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Abstract. We present new results related to various equivalents of the mixed-type
reverse order law for the Moore—Penrose inverse for operators on Hilbert spaces. Recent
finite-dimensional results of Tian are extended to Hilbert space operators.

1. Introduction. The reverse order law of the form (AB)T = BTAT
does not hold in general for the Moore—Penrose inverse. The classical equiv-
alent condition (A*A commutes with BB, and BB* commutes with AA")
is proved in |G] for complex matrices, in [B1], [B2] and [I] for closed-range
bounded linear operators on Hilbert spaces, and in [KDjC] in rings with
involutions. However, various weaker conditions than the reverse order law
are also investigated, and a significant number of results have already been
published (see [Dji], [Dj2], [DjD], [DjR], [T1]-[T5], WG], [W1], [W2]). In
particular, the reverse order law of the form (ABC)T = CTBTAT is investi-
gated in [Hw].

In this paper we present a set of equivalents of the mixed type reverse
order law (AB)" = BT(ATABBT)T AT for the ordinary and weighted Moore-
Penrose inverses of bounded linear operators on Hilbert spaces. Some finite-
dimensional results from [T4] are extended to infinite-dimensional settings.
We use operator matrices, which naturally appear in the theory of closed-
range bounded linear operators on Hilbert spaces. Hence, our methods of
proof are essentially different from the method used in [T'4].

Let X,Y, Z be Hilbert spaces, and let £(X,Y") be the set of all bounded
linear operators from X to Y. For A € L(X,Y) we use, respectively, N'(A),
R(A) and A* to denote the null space, the range space and the adjoint
of A.
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The Moore—Penrose inverse of A € L(X,Y) (if it exists) is the unique
operator AT € L(Y, X) satisfying the following:
AATA= A, ATAAT = AT,  (AAT)* = AAT,  (ATA)" = ATA.
It is well-known that AT exists if and only if R(A) is closed.

Let M € L(Y) and N € £(X) be positive and invertible operators. The
weighted Moore—Penrose inverse of A € L(X,Y) with respect to the weights

M and N (if it exists) is the unique operator A}LW ~ € L(Y, X) satisfying the
following:

Al yA=4, Al Al =4l
(MAA.]r\/[,N)* _ MAAE\/LN? (NA}-\/[,NA)* = NA;\/[,NA

Also, AJ][MN exists if and only if R(A) is closed. If M = Iy and N = Iy,

then A;Y, Iy 18 the standard Moore-Penrose inverse At of A.

We assume that the reader is familiar with the generalized invertibility
and the Moore—Penrose inverse (see, for example, [BIG], [C], [H]).

We continue with several auxiliary results.

LEMMA 1.1. Let A € L(X,Y) have a closed range. Then A has the
following matriz decomposition with respect to the orthogonal decompositions
X =R(A*) N(A) and Y = R(A) & N (A*):

ek ke
0 0] LN(A) N(AS |
where Ay is invertible. Moreover,
At [All 0] : [ R(A) } . [R(A*)}
0 O N(A*) )
The proof is straightforward.

LemmA 1.2 ([DjD]). Let A € L(X,Y) have a closed range. Let X and
X9 be closed and mutually orthogonal subspaces of X such that X = X1 ® Xo.
Let Y1 and Ys be closed and mutually orthogonal subspaces of Y such that
Y =Y @Y. Then the operator A has the following matriz representations
with respect to the orthogonal decompositions X = X186 Xo = R(A*) BN (A)
andY =R(A) B N(A*) =Y1 @Y :

()
=0 5] Lal = L)

where D = A1 A} + A A5 maps R(A) into itself and D > 0 (meaning D > 0
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invertible). Also,

o [A’{D—l 0]

AsD™Y 0

ol v = L

A = : — ,

Ay 0 N(A) Yo

where D = A7 A1+ A5 Ay maps R(A*) into itself and D > 0 (meaning D > 0

invertible). Also,
At — [D‘lA”{ D—lA;]
0 0

(b)

Here A; denote different operators in different cases.

The reader should notice the difference between the following notations.
If A, B € L(X), then [A, B] = AB—BA denotes the commutator of A and B.
On the other hand, if U € £(X, Z) and V € L(Y, Z), then [U V]: [§] — Z
denotes the matrix form of the corresponding operator. In the following
lemma, a lot of well-known and important facts and properties concerning
the Moore—Penrose inverse are collected, especially those which we use in
the proof of the main theorem.

