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Abstract. Let X be an infinite-dimensional complex Banach space. Very recently,
several results on the existence of entire functions on X bounded on a given ball B1 ⊂ X
and unbounded on another given ball B2 ⊂ X have been obtained. In this paper we con-
sider the problem of finding entire functions which are uniformly bounded on a collection
of balls and unbounded on the balls of some other collection.

1. Introduction. Throughout the article, X will denote an infinite-
dimensional complex Banach space and H(X) will be the space of all entire
(holomorphic) functions on X. If x ∈ X and r > 0, then B(x, r) will denote
the open ball in X with center x and radius r. If f ∈ H(X) and S ⊂ X, let
‖f‖S = supx∈S |f(x)|.

When one considers a continuous linear form or a continuous polynomial
on X, it is well-known that both are bounded on every bounded subset of X.
But, as a consequence of the Josefson–Nissenzweig theorem (see [4, p. 219])
that yields the existence of a sequence (ϕn)∞n=1 of norm 1 elements in X∗

which pointwise converges to 0, the series
∑∞

n=1 ϕ
n
n is an entire function on

X which is unbounded on some ball of X (see [6, p. 157]). Some related
theorems were obtained by Aron and Kiselman in the seventies (see [3] and
[7]). The following theorem mentions several improvements of the above
result which have been obtained recently.

Theorem 1.1.

(a) (see [2]) Given two balls B0 and B1 in X such that B1 * B0 and a
real number ε > 0, there is an entire function f on X such that

‖f‖B0 < ε and ‖f‖B1 =∞.
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(b) (see [8]) Let Hb(X) be the vector subspace of H(X) of all entire
functions of bounded type, that is, bounded on every bounded subset
of X. Then there is an infinitely generated algebra A ⊂ H(X) such
that

A \ {0}⊂ H(X) \ Hb(X).

(c) (see [8]) Given two balls B0 and B1 in X such that B1 * B0, there
is an infinite-dimensional vector space F such that

F \ {0} ⊂ {f ∈ H(X) : ‖f‖B0 <∞ and ‖f‖B1 =∞}.
The purpose of this paper is to study the following problem, proposed

to us by Richard Aron, which is related to Theorem 1.1(a).

Problem 1.2. Let I and J be two subsets of N∪{0} such that I∩J = ∅.
Let {Bn : n ∈ I ∪ J} be a collection of balls in X such that Bj *

⋃
i∈I Bi

for all j ∈ J and let ε > 0. Does there exist a function f ∈ H(X) such that
‖f‖Bi

< ε for every i ∈ I and ‖f‖Bj
=∞ for every j ∈ J?

We will give answers to that problem for different choices of the sets
I and J and of the position and size of the balls. As we will see, this is
not trivial, even when the sets I and J are finite. In fact, we will have to
introduce new techniques, which can only be applied with some restrictions.
Note that Theorem 1.1(a) solves this problem for two balls.

Remark 1.3. Problem 1.2 does not always have a solution. For instance,
if we assume that X is separable and we consider a dense sequence (xi)∞i=1

in ∂B(0, 1) and ε > 0, then by the maximum modulus principle, there is no
f ∈ H(X) such that ‖f‖B(xi,1/2) < ε for every i ∈ N and ‖f‖B(0,1/2) =∞.

2. The results. We start with the case of I = {0} and J = N.

Theorem 2.1. Let (Bn)∞n=0 be a sequence of open balls in X such that
Bj * B0 for every j ∈ N. For each j, let

sj = sup{‖x‖ : x ∈ Bj}
and assume that limj→∞ sj = ∞. Then, given ε > 0, there is a function
f ∈ H(X) such that

‖f‖B0 < ε and ‖f‖Bj =∞ for every j ∈ N.
Proof. We can assume that B0 = B(0, R0) for some R0 > 0.
Since limj→∞ sj =∞, we can rearrange the sequence (Bj)∞j=1 so that

s1 ≤ s2 ≤ · · · .
Moreover, as each Bj is an open set, we have ‖x‖ < sj for every x ∈ Bj .

Let x1 ∈ B1 \B0. Then

R0 < ‖x1‖ < s1,
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so there is m1 ∈ N such that ‖x1‖ < s1 − 1/m1. We define R1 = s1 − 1/m1,
which satisfies R1 > R0. Since R1 < s1 ≤ s2, there is x2 ∈ B2 such that

R1 < ‖x2‖ < s2.

Again, we take m2 ∈ N, m2 > m1, such that ‖x2‖ < s2 − 1/m2 and we
define R2 = s2 − 1/m2.

In this way, we get two sequences (xj)∞j=1 ⊂ X and (Rj)∞j=0 ⊂ R+ with
the following properties:

(a) (Rj)∞j=0 is increasing and limj→∞Rj =∞ because limj→∞ sj =∞,
(b) for all j ≥ 1, xj ∈ Bj ∩B(0, Rj) and xj /∈ B(0, Rj−1).

