tangent at y.

From now on D will be a fixed nonempty C1,1 domain in Rd. For r ≥ 0
we define the approximating inner sets Dr as

Dr = {x ∈ D : δD(x) > r}.
Note that D0 = D. Let σr denote the (d− 1)-dimensional Hausdorff surface
measure on ∂Dr, and set σ = σ0 (occasionally, σ will also denote the Haus-
dorff surface measure on spheres). The following two lemmas provide some
basic properties of Dr (see [MR1] for the proofs).

Lemma 2.1. There exists a constant r0 = r0(D) such that for every
r ∈ [0, r0], Dr is a C1,1 domain and satisfies the ball condition with radius r0.
Furthermore,

∂Dr = {x ∈ D : δD(x) = r}.
In view of Lemma 2.1, for r sufficiently small and 0 ≤ s < r we may define

the projections πs,r : ∂Ds → ∂Dr, where πs,r(x) means the closest point to x
on ∂Dr, and let πr = π0,r. Then for all x ∈ ∂Ds we have |x−πs,r(x)| = r−s,
and the ball B(x, r − s) ⊂ Dc

r is tangent to ∂Dr at πs,r(x), while the ball
B(πs,r(x), r − s) ⊂ Ds is tangent to ∂Ds at x. In particular we have

(1) πr(x) = πs,r(πs(x)), x ∈ ∂D.
Lemma 2.2. There exist constants c, r0 depending only on D such that

for all r ∈ (0, r0], s ∈ [0, r) and every nonnegative function f on D we have

c−1
�

∂Dr

f(x) dσr(x) ≤
�

∂Ds

f(πs,r(y)) dσs(y) ≤ c
�

∂Dr

f(x) dσr(x).

Let Gr(x, y) be the Green function of 1
2∆ for Dr. If r is sufficiently small,

then Dr is a C1,1 domain, and the Poisson kernel of 1
2∆ for Dr is given by

(2) Pr(x, z) = −∂Gr(x, z)
∂νrz

, x ∈ Dr, z ∈ ∂Dr,

where νrz is the outward unit normal vector at z.

Lemma 2.3. There exist constants r0, c1, c2, c3 depending only on D such
that for all r ∈ [0, r0], x, y ∈ Dr and z ∈ ∂Dr,

(3) c−1
1 Φr(x, y) ≤ Gr(x, y) ≤ c1Φr(x, y)

where
Φr(x, y) = min

{
1

|x− y|d−2
,
δDr(x)δDr(y)
|x− y|d

}
,
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and we have

c−1
2

δDr(x)
|x− z|d

≤ Pr(x, z) ≤ c2
δDr(x)
|x− z|d

,(4)

|∇Pr(x, z)| ≤ c3
1

|x− z|d
.(5)

Proof. With r fixed and the constants c1, c2, c3 depending on Dr, the
estimates above follow from [W2], [Z1] and [Z2]. The uniformity of (3) is an
immediate consequence of [B, (22)] and Lemma 2.1. The upper bounds of (4)
and (5) follow from (2), (3) and gradient estimates for harmonic functions.
In the case of (4), it is explained in [Z1, proof of Lemma 1, p. 25] that the
constant in the lower bound depends only on the diameter of the domain,
the radius r0 from the ball condition for Dr and c such that

inf{Pr(x, z) : x ∈ Dr, δDr(x) ≥ r0/2, z ∈ ∂Dr} ≥ c

(see [Z1, p. 22]). However, in view of Lemma 2.1 and the Harnack inequality,
c can be taken independent of r ∈ [0, r0], z ∈ ∂Dr and x ∈ D2r0 . This gives
the desired conclusion.

From now on, R0 will denote the constant r0 satisfying the conditions of
Lemma 2.1–2.3. We will consider r ∈ [0, R0]. We define the Martin kernel
for Dr by

Kr(x, z) = lim
Dr3y→z

Gr(x, y)
Gr(x0, y)

, x ∈ Dr, z ∈ ∂Dr,

where x0 is a fixed point in DR0 . By (2) we have

(6) Kr(x, z) =
Pr(x, z)
Pr(x0, z)

.

The following inequalities are known as the 3G Theorem.

Lemma 2.4. There exist constants c1, c2, c3 depending only on D such
that for all r ∈ [0, R0], x, y, w ∈ Dr and z ∈ ∂Dr we have

Gr(x, y)Gr(y, w)
Gr(x,w)

≤ c1
(

1
|x− y|d−2

+
1

|y − w|d−2

)
,

Gr(x, y)Kr(y, z)
Kr(x, z)

≤ c2
(

1
|x− y|d−2

+
1

|y − z|d−2

)
,

Gr(x, y)|∇Kr(y, z)|
Kr(x, z)

≤ c3
(

1
|x− y|d−1

+
1

|y − z|d−1

)
.

Proof. It is well known that the constants in the inequalities above de-
pend only on the estimates (3)–(5) and the dimension d (see for example
[CrFZ] or [IR]). Thus the conclusion follows from Lemma 2.3.
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For r ≥ 0 we let (Wt,Pxr ) be the Brownian motion killed on exiting
Dr and let pr(t, x, y) be its transition density. For z ∈ ∂Dr we define the
Kr(·, z)-conditional Brownian motion on Dr to be the Markov process with
the transition density

pzr(t, x, y) =
pr(t, x, y)Kr(y, z)

Kr(x, z)
.

For z ∈ Dr we consider the Gr(·, z)-conditional Brownian motion on Dr\{z}
defined by

pzr(t, x, y) =
pr(t, x, y)Gr(y, z)

Gr(x, z)
.

Also (Wt,Pxz,r), for z ∈ ∂Dr, will denote the Kr(·, z)-conditional Brownian
motion on Dr (and the Gr(·, z)-conditional Brownian motion if z ∈ Dr). For
standard properties of conditional processes see [ChuZ] and [Do2]. Equiva-
lently, we may define these processes as the respective solutions of the fol-
lowing stochastic differential equations:

dYt = dWt +
∇Kr(Yt, z)
Kr(Yt, z)

dt, z ∈ ∂Dr,

dỸt = dWt +
∇Gr(Ỹt, z)
Gr(Ỹt, z)

dt, z ∈ Dr.