LemmA 1.3 ([BIG], [DjR]). Let A € L(X,Y) be a closed range opera-
tor, and let M € L(Y) and N € L(X) be positive definite and invertible
operators. Then:

A* = ATAA* = A* A AT
AT = A*(AA*)T = (A7 A)T A%,
R(A) = R(AAT) = R(AA*);

R(AT) = R(A%) = R(ATA) = R(A"A);
( R(
(

)

I—ATA) = N(ATA) = N(A) = R(A*)*;

I — AAT) = N(AAT) = N(AT) = N(4%) = R(A)F;
R(Al y) = NTIR(AY), N(A], ) = MTIN(A%);
A}L\/I,N _ N*1/2(M1/2AN I/Z)TMl/Q.

b,

The following result is well-known; it can be found in [C| p. 127] and
in [I].

LEMMA 1.4. Let A€ L(Y,Z) and B € L(X,Y) have closed ranges. Then
AB has a closed range if and only if AYABB' has a closed range.

The following result is proved in [DjD] Lemma 2.1].
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LEMMA 1.5. Let X,Y be Hilbert spaces, let C € L(X,Y) have a closed
range, and let D € L(Y) be Hermitian and invertible. Then R(DC) = R(C)
if and only if [D,CCt] = 0.

We shall also use the following result from [DW], which can be easily
extended from complex matrices to bounded linear Hilbert space operators.

LEMMA 1.6. Let H; (i = 1,4) be Hilbert spaces, and let C' € L(H,, Hy),
X € L(H2, H3) and B € L(Hs, Hy) be closed range operators. Then

C(BXO)'B = X'
if and only if
R(B*BX)=R(X) and N(XCC*)=N(X).
Let A be a unital C*-algebra with unit 1. Denote the set of all projections
by P(A) = {p € A: p? =p=p*}. In [[], Theorem 10.a] the following results
are proved.

LemMA 1.7 ([L]). Let p,q € P(A). Then the following statements are
equivalent:

(a) pq is Moore—Penrose invertible;
(b) gp is Moore—Penrose invertible;
(¢) (I —=p)(1—q) is Moore—Penrose invertible;
(d) (1 —¢q)(1—p) is Moore—Penrose invertible.

LemMA 1.8 ([L]). Let p,q € P(A). If pq is Moore—Penrose invertible,
then
(ap)" = pa = p[(1 = p)(1 = @)l'q.

We shall use these results in the case of A = L(X).

2. Main results. Many necessary and sufficient conditions for (AB)T =
BT AT to hold were given in the literature. In the paper of Tian [T3], one
can find the following important relation: (AB)? = BTAT iff (AB)! =
BT(ATABBY)TA" and (ATABB") = BBTAYA. Therefore, it is of interest
to find conditions equivalent to (AB)! = BT(ATABBY)TAT. The next the-
orem is our main result, and it represents a generalization of results from
[T4] to the infinite-dimensional setting.

THEOREM 2.1. Let X, Y, Z be Hilbert spaces, and let A € L(Y,Z) and
B e L(X,Y) be operators such that A, B and AB have closed ranges. The
following statements are equivalent:

(al) (AB)' = Bf(AtABB")tAf;
(a2) (AB)' = B*(A*ABB*)T A*;
(a3) (AB)' = BYAf — BY((I — BBT)(I — ATA))TAf;
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((A"*B)t = BT(ATABB")TA*;

((AT)*B)T = B*((A*A)TBB*)T AT;

(ANY*B)t = BtA* — BY((I — BBY)(I — ATA))T A%,

(A(BY)")T = B*(ATABBT)T AT

(A(BY")T = BT (A*A(BB*)")T A",

(ABY)")! = B* AT — B*((I — BBY)(I — AT A))1 AT,

(BTANYT = A(BBTATA)'B;

(BTANT = (AN)*((BB*)1(A* AN (BT)*;

(BTANT = AB — A((I — ATA)(I — BBY))'B;

(ATAB)T AT = BT (ABB™);

(ATAB)TA* = B ((A")*BBY)T,

(ATA(BT)*)TAT = B*(ABB");

(BBTANB = A(BfAT A,

(A*AB)'A* = B*(ABB*)T;