Let r1 > 0 be such that B(x1, r1) ⊂ B1 ∩ B(0, R1) and B(x1, r1) ∩
B(0, R0) = ∅. Then by Theorem 1.1(a), there exists a function f1 ∈ H(X)
such that

‖f1‖B(0,R0) < 1/2 and ‖f1‖B(x1,r1) =∞.

Let r2 > 0 be such that B(x2, r2) ⊂ B2 ∩B(0, R2), B(x2, r2)∩B(0, R1) = ∅
and ‖f1‖B(x2,r2) < ∞. Again by Theorem 1.1(a), there exists f2 ∈ H(X)
such that

‖f2‖B(0,R1) < 1/22 and ‖f2‖B(x2,r2) =∞.

By repeating these arguments, we obtain two sequences (rj)∞j=1 ⊂ R+ and
(fj)∞j=1 ⊂ H(X) such that

(c) B(xj , rj) ⊂ Bj ∩B(0, Rj),
(d) B(xj , rj) ∩B(0, Rj−1) = ∅,
(e) ‖fn‖B(xj ,rj) <∞ if 1 ≤ n ≤ j − 1,
(f) ‖fj‖B(0,Rj−1) < 1/2j ,
(g) ‖fj‖B(xj ,rj) =∞.

Let K be a compact subset of X. By (a), there is j ∈ N such that
K ⊂ B(0, Rj). Then

∞∑
n=j+1

‖fn‖K ≤
∞∑

n=j+1

‖fn‖B(0,Rj) ≤
∞∑

n=j+1

‖fn‖B(0,Rn−1) ≤
∞∑

n=j+1

1
2n

<∞.

Therefore, the series
∑∞

n=1 fn converges uniformly on compact subsets of X
and defines a holomorphic function f on X.

The function f is bounded on B(0, R0):

‖f‖B(0,R0) ≤
∞∑
n=1

‖fn‖B(0,R0) ≤
∞∑
n=1

‖fn‖B(0,Rn−1) ≤
∞∑
n=1

1
2n

<∞.
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In addition, if j ∈ N, then

‖f‖Bj ≥
∥∥∥ ∞∑
n=1

fn

∥∥∥
B(xj ,rj)

≥ ‖fj‖B(xj ,rj) −
j−1∑
n=1

‖fn‖B(xj ,rj) −
∞∑

n=j+1

‖fn‖B(xj ,rj)

≥ ‖fj‖B(xj ,rj) −
j−1∑
n=1

‖fn‖B(xj ,rj) −
∞∑

n=j+1

‖fn‖B(0,Rn−1).

By (e), (f) and (g) we deduce that ‖f‖Bj = ∞. To complete the proof, it
suffices to take the function ε

‖f‖B0
+1f .

Remark 2.2. If we consider only a finite collection of balls (Bn)mn=0

such that Bj * B0 for every j ∈ {1, . . . ,m}, then the above proof can be
stopped at step m. In that case, it is trivial that the function

∑m
n=1 fn has

the properties we want.

In the proof of the next theorem we will need a result about biorthog-
onal systems. In [5, p. 250], Dilworth, Girardi and Johnson proved that in
every infinite-dimensional Banach space X there is a biorthogonal system
{xn, ϕn}∞n=1 such that limn→∞ ϕn(x) = 0 for every x ∈ X, ‖ϕn‖ = 1 for
every n and sup ‖xn‖ <∞. The proof of this fact follows from an inductive
process, so we can fix a finite number of vectors x1, . . . , xm+1 and function-
als ϕ1, . . . , ϕm+1 and complete them with a system {xn, ϕn}∞n=m+2 with the
properties given above:

Proposition 2.3. Given x1, . . . , xm+1 ∈ X and ϕ1, . . . , ϕm+1 ∈ X∗,
there are two sequences (xn)∞n=m+2 ⊂ X and (ϕn)∞n=m+2 ⊂ X∗ such that

(1) limn→∞ ϕn(x) = 0 for every x ∈ X,
(2) ‖ϕn‖ = 1 for every n ≥ m+ 2,
(3) sup ‖xn‖ <∞,
(4) {xn, ϕn}∞n=m+2 is a biorthogonal system,
(5) if 1 ≤ i ≤ m+ 1 and n ≥ m+ 2, then ϕn(xi) = 0 and ϕi(xn) = 0.