Let b be a vector field on D with |b|∈K loc
d+1(D) and |b|2∈K loc

d (D), i.e., |b|
is uniformly integrable with respect to the measures µ(x, dy) = |x−y|1−ddy,
x ∈ D, and |b|2 is uniformly integrable with respect to the measures ν(x, dy)
= |x− y|d−2dy, x ∈ D. As explained in [CrZ], there exists a unique solution
Xt of the stochastic differential equation

dXt = dWt + b(Xt)dt, X0 = x,

where Wt is the Brownian motion killed on exiting D. The process Xt is a
diffusion with the generator L = 1

2∆+ b(·) · ∇. We say that a function u on
D is L-harmonic on D if it is continuous and for every open set B ⊂ D with
B ⊂ D we have

(7) u(x) = Exu(XτB ), x ∈ B, where τB = inf{t ≥ 0 : Xt /∈ B}.
Equivalently, a continuous function u on D is L-harmonic on D if Lu ≡ 0 in
the weak sense, i.e., for any function φ ∈ C∞c (D) we have

1
2

�

D

u(x)∆φ(x) dx =
�

D

u(x)b(x) · ∇φ(x) dx.

For t ≥ 0 we defineM(t) =
	t
0 b(Ws) dWs, 〈M〉t =

	t
0 |b(Ws)|2 ds, and N(t) =

exp{M(t) − 1
2〈M〉t}. Let Hr(x, dz) be the harmonic measure of 1

2∆ for Dr

and let GLr (x, y),HL
r (x, dz) be the Green function and the harmonic measure



Hardy spaces for Laplacian with perturbations 45

of L for Dr, respectively. As opposed to (7), set τDr = inf{t ≥ 0 : Wt /∈ Dr}.
In [CrZ] it is shown that

(8) GLr (x, y) = Exy,rN(τDr)Gr(x, y), x, y ∈ Dr,

and on ∂Dr we have

HL
r (x, dz) = Exz,rN(τDr)Hr(x, dz), x ∈ Dr.

Furthermore, there is a constant c depending on b and Dr such that

c−1 ≤ Exz,rN(τDr) ≤ c, x ∈ Dr, z ∈ Dr.

We conclude that the Poisson kernel of L for Dr satisfies

(9) PLr (x, z) = Exz,rN(τDr)Pr(x, z).

In particular,

(10) ExrN(τDr) =
�

∂Dr

Exz,rN(τDr)Pr(x, z) dσr(z) = 1,

and

(11) c−1Pr(x, z) ≤ PLr (x, z) ≤ cPr(x, z).
In the next section we will prove that the estimate (11) holds with a constant
which does not depend on small r.

3. Estimates for conditional Brownian motion. The objective of
this section is to prove the following theorem.

Theorem 3.1. There exist constants c, r0 depending only on b and D
such that for all r ∈ [0, r0], x ∈ Dr and z ∈ ∂Dr we have

c−1 ≤ Exz,rN(τDr) ≤ c.

The idea of the proof is the same as in [CrZ], and it originated in the proof
of the Conditional Gauge Theorem (see [ChuZ]). However, in the present
context we aim at uniform estimates for the variable sets Dr, which makes
the calculations a little more complicated. The essential difference in the
proof is Lemma 3.6.

Recall that the constants denoted by capital letters do not change from
place to place. Using (4) and (6) fix a constant C1 depending only on D such
that

(12) C−1
1

δDr(x)
|x− z|d

≤ Kr(x, z) ≤ C1
δDr(x)
|x− z|d

for every r ∈ [0, R0], x ∈ Dr and z ∈ ∂Dr.

Lemma 3.2. There exists a constant c = c(D) such that if 0 < ρ′ < ρ,
r∈ [0, R0], z∈∂Dr and x, y∈Dr are such that |x− y|<ρ′ and B(y, 2ρ)⊂Dr,
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then for every Borel set A ⊂ ∂B(y, ρ) we have

Pxz,r(WτB(y,ρ)
∈ A) ≥ c(ρ− ρ′)σ(A).

Proof. By the definition of Pxz,r we have

Pxz,r(WτB(y,ρ)
∈ A) =

1
Kr(x, z)

�

A

Kr(w, z)PB(y,ρ)(x,w) dσ(w)

=
Γ (d/2)

2πd/2ρKr(x, z)

�

A

Kr(w, z)
ρ2 − |x− y|2

|x− w|d
dσ(w)

≥ c

Kr(x, z)
· ρ− ρ

′

ρd

�

A

Kr(w, z) dσ(w),

where c = Γ (d/2)/(2d+1πd/2). By (12) we obtain

Pxz,r(WτB(y,ρ)
∈ A) ≥ c

C2
1

· |x− z|
d

δDr(x)
· ρ− ρ

′

ρd

�

A

δDr(w)
|z − w|d

dσ(w).

Since z ∈ ∂Dr and B(y, 2ρ) ⊂ Dr, we have

Pxz,r(WτB(y,ρ)
∈ A) ≥ c

C2
1

· ρ
d−1(ρ− ρ′)

ρd

�

A

ρ

(diam(D))d
dσ(w)

= c̃(ρ− ρ′)σ(A).

The next lemma provides some geometric properties of the domains Dr,
needed in the proof of Theorem 3.1.

Lemma 3.3. For every δ > 0 there exist constants r1, r2, r3 depending
only on D and δ with the following properties: r1 < R0,

2r3 < r2 <

(
1

C2
12d+1

) 1
d−1

r1,

and there exists a compact connected set F0 ⊂ D and, for every r ∈ [0, r3],
a domain Ur ⊂ Dr such that

(i) Dr \Dr1 ⊂ Ur, and thus ∂Dr ⊂ ∂Ur,
(ii) ∂Dr2 ⊂ F0 ⊂ Ur,
(iii) dist(F0, ∂D) ≥ 2r3, and thus dist(F0, ∂Dr) ≥ 2r3 − r,
(iv) B(x, r3) ⊂ Ur for every x ∈ F0,
(v) m(Ur) < δ, where m is d-dimensional Lebesgue measure.