((A*A)IB)TAT = B*((AT)*BB*)T;

(A*A(BY)")TA* = BY(A(BB*)N;
BI((A")1(BB*)N)T = ((A*A)T(B*))T AT

AA*ABB*B)' = B (A*ABB*)f Af;

(

(AtAB)t = BY(AYABBY! and (ABBH)t = (AtABB")t At;
(AYAB)' = B*(ATABB*)! and (ABB")! = (A*ABB™)TA*;
(
(

)
ATAB)t = BYATA — BY((I — BBY)(I — ATA))TATA and
ABBYY = BBYAT — BBY((I — BB)(I — ATA))T Af;
)

R((AB)") = R(BT(ATABB™)A") and

R(((AB)1)*) = R((B'(ATABB") AT)*);
R((AB)T) = R(BTAT) and R((B*A")T) = R((A")"(B*)T);
R(AA*AB) = R(AB) and R(B*B(AB)*) = R((AB)*).

127

Proof. The existence of various terms appearing in the statements of the
theorem follows mainly from Lemma [T.4] and from properties of kernels and
ranges of operators (see Lemma . The existence of the Moore-Penrose
inverse of the products like (I — BBT)(I — At A) follows from Lemma

Using Lemma we conclude that the operator B has the matrix form

b= [E;l 8] : mﬁaﬂ - W?)}
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where Bj is invertible. Then
Bt _ {B;l o] : [ R(B) ] ~ [R(B*)]'
0 O N(B*) N(B)
From Lemma [1.2]it also follows that the operator A has the matrix form
|:A1 Az] [ R(B) ] [ R(A) }
A= : — ,
0 O N (B*) N(A*)
where D = A; AT + A2 Ab is invertible and positive in £(R(A)). Then
Af [A;D—l 0] : {R(A) ] . [ R(B) ]
A:D71 0] T [ N(A¥) N (B¥)
First we find an equivalent form for (al). We have
A;D71A; 0
S:ATABBT:< ! ! >
AsD1A; 0
and consequently
* y—1 * y—1 * y—1 * y—1
st — (5%9)t s = ((A1D ANTATD™ A, (A[D™1A)TATD 1 Ay >
0 0
It follows that

BistAt = (Bfl(ATD_lAl)TATD_l O).
0 0

Therefore,
(AB)" = BT (ATABB") BT
is equivalent to
(A1B))' = ByY(AiD AN A D™ = ByY (D72 4,) D12,
By checking the Penrose equations, the last formula holds if and only if
(21)  [BiB},(D"Y2A))'DY24;] =0 and [D,DY2A, (D72 A) ] =0.

Hence, (al) is equivalent to (2.1)).
Let us now find some more statements equivalent to (al). Using Lem-

ma we deduce that (2.1)) is equivalent to

R(DA;) =R(A1) and R(B1BjA])=TR(A]),
and to

R(DAl) = R(Al) and N(AlBlBT) = N(Al)

Lemma applied for X = A1By, C = Bfl, B = D~1/2 shows that the
equality
(A1B))t = ByY (D124, D~1/2



Mized-type reverse order law and its equivalents 129

is equivalent to
R(D7'A1B)) = R(A1B1) and N(A;Bi(BiB)™ ") = N(A1By),
and to
R(D7'A1B1) = R(A1By) and R((B{B1) Y(A1B))*) = R((A1B1)").
Now, we find a statement equivalent to (g3). The condition
R(AA*AB) = R(AB) and R(B*B(AB)*) =R((AB)")
is equivalent to
R(DA1B1) = R(A1B1) and R(BiBi(A1B1)*) =R((A1B1)"),
which is equivalent to (2.1). Hence, (g3) is equivalent to (al).
Analogously, the equivalencies (b1)<(g3), (c1)<(g3) and (d1)<(g3) can
be proved.

Let us now prove, for example, (c2)<(g3). Using the above notation,
and

AjA1(B1By) ™
T:A*A(BB*)T:< i4(BLB) 0>,

A5A1(B1By)™t 0
it is easy to see that
Th = (T*T)'T*
_ ((DY2Ay(BBy) )ID"YV2A, (DY2A(B1B;) 1)ID"1/24,
- < 0 0 )
Now,
(ABNY = B(A*A(BB*)")TA*
if and only if
(Ai(BY)™HT = By Y(DV2A(B1B]) )T DY2.
Applying Lemma for X = Ay(B})™ Y, C = Bfl, B = D2 shows that
the last equality is equivalent to
R(DA(B])™") = R(Ai(B])™") and
N(A(BY) B (B ™) = N(A(B) ™),
ie.
R(DABy) = R(A1B1) and R(B;'A}) = R((A1B1)"),

so we have just proved that (c2) is equivalent to (g3).