Theorem 2.4. Let {B(xn, Rn)}mn=0 be a finite collection of balls in X
such that

R0 > max{R1, . . . , Rm}.
Then there is a function f ∈ H(X) such that

‖f‖B(xi,Ri) <∞ for every i ∈ {1, . . . ,m} and ‖f‖B(x0,R0) =∞.
Proof. We can assume that x0 = 0. Let 0 < ε < 1, ε < R0, be such that

(R0 − ε)(1− ε) > max{R1, . . . , Rm}.
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Let Y be a closed hyperplane such that span{x1, . . . , xm} ⊂ Y . By Riesz’s
lemma, there exists z ∈ X such that ‖z‖ = 1 and dist(z, Y ) ≥ 1− ε. Let

xm+1 = (R0 − ε)z ∈ B(0, R0).

This vector satisfies

dist(xm+1, span{x1, . . . , xm}) ≥ dist(xm+1, Y ) = (R0 − ε) dist(z, Y )
≥ (R0 − ε)(1− ε) > max{R1, . . . , Rm}.

By the Hahn–Banach theorem, there is ϕm+1 ∈ X∗ such that ‖ϕm+1‖ = 1,
ϕm+1(xi) = 0 if 1 ≤ i ≤ m and

ϕm+1(xm+1) = dist(xm+1, span{x1, . . . , xm}).

Let us choose arbitrary functionals ϕ1, . . . , ϕm ∈ X∗ and let (xn)∞n=m+2 ⊂ X
and (ϕn)∞n=m+2 ⊂ X∗ be sequences with the properties in Proposition 2.3.

As sup ‖xn‖ < ∞, there is r > 0 such that xm+1 + rxn ∈ B(0, R0) for
every n. Since ϕm+1(xm+1) > max{R1, . . . , Rm}, there exists c > 0 with

max{R1, . . . , Rm} < 1/c < ϕm+1(xm+1).

Then
cRi < 1 < cϕm+1(xm+1)

for every i ∈ {1, . . . ,m}, so there is α ∈ N such that (cRi)αRi < 1 for every
i ∈ {1, . . . ,m} and (cϕm+1(xm+1))αr > 1.

The function

f =
∞∑

n=m+2

((cϕm+1)αϕn)n

is holomorphic on X since limn→∞ ϕn(x) = 0 for every x ∈ X. If 1 ≤ i ≤ m,
then f is bounded on B(xi, Ri):

‖f‖B(xi,Ri) = sup
‖x‖<Ri

|f(xi + x)| = sup
‖x‖<Ri

∣∣∣ ∞∑
n=m+2

((cϕm+1(x))αϕn(x))n
∣∣∣

≤
∞∑

n=m+2

((cRi)αRi)n <∞.

On the other hand,

sup
n≥m+2

|f(xm+1 + rxn)| = sup
n≥m+2

((cϕm+1(xm+1))αr)n =∞.

Thus we deduce that ‖f‖B(0,R0) =∞.

Remark 2.5. The condition R0 > max{R1, . . . , Rm} in the above theo-
rem is sometimes unnecessary, as Theorem 1.1(a) shows.
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Corollary 2.6. Let m,n ∈ N, n > m, and consider two finite sequences
of balls, {B(xi, Ri)}mi=1 and {B(xj , Rj)}nj=m+1, such that

max{R1, . . . , Rm} < min{Rm+1, . . . , Rn}.
Then for every ε > 0 there is a function f ∈ H(X) such that

‖f‖B(xi,Ri) < ε for every i ∈ {1, . . . ,m}
and

‖f‖B(xj ,Rj) =∞ for every j ∈ {m+ 1, . . . , n}.
Proof. Let us choose positive numbers rm+1, . . . , rn such that

max{R1, . . . , Rm} < rm+1 < · · · < rn < min{Rm+1, . . . , Rn}.
By Theorem 2.4, there exists fm+1 ∈ H(X) such that ‖fm+1‖B(xi,Ri) < ∞
for every i ∈ {1, . . . ,m} and ‖fm+1‖B(xm+1,rm+1) =∞. We have to consider
two different cases:

(1) If ‖fm+1‖B(xm+2,rm+2) =∞, then let fm+2 = fm+1.
(2) If ‖fm+1‖B(xm+2,rm+2) < ∞, then, by Theorem 2.4, there exists a

function gm+1 ∈ H(X) such that ‖gm+1‖B(xi,Ri) <∞ for 1 ≤ i ≤ m,
‖gm+1‖B(xm+1,rm+1) <∞ and ‖gm+1‖B(xm+2,rm+2) =∞. Let fm+2 =
fm+1 + gm+1.

In both cases, fm+2 is an entire function such that

‖fm+2‖B(xi,Ri) <∞ for every i ∈ {1, . . . ,m},
‖fm+2‖B(xm+1,Rm+1) ≥ ‖fm+2‖B(xm+1,rm+1) =∞,
‖fm+2‖B(xm+2,Rm+2) ≥ ‖fm+2‖B(xm+2,rm+2) =∞.

The proof follows by recurrence. Finally, we take the function ε
C+1fn, where

C = max1≤i≤m ‖fn‖B(xi,Ri).