Proof. Fix δ > 0. Since D is a C1,1 domain, ∂D =
⋃n
i=1 Fi, where Fi are

closed, disjoint and connected. Choose a constant r1 = r1(D, δ), 0 < r1 < R0,
for which the sets Ui = {x ∈ D : dist(x, Fi) < r1} are disjoint (and obviously
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connected), and m(
⋃n
i=1 Ui) < δ/2. Take r2 > 0 such that

r2 < r1

(
1

C2
12d+1

) 1
d−1

.

By Lemma 2.1,

∂Dr2 = {x ∈ D : δD(x) = r2} = {y − r2νy : y ∈ ∂D},
where νy is the outward unit normal vector at y. Obviously, ∂Dr2 ⊂

⋃n
i=1 Ui.

We have ∂Dr2 =
⋃n
i=1 F̃i, where F̃i = {y − r2νy : y ∈ Fi} are closed,

connected, and F̃i ⊂ Ui for every i. Fix xi ∈ F̃i, i = 1, . . . , n. Since D is
connected, for every i = 1, . . . , n− 1 there exists a curve Γi ⊂ D connecting
xi to xi+1, and thus F̃i to F̃i+1. Set F0 = ∂Dr2 ∪

⋃n−1
i=1 Γi. Then F0 is a

compact, connected set contained in D, and there exists a constant r3 such
that dist(F0, ∂D) > 2r3. For every i = 1, . . . , n−1 we define a “tube” around
Γi by βi = {x : dist(x, Γi) < r3}. Then for every i, βi is also contained
in D and connects Ui to Ui+1. Obviously, r3 < r2/2. Taking r3 = r3(D, δ)
sufficiently small we may assume that m(

⋃n−1
i=1 βi) < δ/2. For r ∈ [0, r3] let

Ur =
( n⋃
i=1

Ui ∪
n−1⋃
i=1

βi

)
∩Dr.

Then it is easily seen that Ur and F0 together with the constants r1, r2, r3
satisfy the conditions of the lemma.

Lemma 3.4. For r ∈ [0, R0] let Ur be a domain contained in Dr with
∂Dr ⊂ ∂Ur. Let 0 < ε < 1/4. There exists a δ = δ(ε, b,D) > 0 such that if
m(Ur) < δ for every r, then

sup
(x,z)∈Ur×∂Dr

Exz,r

∣∣∣∣M(τUr)−
1
2
〈M〉τUr

∣∣∣∣ < ε

and
sup

(x,z)∈Ur×∂Dr
Exz,rN(τUr) <

1
1− 4ε

.

Proof. We follow the proof of [CrZ, Lemma 3.2] to obtain the first esti-
mate. The desired conclusion is then a consequence of Lemma 2.4 and the
assumptions on b. The second estimate follows from the first one by the
John–Nirenberg inequality.

For ε0 = 1/8, we fix δ0 = δ0(ε0, b,D) > 0 satisfying the conditions of
Lemma 3.4. From now on, R1, R2, R3 will denote the constants and F0, Ur
the sets from Lemma 3.3 with respect to δ0. Then for all r ∈ [0, R3] we have
∂Dr ⊂ ∂Ur and m(Ur) < δ0, so by Lemma 3.4 it follows that

(13) sup
(x,z)∈Ur×∂Dr

Exz,r

∣∣∣∣M(τUr)−
1
2
〈M〉τUr

∣∣∣∣ < 1
8
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and

(14) sup
(x,z)∈Ur×∂Dr

Exz,rN(τUr) < 2.

Since Dr satisfies the ball condition with radius R0 and since R2 < R0,
for every r ∈ [0, R2) and z ∈ ∂Dr there exists a unique point xz ∈ ∂DR2 for
which

δDr(xz) = |z − xz| = R2 − r.
Lemma 3.5. There exists a constant c < 1 depending only on D and b

such that for all r ∈ [0, R3], z ∈ ∂Dr and x ∈ B(xz, (R2 − r)/2) we have
Pxz,r(τUr < τDr) ≤ c.

Proof. Let r ∈ [0, R3], z ∈ ∂Dr and denote Bz,r = B(z,R1− r)∩Dr. By
Lemma 3.3, Bz,r ⊂ Ur. By (12), for every x ∈ B(xz, (R2 − r)/2) ⊂ Bz,r,

Pxz,r(τUr < τDr) ≤ Pxz,r(τBz,r < τDr)

=
1

Kr(x, z)
Ex[Kr(WτBz,r , z); τBz,r < τDr ]

≤ C2
1 ·
|x− z|d

δDr(x)
Ex
[
δDr(WτBz,r )

|WτBz,r − z|d
; τBz,r < τDr

]
.

Since 2R2 < R1, the last term is less than

C2
1 ·

2(2(R2 − r))d

R2 − r
· R1 − r
(R1 − r)d

= C2
12d+1 ·

(
R2 − r
R1 − r

)d−1

≤ C2
12d+1 ·

(
R2

R1

)d−1

< 1,

where the last inequality follows from Lemma 3.3 too.

Lemma 3.6. There exists a constant c = c(b,D) such that for every
r ∈ [0, R3] we have

inf
(x,z)∈∂DR2

×∂Dr
Pxz,r(τUr = τDr) ≥ c.