Analogously, we prove the equivalencies (a2)<(g3), (b2)<(g3) and
(d2)(g3).

In proving equivalencies including e-statements, there are no other tech-
niques besides those we have already used in the previous part of the proof.

The table of appropriate equivalent statements is given below as some
kind of overview, and also for the sake of completeness:
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(al) (A1B))" = By Y(D~1/24,)TD~1/2;
(a2) (A1By)! —B*(Dl/QAlBlB*)TDl/Q

(b1) (D~'A;1By)t = B/Y(D~1/2A;)1 D2

(b2) (D~ lAlBl)T_B*<D 3/24, B, B})T D~1/2,

(c1) (Au(B)™NH = By(D~2A4,)ID~ V2%

(c2) (A1(B})™YHt = By Y(DY2A,(B1B})~ 1) D2,

(d1) (B{'A(D )T—Dl/Q(A*D 12yt g,

(d2) (B 1A* ) — D 1/2((31316) 1A>{D—3/2)T<BT)71
(e1) (D~Y2A;B,)ID~1/2 = Bt Al

(€2) (D~24,B,)ID~12 = By (D1 A D~

(e3) (D™Y2Ay(BY)™Ht = BfA[DY?

(e4) (By'AiD=Y2)t = D=V2(A1D)IBy;

(e5) (D 1/2A131)T—Bl(AlBlBl)TD 172,

(e6) (D~'A; BB} = (B})~(D~ 3/2A131)TD—1/2;
(e7) (DY2Ay(B;)~Y)t = By Y (Ay(B1B}) 1) D1/2,
(e8) (DLAL(BB})™ Yt = By(D~32A,(B;)"1)ID1/2;
(e9) (DAyB1B;By)! = B (DV?A,B,B}) D~1/2,

Each of those statements is equivalent to:
R(D“A1B;) = R(A1B;) and N(A1B1(B;B))") = N(41B)),

for some «, 5 € {—1,1}. More precisely, we have:

@ [ Statement
1 1 a2,dl, e3, eb
1 -1 Dbl, c2,el,e8
-1 1 b2, cl, ed, ed
-1 —1 al, d2,e2,e7, €9

Using Lemma [I.5] we have
R(DA1B)) = R(A1B)) < [D% A1By(A1B1)11=0
& [D,A1Bi(A1B))T] =0,
and
N(A1B1(BiB1)’) = N(A1By) < R((B{B1)?(A1B1)*) = R((A1B1)")
[(BiB1)?, (A1B1)*((A1B1)")] = 0
(BiB1)P,(A1B)) A1 B] =0

<~
=
& [BiBi,(A1B1) A1 By] =0,

[
(B
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which means that each statement mentioned in the table above is equivalent
to (g3). Now, we prove the equivalencies (x3)<(x1), where = € {a, b, c,d, f}.
First, we prove (a3)<(al):

(a3) < (AB)' = BTA" — BI[(I — BBT)(I — ATA)]TAT.
Using Lemma for P = BBT and Q = ATA, we have
(2.2) (ATABB"' = BBTATA — BBT[(I — BB")(I — ATA)]TATA.
If we premultiply this expression by BT and postmultiply it by A, we obtain
BY(ATABB" AT = BT A" — BY[(I — BBY)(I — ATA)]TAT = (AB),

as desired.

Analogously, we can prove that (b3)<(bl) and (c3)<(cl); the part
(d3)<(dl) is very similar—the difference is in taking @ = BB' and
P =ATA.

Let us now prove (f3)<(f1):

(f3.1) & (ATAB)! = BYATA — BY((I - BBT)(I — ATA))TATA.
If we premultiply by Bt, we have
BY(ATABB" = BTATA — BT ((I — BB")(I — ATA))TATA = (ATAB)T,
i.e. part (f1.1). Also,
(f3.2) & (ABB")' = BBTAT — BB'((I — BB)(I — ATA))TAT,
If we postmultiply by Af, we have
(ATABB")AT = BBTAT — BBT((I — BB")(I — ATA)) AT = (ABB")T,

i.e. part (f1.2). We have thus finished this part of the proof.