Theorem 2.7. Let X be a Banach space with a Schauder basis (en)∞n=1

such that
0 < inf ‖en‖ ≤ sup ‖en‖ <∞.

Let (ϕn)∞n=1 ⊂ X∗ be the sequence of coefficient functionals associated to the
basis and let M = sup ‖ϕn‖. If J ⊂ N, Rj > 0 for every j ∈ J and ε > 0,
then there exists f ∈ H(X) such that

‖f‖B(0,1/M) < ε, ‖f‖B(ei,1/M) < ε for every i ∈ N \ J
and

‖f‖B(ej ,Rj) =∞ for every j ∈ J.
Proof. First of all, note that M < ∞ because inf ‖en‖ > 0 (see [9, p.

20]). For each j ∈ J , let tj ∈ R be such that

1 < tj < 1 +
Rj
‖ej‖

.
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Then tjej ∈ B(ej , Rj). As sup ‖en‖ < ∞, there is rj > 0 such that tjej +
rjen ∈ B(ej , Rj) for every n ∈ N. Since tj > 1, there is αj ∈ N such that
1
3 t
αj

j rj > 1.
Let K be a compact subset of X. As inf ‖en‖> 0, we have limn→∞ ϕn(x)

= 0 for all x ∈ X (see [9, p. 21]). Therefore, limn→∞ ‖ϕn‖K = 0 as well, so
there exists n0 ∈ N such that ‖ϕn‖K ≤ 1 for all n ≥ n0. Moreover, there is
n1 ∈ N, n1 > n0, such that(

sup
j∈J, j≤n0−1

‖ϕαj

j ‖K
)
· ‖ϕn‖K ≤ 1

for all n ≥ n1. Thus,∑
j∈J

∞∑
n=j+1

∥∥∥∥(1
3
ϕ
αj

j ϕn

)n∥∥∥∥
K

≤
∑
j∈J

j≤n0−1

n1−1∑
n=j+1

∥∥∥∥1
3
ϕ
αj

j ϕn

∥∥∥∥n
K

+
∑
j∈J

j≤n0−1

∞∑
n=n1

1
3n

+
∞∑

j=n0

∞∑
n=j+1

1
3n

<∞.

This implies that the series∑
j∈J

∞∑
n=j+1

(
1
3
ϕ
αj

j ϕn

)n
converges uniformly on compact subsets of X. Consequently, it defines an
entire function f on X.

This function is bounded on B(0, 1/M):

‖f‖B(0,1/M) ≤
∑
j∈J

∞∑
n=j+1

(
1
3

(
‖ϕj‖

1
M

)αj

‖ϕn‖
1
M

)n
≤
∞∑
j=1

∞∑
n=j+1

1
3n

<∞.

Let i ∈ N \ J and x ∈ X, ‖x‖ < 1/M . We have

|f(ei + x)| ≤
∑
j∈J

∞∑
n=j+1

(
|ϕj(x)|αj · |ϕn(ei) + ϕn(x)|

3

)n
≤
∑
j∈J

∞∑
n=j+1

(
|ϕn(ei)|+ |ϕn(x)|

3

)n
≤
∞∑
j=1

∞∑
n=j+1

(
2
3

)n
<∞.

Therefore,

‖f‖B(ei,1/M) = sup
‖x‖<1/M

|f(ei + x)| ≤
∞∑
j=1

∞∑
n=j+1

(
2
3

)n
<∞.

If we now fix j ∈ J , then

‖f‖B(ej ,Rj) ≥ sup
n≥j+1

|f(tjej + rjen)| = sup
n≥j+1

(
1
3
t
αj

j rj

)n
=∞.
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To complete the proof of the theorem, we take the function ε
C+1f , where

C =
∞∑
j=1

∞∑
n=j+1

(
2
3

)n
<∞.

Acknowledgements. The second author has been supported by Uni-
versidad Complutense de Madrid, grant BE45/08.

References

[1] J. M. Ansemil, R. M. Aron and S. Ponte, Representation of spaces of entire functions
on Banach spaces, Publ. Res. Inst. Math. Sci. 45 (2009), 383–391.

[2] —, —, —, Behavior of entire functions on balls in a Banach space, Indag. Math.
(N.S.) 20 (2009), 483–489.

[3] R. M. Aron, Entire functions of unbounded type on a Banach space, Boll. Un. Mat.
Ital. 9 (1974), 28–31.

[4] J. Diestel, Sequences and Series in Banach Spaces, Springer, New York, 1984.
[5] S. J. Dilworth, M. Girardi and W. B. Johnson, Geometry of Banach spaces and

biorthogonal systems, Studia Math. 140 (2000), 243–271.
[6] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer Monogr.

Math., Springer, London, 1999.
[7] C. O. Kiselman, On the radius of convergence of an entire function in a normed

space, Ann. Polon. Math. 33 (1976), 39–55.
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