Proof. Let ρ = R3/12. Since F0 is compact, by Vitali’s covering lemma,
from the family of balls {B(y, ρ)}y∈F0 we may choose a disjoint, finite sub-
cover {B(yi, ρ)}i∈I such that F0 ⊂

⋃
i∈I B(yi, 3ρ). Fix r ∈ [0, R3], z ∈ ∂Dr

and x ∈ ∂DR2 . Choose xz ∈ ∂DR2 such that

δDr(xz) = |z − xz| = R2 − r.
Since F0 is also connected, we may choose a set of balls

{B(y1, 3ρ), . . . , B(ym, 3ρ)} ⊂ {B(yi, 3ρ)}i∈I
such that x ∈ B(y1, 3ρ), xz ∈ B(ym, 3ρ) and

B(yk, 3ρ) ∩B(yk+1, 3ρ) 6= ∅
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for every k = 1, . . . ,m− 1. Let

τk = inf{t ≥ 0 : Wt /∈ B(yk, 4ρ)}, Tk = inf
{
t ≥ 0 : Wt /∈

k⋃
i=1

B(yi, 4ρ)
}
,

and for k = 1, . . . ,m− 1 set

Ak = B(yk+1, 3ρ) ∩ ∂B(yk, 4ρ).

Let Sk ∈ ∂B(yk, 4ρ) be the closest point to yk+1. Then |Sk− yk+1| ≤ 2ρ and

B(Sk, ρ) ∩ ∂B(yk, 4ρ) ⊂ B(yk+1, 3ρ).

Furthermore,

σ(Ak) ≥ σ(B(Sk, ρ) ∩ ∂B(yk, 4ρ)) = c1 = c1(ρ, d) > 0,

where σ is the Hausdorff surface measure on ∂B(yk, 4ρ). By Lemma 3.3,
m⋃
k=1

B(yk, 8ρ) ⊆ Ur ⊆ Dr,

and by Lemma 3.2 (with 4ρ, 3ρ instead of ρ, ρ′), there exists a constant
c2 = c2(D) such that for every k ∈ {1, . . . ,m− 1} and y ∈ B(yk, 3ρ),

Pyz,r(Wτk ∈ Ak) ≥ c2ρσ(Ak) ≥ c1c2ρ.
In particular, Pxz,r(Wτ1 ∈ A1) ≥ c1c2ρ, and by the strong Markov property,
for every k ∈ {2, . . . ,m− 1} we have

Pxz,r(WTk ∈ Ak) = Exz,r[P
WTk−1
z,r (WTk ∈ Ak)]

≥ Exz,r[P
WTk−1
z,r (Wτk ∈ Ak); WTk−1

∈ Ak−1] ≥ c1c2ρPxz,r(WTk−1
∈ Ak−1).

Hence,

Pxz,r(WTm−1 ∈ B(xz, 6ρ)) ≥ Pxz,r(WTm−1 ∈ B(ym, 3ρ))

≥ Pxz,r(WTm−1 ∈ Am−1) ≥ (c1c2ρ)m−1.

Observe that
R2 − r

2
≥ R2 −R3

2
≥ R2

4
≥ R3

2
= 6ρ,

so B(xz, 6ρ) ⊆ B(xz, (R2 − r)/2). By Lemma 3.5, there exists a constant
c3 < 1 depending only on D and b such that for every y ∈ B(xz, 6ρ),

Pyz,r(τUr = τDr) = 1− Pyz,r(τUr < τDr) ≥ 1− c3.
Hence,

Pxz,r(τUr = τDr) = Exz,r[P
WTm−1
z,r (τUr = τDr)]

≥ Exz,r[P
WTm−1
z,r (τUr = τDr); WTm−1 ∈ B(xz, 6ρ)] ≥ (1− c3)(c1c2ρ)m−1.



50 T. Luks

Lemma 3.7. There exist a constant c = c(b,D) such that for every r ∈
[0, R3], z ∈ ∂Dr and x ∈ ∂DR2 we have

c−1 ≤ Exz,r[N(τDr); τUr = τDr ] ≤ c.

Proof. The lower bound of the estimate follows from Lemma 3.6, the
Jensen inequality for the conditional expectation and (13), exactly as in
the proof of [CrZ, Lemma 3.3]. The upper bound follows immediately from
(14).

We are now ready to prove Theorem 3.1. Basically we follow the proof of
[CrZ, Theorem 3.1], but to exhibit the uniformity of the estimate we present
the details.

Proof of Theorem 3.1. Fix r ∈ [0, R3]. Define a sequence of stopping
times as follows:

T0 = 0, T2n−1 = T2n−2 + τDR2
◦ θT2n−2 ,

T2n = T2n−1 + τUr ◦ θT2n−1 , n ≥ 1.

Since Pxz,r(τDr < ∞) = 1 for every x ∈ Dr, we see that a.s. there exists n
such that T2n = τDr . By the strong Markov property, for all x ∈ Dr,

Exz,rN(τDr) =
∞∑
n=1

Exz,r[N(τDr); T2n−2 < τDr , T2n = τDr ]

=
∞∑
n=1

Exz,r{N(T2n−1)E
WT2n−1
z,r [N(τDr); τUr = τDr ]; T2n−2 < τDr}.

On {T2n−2 < τDr} we haveWT2n−1 ∈ ∂DR2 ; by Lemma 3.7, for some constant
c1 = c1(D, b) and all x ∈ Dr we have

c−1
1

∞∑
n=1

Exz,r[N(T2n−1); T2n−2 < τDr ] ≤ Exz,rN(τDr)

≤ c1
∞∑
n=1

Exz,r[N(T2n−1); T2n−2 < τDr ].

By the definition of Pxz,r,

Exz,r[N(T2n−1); T2n−2 < τDr ]

=
1

Kr(x, z)
Exr [Kr(WT2n−1 , z)N(T2n−1); T2n−2 < τDr ].

Since D is bounded and

dist(DR2 , ∂Dr) = R2 − r ≥ 2R3 − r ≥ R3,
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by (12) there exists a constant c2 = c2(D, b) such that

c−1
2 ≤ Kr(y, z)

Kr(x, z)
≤ c2

for all x ∈ DR2 , y ∈ ∂DR2 and z ∈ ∂Dr. We will now focus on x ∈ DR2 . We
conclude that

c−1
2 Exr [N(T2n−1); T2n−2 < τDr ] ≤ Exz,r[N(T2n−1); T2n−2 < τDr ]

≤ c2Exr [N(T2n−1); T2n−2 < τDr ],

and so

(c1c2)−1
∞∑
n=1

Exr [N(T2n−1); T2n−2 < τDr ] ≤ Exz,rN(τDr)

≤ c1c2
∞∑
n=1

Exr [N(T2n−1); T2n−2 < τDr ].