Let us now see what are the equivalents of statements (f1) and (£2). A
simple computation shows that (f1) is equivalent to the conjunction of the
following two statements:

(2.3) (D7Y24,B)) D724, = BfY(D7Y2A4) D124, i=1,2
(2.4) Al =(D7124))ID"1/2,

Suppose that (f1) holds; if we substitute (2.4)) in (2.3]), then postmultiply
each of the modified equations (2.3) by A}, and add them, we get

(D~'2A,B))f = Byt AT D2,
which holds if and only if
[D,A1Al]=0 and [B B}, AlA}] =0,
which is, by Lemma [1.5], equivalent to

R(DA;) = R(4A;) and R(BiBiA) = R(AD),



132 N. C. Dinci¢ et al.

i.e. we get statement (al). It is not difficult to see that the reverse implication
also holds.

An easy computation shows that (f2) is equivalent to the conjunction of
the following two statements:

(2.5) (D7Y2A.B)D7V24; = By(D™V24, BB} D724, i=1,2;
(2.6) Al = (D 24, D712,

Suppose that (£2) holds; if we postmultiply each equation of (2.5) by A,
and add them, we obtain

(D724 B! = Bi(D™ 2 BiBY),

which holds, by Lemma if and only if N(A1B1BfB1) = N(A1B1). As
in the previous part of the proof, is equivalent to R(DA;) = R(A1).
So, (f2)=(al). The reverse implication is easy.

Let us now find statements equivalent to (gl) and (g2).

First, (gl):

R(BY(ATABB")A") = R((AB)") = R((AB)*)
& R(B{A}) = R(B;(D™?A)TD™?) = R(B; (D2 A))T)
& BIR(B{A}) = R(B1B{ A7) = R(D™?A)T) = R(D™H2A1)")
=R(A}),

so we actually have
R(B1B1 A7) = R(A7).

The second condition, R(((AB)")*) = R((Bf(ATABB")A")*), becomes:
N(BT(ATABB")A") = N((AB)") = N((AB)*)
& N(A7) =N(BiA}) =N (B {(DV2A)ID™12) = N (D72 A1) D™ 1/?)
& R(A1) = R(D™ (A7 D 1?)T)
& D'PR(A)) = R(D'?Ay) = R((A}D™V2)T) = R((A;D71/2)")

= R(D'%Ay),

so we have
R(DA;) = R(Ay).

Those two conditions are equivalent to (al), so we have just proved (gl)< (al).
Now, (g2):
R(B'A") = R((AB)") = R((AB)")
& R(B{ A7) = R(B{A{D1) = R(B{ 1 A})
< B1R(B7A}) = R(B1BiA}) = R(AY)
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and
R((B*A")) = R((A)N(BY)' )@N((AB) ) = N(B'AT) = N((AB)")
N(Bi A7) = N (B 4D
@N(A*) N (4D
& R(A1) = R(D™' A1),
which together are equivalent to (al), so we have just proved (g2)<(al). m

Now we formulate an analogous result for the weighted Moore—Penrose
inverse.

THEOREM 2.2. Let X, Y, Z be Hilbert spaces, and let A € L(Y,Z)
and B € L(X,Y) be operators such that A, B and AB have closed ranges.
Suppose M € L(Z) and N € L(X) are positive definite invertible operators.
The following statements are equivalent:

~ = B y(Al, ;ABB] )AL, s
— N“!B*(A*MABN-'B*)f A*M;
AB E\JN = B} NAMI - B} N = BB} N = A}r\/[,IA))TA;[\J,I;

®
DO

h

S

ET £
2

=N~ 1B*((A*MA) (B N*lB*))TAR“M*H
= B yA" = B} y((I = BB] )(I — A}, ;A))f A%
A B*) 71)

(
(
(
(
(
(
( = B*(AT ABB},NﬁA}LVI,I;
(A

(

(

(B

(

(A

(A

(

(

M,N-1

B ) ,I)MN 1= NBI,N((A*MA)(BN_lB*)T)TA*M

B)\-1 i1 = B Ay = B'((I = BB} (I — A}y 1 A) A,
}f\/[I)J]rVM = A(BBI NAMIA)TB

INATM»NM—M HA ypa (BNTUBO)H A M A (B Vs

d3) (B} y Ay as = AB — A = A}, A)I — BB] ))'B;