This gives
sup
z∈∂Dr

Exz,rN(τDr) ≤ (c1c2)2 inf
z∈∂Dr

Exz,rN(τDr).

Furthermore, by (10) we have

inf
z∈∂Dr

Exz,rN(τDr) ≤ 1 ≤ sup
z∈∂Dr

Exz,rN(τDr).

Thus, for every z ∈ ∂Dr and x ∈ DR2 ,

(c1c2)−2 ≤ Exz,rN(τDr) ≤ (c1c2)2.

If x ∈ Dr \DR2 , then x ∈ Ur. By the strong Markov property

Exz,rN(τDr) = Exz,r[N(τUr); τUr = τDr ]

+ Exz,r[N(τUr)E
WτUr
z,r N(τDr); τUr < τDr ].

Since WτUr ∈ DR2 on {τUr < τDr}, we have

Exz,rN(τDr) ≤ Exz,r[N(τUr); τUr = τDr ] + (c1c2)2Exz,r[N(τUr); τUr < τDr ]

≤ (c1c2)2Exz,rN(τUr) < 2(c1c2)2,

where the last inequality follows from (14). On the other hand,

Exz,rN(τDr) ≥ Exz,r[N(τUr); τUr = τDr ] + (c1c2)−2Exz,r[N(τUr); τUr < τDr ]

≥ (c1c2)−2Exz,rN(τUr).

Using Jensen’s inequality and (13) we obtain

Exz,rN(τDr) ≥ (c1c2)−2 exp
[
−Exz,r

∣∣∣∣M(τUr)−
1
2
〈M〉τUr

∣∣∣∣] ≥ (c1c2)−2e−1/8,

and the proof of the theorem is complete.
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Corollary 3.8. There exists a constant C2 depending only on D and b
such that for all r ∈ [0, R3], x ∈ Dr and z ∈ ∂Dr we have

(15) C−1
2

δDr(x)
|x− z|d

≤ PLr (x, z) ≤ C2
δDr(x)
|x− z|d

.

Proof. This estimate is an immediate consequence of (4), (9) and Theo-
rem 3.1.

Remark 3.9. The estimate in Theorem 3.1 can also be proved for z ∈ Dr

using similar techniques and following the methods of Cranston, Fabes and
Zhao [CrFZ] (see also [ChuZ, Extended Conditional Gauge Theorem]), but
the proof is more complicated in this case. By (8) we then obtain the same
estimate for the Green function GLr as for Gr in (3). This result can also
be deduced from [KiS1], where the authors have shown the comparability of
the Green functions of 1

2∆ and 1
2∆+µ(·) ·∇ as a consequence of heat kernel

estimates. Here µ is a vector-valued signed measure, which can be slightly
more singular than the drift in [CrZ] and in the present paper. However, our
approach to this subject is different and may be of independent interest.

4. Hardy spaces. In this section we will define the L-harmonic Hardy
spaces hpL(D) and we will prove Theorem 1.1. We denote byM(∂D) the set
of finite complex Borel measures on ∂D and for µ ∈ M(∂D) let ‖µ‖ be the
total variation norm of µ. For 1 ≤ p <∞ and a Borel function f on ∂D let

‖f‖p =
( �

∂D

|f(x)|p dσ(x)
)1/p

,

and let ‖f‖∞ denote the essential supremum norm on ∂D with respect to σ.
For f ∈ L1(∂D, σ) and µ ∈ M(∂D), the Poisson integrals of f and µ are
defined by

PL[f ](x) =
�

∂D

PL0 (x, y)f(y) dσ(y), PL[µ](x) =
�

∂D

PL0 (x, y) dµ(y).

Using (7) and the strong Markov property, one can easily prove that PL[f ]
and PL[µ] are L-harmonic on D.

For 1 ≤ p ≤ ∞ we define the Hardy space hpL(D) to be the class of
functions u L-harmonic on D for which

‖u‖hp = sup
0<r<R3

‖u ◦ πr‖p <∞,

where πr is the projection defined after Lemma 2.1 and R3 was introduced
after Lemma 3.4. Since σ(∂D) <∞, we have hpL(D) ⊂ h1

L(D) for all p > 1.
We also note that h∞L (D) consists of the functions L-harmonic and bounded
on D, and

‖u‖h∞ = sup
x∈D
|u(x)|.



Hardy spaces for Laplacian with perturbations 53

From (6) and (9) we conclude that the Martin kernel of L for Dr satisfies

(16) KL
r (x, z) =

Exz,rN(τDr)
Ex0
z,rN(τDr)

Kr(x, z) =
PLr (x, z)
PLr (x0, z)

.

As stated in [CrZ], every positive L-harmonic function u onD has the unique
Martin representation

(17) u(x) =
�

∂D

KL
0 (x, y) dµ(y),

for some positive measure µ ∈ M(∂D). Hence we conclude that u = PL[µ̃],
where dµ̃ = dµ/PLr (x0, ·).

We will now discuss the corresponding version of the relative Fatou the-
orem. In the classical case, this theorem was proved in [Do1] for positive
harmonic functions on the ball in Rd, and in [Wu] on Lipschitz domains.
Analogous results for the fractional Laplacian were obtained in [BD] for
C1,1 domains and in [MR2] for Lipschitz domains. For each z ∈ ∂D and
α > 0 we define the “cone” of aperture α and vertex z by

Γα(z) = {x ∈ D : |x− z| < (1 + α)δD(x)}.
We say that a function u on D has a nontangential limit l at z ∈ ∂D if, for
every α > 0, u(x)→ l as x→ z within Γα(z).

Proposition 4.1 (Relative Fatou theorem). Let u, v be two positive
L-harmonic functions on D, and let µ, ν ∈ M(∂D) be positive measures
such that u = PL[µ] and v = PL[ν]. Then u/v has a finite nontangential
limit at ν-almost every point of ∂D. This limit is ν-almost everywhere equal
to the Radon–Nikodym derivative of the absolutely continuous component of
µ with respect to ν.

Proof. Following [Wu] it is enough to show that for every z ∈ ∂D there
is a constant c1 depending on z, α and b such that

(18) lim sup
Γα(z)3x→z

u(x)
v(x)

≤ c1 lim
ρ→0

µ(∇(z, ρ))
ν(∇(z, ρ))

,

where ∇(z, ρ) = ∂D ∩ B(z, ρ). Denote u′(x) =
	
∂D P0(x, z) dµ(z), v′(x) =	

∂D P0(x, z) dν(z), where P0(x, z) is the Poisson kernel of 1
2∆ for D. Then

by (11) we have

c−1
2

u′(x)
v′(x)

≤ u(x)
v(x)

≤ c2
u′(x)
v′(x)

,

where c2 depends only on D and b. As stated in [Wu], the inequality (18)
holds with u′/v′ instead of u/v, and thus the proposition is proved.

As we mentioned in the Introduction, in the proof of Theorem 1.1 we will
use the methods introduced in [MR1]. We start with the following estimate
of the Poisson kernel.
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Lemma 4.2. There exists a constant c = c(D, b) such that for all r ∈
(0, R3], s ∈ [0, r) and z, w ∈ ∂Ds we have

c−1PLs (πs,r(w), z) ≤ PLs (πs,r(z), w) ≤ cPLs (πs,r(w), z).

Proof. By (15), it is enough to show that

c−1 ≤ |πs,r(z)− w|
|πs,r(w)− z|

≤ c.

Since for every r ∈ [0, R3], Dr satisfies the ball condition with the same con-
stant R0 (Lemma 2.1), the proof is the same as in the case of the analogous
estimate of the Martin kernel in [MR1, Lemma 6].

Lemma 4.3. Let u = PL[µ] for some positive µ ∈ M(∂D). There exists
a constant c = c(D, b) such that for all r, s ∈ (0, R3] we have

c−1‖u ◦ πr‖1 ≤ ‖µ‖ ≤ c‖u ◦ πs‖1.
Proof. By Lemma 4.2, for r ∈ (0, R3] we have

‖u ◦ πr‖1 =
�

∂D

�

∂D

PL0 (πr(x), y) dµ(y) dσ(x)

≤ c
�

∂D

�

∂D

PL0 (πr(y), x) dσ(x) dµ(y) = c‖µ‖.

On the other hand,

‖u ◦ πs‖1 ≥ c−1
�

∂D

�

∂D

PL0 (πs(y), x) dσ(x) dµ(y) = c−1‖µ‖

for any s ∈ (0, R3].

Let u be L-harmonic on D. For r ∈ (0, R3] we define

ur(x) =


�

∂Dr

PLr (x, y)|u(y)| dσr(y), x ∈ Dr,

|u(x)|, x ∈ D \Dr.

It is clear that ur is nonnegative on D and L-harmonic on Dr. For every
x ∈ D and r we have |u(x)| ≤ ur(x). Furthermore, for s ∈ (0, r) and x ∈ Dr,

ur(x) =
�

∂Dr

PLr (x, y)|u(y)| dσr(y)

≤
�

∂Dr

PLr (x, y)
( �

∂Ds

PLs (y, z)|u(z)| dσs(z)
)
dσr(y)

=
�

∂Ds

PLs (x, z)|u(z)| dσs(z) = us(x).

Hence, the limit
u∗(x) = lim

r↘0
ur(x)



Hardy spaces for Laplacian with perturbations 55

exists and |u(x)| ≤ u∗(x) for every x ∈ D. If u∗ is finite, then monotone
convergence implies that it is L-harmonic on D.

Lemma 4.4. Let u be L-harmonic on D. Then u = PL[µ] for some µ ∈
M(∂D) if and only if there exists a positive L-harmonic function v on D
such that |u| ≤ v. In fact, if u = PL[µ], then u∗ = PL[|µ|].

Proof. Using (7), (16), (17) and Proposition 4.1 we follow the proof of
analogous properties in [MR1, Lemma 1 and Theorem 1].

A consequence of Lemma 4.4 is the following weaker version of Theo-
rem 1.1.

Lemma 4.5. The following conditions are equivalent:

(i) u ∈ h1
L(D).

(ii) u∗(x) = limr↘0 ur(x) is finite for every x.
(iii) u = PL[µ] for some µ ∈M(∂D).

Proof. (i)⇒(ii). If u ∈ h1
L(D) then by the estimate (15) and Lemma 2.2

we have

u∗(x) = lim
r↘0

ur(x) = lim
r↘0

�

∂Dr

PLr (x, y)|u(y)| dσr(y)

≤ lim sup
r↘0

�

∂Dr

C2
δDr(x)
|x− y|d

|u(y)| dσr(y) ≤
C2c

(δD(x))d−1
‖u‖h1 ,

where the constant c depends only on D.
(ii)⇒(iii). If u∗ is finite, then it is L-harmonic and positive on D (or

u ≡ 0). Since |u(x)| ≤ u∗(x) on D, u = PL[µ] by Lemma 4.4, for some
µ ∈M(∂D).

(iii)⇒(i). If u=PL[µ], then by Lemma 4.4, u∗=PL[|µ|]. From Lemma 4.3
it follows that u∗ ∈ h1

L(D), and thus u ∈ h1
L(D).

Lemma 4.6. If u ∈ h1
L(D), then u∗ ∈ h1

L(D). In fact, there is a constant
c = c(b,D) such that ‖u∗‖h1 ≤ c‖u‖h1.