MIAB)I NAT M, = B (ABBIN)E\/[I;

e AB A” = By (A)] BBy

A}L\/U (B*)N 1 1)}]\/ IAMI = B*(ABBI N)M,I;

ed BB}N MI)I uB = A(B} NAMIA)NP
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e5) N(A*MAB)} yA*M = B*(ABN~'B*)}, ;

¢6) N((A*MA)'B)} yAl, ;= B (A"}, BN71B")!]
e7) (A"MA(B* )\, ) 1 A*M = NB] y(A(BNB)Y,

e8) NB}N«A*)IM (BN 'B* )T)M 11 ((A*MA) (B )N 11);N !
e9) (AA*MABN-'B*B)\, = B} \(A"MABN-'B*)1A}, ;

f1)

M;

I,M—1 M-I

T,
AM,p

(
(
(
(
(
(f1) (Al ,AB)} =B} N(AM,ABBLN)T and
;\4,1 = (AJ]r\/I,IABB},N)TA}fW,I;
fn=N"1B*(Al, ,ABN~'B*)! and
ABB} ) = (A"MABB] )1 A*M
~ = Bl yAl ;A= Bl (1 - BB} \)(1 - Al A)tAl, A
and
(ABB] y)hyr = BB} yAly ;= BB] y((I- BB ) (I - A}, A)T A},
(81) R((AB)}, v) = R(B} v (A}, ;ABB] )AL, ) and
R(((AB)M N) ) = R((B}N(AJEM IABBI,N) Ajw,l)*)%
(82) R((AB)M N) = (B; NARJI and
R((B*A") 1) = R((A N (BN )
(g3) R(AA*MAB) = R(AB) and R((ABN~'B*B)*) = R((AB)*).

Proof. If we use the basic relation between ordinary and weighted Moore—
Penrose inverse

A}wa _ N_1/2(M1/2AN_1/2)TM1/2,
and the substitutions
A=M"Y?4, B=BN 2

all statements from this theorem reduce to statements of the already proven
Theorem [2.1] For example, let us prove (e6)<(g2):

(e6) & N((A"MA)B)] yAl, ;= B*(A")] ,, . BNT'B")}, .\ M
o NY2((A*MATBN-Y2) (M2 4) pmt/?

_ B*((A*M_I/Q)TBN_IB*)TMIM
& ((A*A)'B)TAT = B*((A")'BB")",

which is actually (e6) from Theorem
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On the other hand, for (g2) we obtain
(g2.1) < R((AB)J][\J,N) = R(B},NAEM,I)
o R(Nfl/Q(Ml/QABNfl/Q)TMl/Q)
_ R(N—I/Q(BN—l/Q)T(M1/2A)TM1/2)
R(N“V2AB) M%) = R(N~V2Bt AT M1/2)
R(N“V2(AB)N) = R(N /2 BT AT)
R((AB)') = R(BTAT),

Tt

and

(82:2) & R(B*AN\ 1) =R(AD (B )

o R(Ml/Q(N—1/2B*A*Ml/Q)TN—l/Z)
_ R(M1/2(A*M1/2)T(N—I/QB*)TN—1/2>
PN R(M1/2(B*A*)TN_1/2) _ R(Ml/Q(A*)T(B*)TN—lﬂ)
& R(M'VA(BA")T) = R(MY?(A"){(B*)")
& R((BAN) = R((A(BY)),
which means we have (g2) from Theorem Since Theorem is already
proven, the current theorem follows immediately. =

3. Conclusions. In this paper we consider a number of necessary and
sufficient conditions for the reverse order law (AB)! = Bf(ATABBT)AT to
hold for operators on Hilbert spaces. Applying this result we obtain condi-
tions equivalent to the reverse order rule for the weighted Moore—Penrose
inverse of operators. Although these results are already known for com-
plex matrices, we demonstrated a new technique of proof. In the theory
of complex matrices various authors used matrix rank to prove equivalent
conditions related to this reverse order law. In the case of bounded linear
operators on Hilbert spaces, we applied the method of operator matrices. It
would be interesting to extend this work to the Moore—Penrose inverse and
weighted Moore—Penrose inverse of a triple product.
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