Proof. By the monotone convergence theorem, for r ∈ (0, R3] we have

‖u∗ ◦ πr‖1 =
�

∂D

u∗(πr(x)) dσ(x)

=
�

∂D

lim
s↘0

us(πr(x)) dσ(x) = lim
s↘0

�

∂D

us(πr(x)) dσ(x).
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By (1) we have

‖u∗ ◦ πr‖1 = lim
s↘0

�

∂D

( �

∂Ds

PLs (πr(x), y)|u(y)| dσs(y)
)
dσ(x)

= lim
s↘0

�

∂Ds

( �

∂D

PLs (πs,r(πs(x)), y) dσ(x)
)
|u(y)| dσs(y).

By Lemma 4.2, for a constant c1 = c1(b,D), the last term is less than

c1 lim sup
s↘0

�

∂Ds

( �

∂D

PLs (πs,r(y), πs(x)) dσ(x)
)
|u(y)| dσs(y)

≤ c1c2 lim sup
s↘0

�

∂Ds

( �

∂Ds

PLs (πs,r(y), z) dσs(z)
)
|u(y)| dσs(y)

= c1c2 lim sup
s↘0

�

∂Ds

|u(y)| dσs(y) ≤ c1c22‖u‖h1 ,

where the constant c2, by Lemma 2.2, depends only on D.

Proof of Theorem 1.1. By Lemma 4.5, if u ∈ h1
L(D) then u = PL[µ] for

some µ ∈ M(∂D) and, by Lemma 4.4, u∗ = PL[|µ|]. Lemmas 4.3 and 4.6
give

‖µ‖ ≤ c1‖u∗‖h1 ≤ c1c2‖u‖h1 ≤ c1c2‖u∗‖h1 ≤ c21c2‖µ‖.
This proves the first part of the theorem.

Now let p > 1. If u = PL[f ] for some f ∈ Lp(∂D, σ), then by Jensen’s
inequality, for p <∞ we have

|u(x)|p ≤
�

∂D

PL0 (x, y)|f(y)|p dσ(y) = PL[|f |p](x).

By Lemma 4.3 we obtain

‖u‖php ≤ ‖PL[|f |p]‖h1 ≤ c1‖f‖pp.
If u = PL[f ] for some f ∈ L∞(∂D, σ), then

|u| ≤ PL[|f |] ≤ ‖f‖∞,
and thus ‖u‖h∞ ≤ ‖f‖∞.

Conversely, suppose that u ∈ hpL(D). Then u ∈ h1
L(D) and u = PL[µ] for

some µ ∈ M(∂D). We may decompose µ into dµ = fdσ + dµs, where µs is
singular with respect to σ. By Proposition 4.1, for σ-almost every z ∈ ∂D,
limr→0 u(πr(z)) = f(z). By the Fatou lemma, for p <∞,�

∂D

|f(z)|p dσ(z) ≤ lim inf
r→0

�

∂D

|u(πr(z))|p dσ(z) ≤ ‖u‖php .

If p =∞, then for σ-almost every z ∈ ∂D,

|f(z)| = lim
r→0
|u(πr(z))| ≤ lim sup

r→0
‖u ◦ πr‖∞ ≤ ‖u‖h∞ .
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Therefore f ∈ Lp(∂D, σ) and PL[f ] ∈ hpL(D). This implies that also v =
PL[µs] ∈ hpL(D). We will show that ‖µs‖ = 0. The condition v ∈ hpL(D)
for p > 1 implies that the family v(πr(·)), r > 0, is uniformly integrable.
By Proposition 4.1, limr→0 v(πr(z)) = 0 σ-a.e. on ∂D, and using Egorov’s
theorem we obtain

lim
r→0

�

∂D

|v(πr(z))| dσ(z) = 0.

Finally, by Lemma 4.3 we have

‖µs‖ ≤ c1 lim inf
r→0

�

∂D

|v(πr(z))| dσ(z) = 0,

so the proof is complete.

5. Schrödinger operators. In this section we extend the hp-theory to
q-harmonic functions, where q ∈ K loc

d (D), i.e., |q| is uniformly integrable
with respect to the measures µ(x, dy) = |x − y|2−ddy, x ∈ D. As in the
previous sections, we only consider d ≥ 3. We will say that a continuous
function u on D is q-harmonic on D if 1

2∆u+ qu ≡ 0 in the weak sense. For
standard properties of q-harmonic functions see [ChuZ] and [CrFZ]. Let, as
before, Wt be the Brownian motion killed on exiting Dr, where r ∈ [0, R0]
and R0 is defined after Lemma 2.3. For t ≥ 0 let eq(t) = exp{

	t
0 q(Ws) ds}.

The gauge and conditional gauge for Dr are defined, respectively, as

gr(x) = Exreq(τDr), x ∈ Dr,

gr(x, z) = Exz,req(τDr), x ∈ Dr, z ∈ ∂Dr.

Fix r ∈ [0, R0]. Suppose that gr(x0, z0) < ∞ for some (x0, z0) ∈ Dr × ∂Dr,
or, equivalently, that (Dr, q) is gaugeable (i.e. gr(x) is bounded in Dr, see
[ChuZ]). Then by the Conditional Gauge Theorem, there exists a constant
c depending on Dr and q such that

c−1 ≤ gr(x, z) ≤ c.

By the Feynman–Kac formula, the q-Poisson kernel for Dr is given by

(19) P qr (x, z) = gr(x, z)Pr(x, z), x ∈ Dr, z ∈ ∂Dr.

The main tool of this section is the following uniform version of the Condi-
tional Gauge Theorem.

Theorem 5.1. Suppose that (D, q) is gaugeable. Then there exist con-
stants c, r0 depending only on D and q such that for all r ∈ [0, r0], x ∈ Dr

and z ∈ ∂Dr we have
c−1 ≤ gr(x, z) ≤ c.
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Proof. Exactly as in [ChuZ, Lemma 7.1] it follows that for any open
subset Cr of Dr and every (x, z) ∈ Dr × ∂Dr we have

Exz,r
τCr�

0

|q(Ws)| ds =
�

Cr

Gr(x, y)|q(y)|Kr(y, z)
Kr(x, z)

dy.

Invoking the assumptions on q and using Lemma 2.4 we conclude that there
exists δ = δ(q,D) > 0 such that if m(Cr) < δ then

(20) sup
(x,z)∈Dr×∂Dr

Exz,r
τCr�

0

|q(Ws)| ds <
1
2

for every r ∈ [0, R0]. By Khas’minskii’s lemma ([ChuZ, Lemma 3.7]) we have

(21) sup
(x,z)∈Dr×∂Dr

Exz,re|q|(τCr) < 2.

Let r1, r2, r3 be the constants and F0, Ur the sets from Lemma 3.3 for the
given δ. Then for every r ∈ [0, r3] we have ∂Dr ⊂ ∂Ur,m(Ur) < δ, and in the
same way as in Lemma 3.6 we find that there exists a constant c1 = c1(D, q)
such that for every r ∈ [0, r3],

inf
(x,z)∈∂Dr2×∂Dr

Pxz,r(τUr = τDr) ≥ c1.

Consequently, in the same manner as in Lemma 3.7 (using (20), (21) instead
of (13), (14)) we conclude that there is c2 = c2(D, q) such that for every
r ∈ [0, r3], z ∈ ∂Dr and x ∈ ∂Dr2 we have

c−1
2 ≤ Exz,r[eq(τDr); τUr = τDr ] ≤ c2,

and following the proof of Theorem 3.1 we obtain

sup
z∈∂Dr

gr(x, z) ≤ c3 inf
z∈∂Dr

gr(x, z)

for every r ∈ [0, r3] and x ∈ Dr2 , where c3 = c3(D, q). By [ChuZ, Proposi-
tion 5.12] we have

gr(x) =
�

∂Dr

gr(x, z)Pr(x, z) dσr(z)

and so
inf

z∈∂Dr
gr(x, z) ≤ gr(x) ≤ sup

z∈∂Dr
gr(x, z).

Since (D, q) is gaugeable, by the Conditional Gauge Theorem

c−1
4 ≤ g0(x) ≤ c4,

where c4 = c4(D, q). On the other hand, by the strong Markov property

g0(x) = Ex0eq(τD) = Ex0 [eq(τDr)g0(XτDr )].
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Hence
c−1
4 gr(x) ≤ g0(x) ≤ c4gr(x),

which implies that
c−2
4 ≤ gr(x) ≤ c24

for every r ∈ [0, R0] and x ∈ Dr. Therefore
1
c3c24

≤ gr(x, z) ≤ c3c24

for every r ∈ [0, r3] and (x, z) ∈ Dr2 × ∂Dr. For x ∈ D \Dr2 we follow the
proof of Theorem 3.1, replacing N(τDr) with eq(τDr).

An immediate consequence of (4), (19) and Theorem 5.1 is the following
estimate.

Corollary 5.2. Suppose that (D, q) is gaugeable. There exist constants
c, r0 depending only on D and q such that for all r ∈ [0, r0], x ∈ Dr and
z ∈ ∂Dr we have

c−1 δDr(x)
|x− z|d

≤ P qr (x, z) ≤ c δDr(x)
|x− z|d

.

Just as in Section 4, we now define the q-harmonic Hardy spaces hpq(D).
Using the basic facts showed in [ChuZ] and [CrFZ] for q-harmonic functions
and the methods from Section 4 we obtain the following theorem, which is
the main result of this section.

Theorem 5.3. Suppose that (D, q) is gaugeable and let u be q-harmonic
on D. Then

(i) u ∈ h1
q(D) if and only if u = Pq[µ] with a unique µ ∈ M(∂D).

Furthermore, there exists a constant c1 depending on D and q such
that, for every µ ∈M(∂D),

c−1
1 ‖µ‖ ≤ ‖Pq[µ]‖h1 ≤ c1‖µ‖.

(ii) u ∈ hpq(D) for a given p ∈ (1,∞] if and only if u = Pq[f ] with
a unique f ∈ Lp(∂D, σ). Furthermore, there exists a constant c2
depending on D and q such that, for every f ∈ Lp(∂D, σ),

c−1
2 ‖f‖p ≤ ‖Pq[f ]‖hp ≤ c2‖f‖p.

Remark 5.4. Let M = L − µ, where µ ∈ K loc
d (D) is a signed Borel

measure, and for r sufficiently small let Exz,reµ(τDr) be the conditional gauge
for Dr with respect to the L-diffusion Xt (see [Ch]). Suppose that for some
(x0, z0) ∈ Dr×∂Dr we have Ex0

z0,reµ(τDr) <∞. Then by [CrZ, Theorem 3.15],

PMr (x, z) = Exz,reµ(τDr)PLr (x, z), x ∈ Dr, z ∈ ∂Dr,
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where PMr (x, dz) is the Poisson kernel ofM for Dr. Furthermore, there exists
a constant c depending on Dr, b and µ such that

c−1 ≤ Exz,reµ(τDr) ≤ c.
Using similar methods to those in Sections 3 and 5 we can prove that c does
not depend on small r if (D,µ) is gaugeable with respect to Xt (see [Ch]);
however, in this case we also need the uniform estimate of the Green functions
GLr (see Remark 3.9). In view of [CrZ, Theorem 3.15], as in Section 4 one
obtains analogous properties of M -harmonic Hardy spaces.

Remark 5.5. In the case of the operator L+µ·∇+ν with µ, ν satisfying
the conditions of [KiS2], and under the assumption of the gaugeability of
(D, ν), the estimates obtained for the Green function are the same as for the
Laplacian. Analyzing the proofs one can verify that the comparison constant
depends only on the C1,1-characteristics, the diameter of the domain and the
Kato norms of µ and ν. By the argument given in [An] or [ChWZ], this also
implies a uniform estimate for the harmonic measure, so one can extend the
hp-theory in this direction as well. The same concerns the operators discussed
in [HS], [IR] and [R].
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