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Grauert’s theorem for subanalytic open sets
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Abstract. By an open neighbourhood in Cn of an open subset Ω of Rn we mean an
open subset Ω′ of Cn such that Rn ∩Ω′ = Ω. A well known result of H. Grauert implies
that any open subset of Rn admits a fundamental system of Stein open neighbourhoods
in Cn. Another way to state this property is to say that each open subset of Rn is Stein.
We shall prove a similar result in the subanalytic category: every subanalytic open subset
in a paracompact real analytic manifold M admits a fundamental system of subanalytic
Stein open neighbourhoods in any complexification of M .

1. Introduction. A classical result of H. Grauert states that an open
set in a real analytic manifold MR is locally the trace on MR of a Stein open
set in any given complexification MC of MR.

The analogous result in the semi-analytic setting is easy to obtain because
when f is a real analytic function, say near 0 in Rn, the set {f > 0} is near
0 the trace on Rn of the Stein open set {<(f) > 0} intersected with a small
open ball in Cn.

We solve the subanalytic case of this problem using the following rather
deep result (Theorem 2.1 below):

• each compact subanalytic set in Rn is the zero set of a C 2 subanalytic
function on Rn.

The construction of the subanalytic Stein open subset we are looking for is
then an easy consequence of H. Grauert’s idea.

Let us mention without technical details that applications of our result
arise naturally in the theory of sheaves on subanalytic sites, as developed by
L.Prelli [13] (cf. [10] for the foundations of the theory of ind-sheaves). It entails,
for instance, that the subanalytic sheaf of tempered analytic functions on a real
analytic manifold is concentrated in degree zero as in the classical case.
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We conclude this article by computing one very simple example which is
not semi-analytic in order to show that the subanalytic case is much more
involved and also to explain to non-specialists of subanalytic geometry (like
ourselves) the ideas and tools hidden behind this construction.

2. Main results and proofs. We refer to [1], [3], [11] and [15] for the
basic material on subanalytic geometry.

The following result due to Bierstone, Milman and Pawłucki comes from
a 1995 private letter to W. Schmid and K. Vilonen (cf. [14]). We refer to [4,
C.11] for a proof in the more general setting of o-minimal structures.

Theorem 2.1. Let A be a compact subanalytic set in Rn and let p ∈ N.
Then there exists a C p subanalytic function f on Rn such that A = f−1(0).

Remark 2.2. Let U be an open ball in Rn and Z a relatively compact
subanalytic open set in U . Then there exists a C 2 subanalytic function g :
Rn → R+ with compact support in U such that

Z = {x ∈ Rn ; g(x) > 0}.
To see this, apply the previous theorem to Ū \ Z and define g to be f on U
and 0 on Rn \ U . As U is subanalytic and f is identically zero around ∂U ,
this function g has the required properties.

Moreover, we can divide g by any given positive constant without chang-
ing the set Z, so for each ε > 0 we may assume that the Levi form of g is
uniformly bounded on Rn by ε‖z‖2.

Corollary 2.3. Let Ω be a subanalytic open set in a paracompact real
analytic manifold MR. Then, for any complexification MC of MR, and for
any given smooth hermitian metric on the complex tangent bundle of MC
there exists a subanalytic non-negative function f on MC of class C 2 such
that

{f > 0} ∩MR = Ω

and such that the Levi form of f is bounded by the given hermitian metric.
Moreover, f can be chosen so that supp f is contained in any given open set
in MC containing the closed set Ω̄.

Proof. For ε > 0, denote by Bε an open ball of Rn of radius ε and by BC
ε

the corresponding ball in Cn.
For each p ∈ Ω̄ (the closure of Ω) there exist two relatively compact open

subanalytic neighbourhoods V ⊂⊂ U of p in MC and a complex analytic
isomorphism ϕ from an open neighbourhood W of Ū to an open ball BC

ε

such that ϕ(V̄ ) is the closed ball B̄C
ε/2, and ϕ is real onW∩MR. In particular,

V̄ ∩MR ⊂ U is a compact subanalytic subset, and Ū is a compact subanalytic
subset of W .
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As MR is paracompact, we get a locally finite countable cover (Ui)i∈N∗
of Ω̄ such that the conditions above are satisfied. On each Ui, by the re-
mark following Theorem 2.1, we may choose a C 2 non-negative subanalytic
function fi on MC with compact support in Ui whose non-zero set is exactly
Vi ∩Ω, and such that its Levi form is bounded by h/2i for any given hermi-
tian metric h on MC. Then define f :=

∑∞
i=1 fi. As this sum is locally finite,

it clearly satisfies our requirements.
The last assertion follows by applying this construction in any open neigh-

bourhood W of Ω̄ in MC regarded as a complexification of W ∩MR.

Theorem 2.4. Let Ω be a subanalytic open set in a paracompact real
analytic manifoldMR. Then, given a complexificationMC ofMR, there exists
a subanalytic Stein open subset ΩC of MC such that

(2.1) Ω = ΩC ∩MR.

Proof. Let n be the dimension ofMR. By Grauert’s Theorem 3 [5, p. 470],
there exist a natural number N ∈ N and a real analytic regular proper
embedding ϕ of MR in the euclidean space RN . By complexification, one
defines a holomorphic map ϕC in a neighbourhood V of MR in MC taking
values in CN , such that ϕC|MR = ϕ and the rank of ϕC is everywhere equal
to n.

Note that the Levi form of the real analytic function

g(z1, . . . , zN ) =
N∑
j=1

(=zj)2

is half the square norm in CN , hence g is strictly plurisubharmonic on CN .
By the maximality of the rank of ϕC, the function ϕ∗C(g) is also strictly
plurisubharmonic on V and subanalytic (in fact analytic).

Fix now a smooth hermitian metric (1) h on TCV such that the Levi form
of ϕ∗C(g) is larger than 2h at each point.

By Corollary 2.3, there exists a subanalytic C 2 non-negative function f
with support in V such that

{f > 0} ∩MR = Ω

and the Levi form of f is bounded by h. So the Levi form of the C 2 suban-
alytic function

ψ := ϕ∗C(g)− f

is positive definite at each point of V . It follows that the open set

ΩC = {ψ < 0} ∩ V

(1) For instance 1/2 of the Levi form of ϕ∗C(g) may be chosen as Kähler form on V .
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is (strongly 1-complete) Stein by Grauert’s famous result and subanalytic in
MC by construction.

Moreover, as ϕ∗C(g) = 0 in MR, it follows that ΩC ∩MR = Ω.

3. Example: A strange four-leaved trefoil. Our aim is now to give
an explicit construction of the function f in Theorem 2.1 in the case of one of
the simplest examples which is not semi-analytic. For that purpose we shall
only use the Łojasiewicz inequalities and Theorem 3.2 below, which are basic
tools in subanalytic geometry. We think that this analysis will convince the
reader of the strength and usefulness of Theorem 2.1 and that this tool is
far from being elementary.

We shall need the following refinement of subanalyticity.

3.1. Strong subanalyticity. For a continuous function f : Rn → R to
be subanalytic simply means that its graph is a subanalytic set in Rn × R,
but in the non-continuous case we shall use a stronger assumption, in order
to control the behaviour of the graph near points where f is not locally
bounded. We restrict ourselves to the context we need.

Definition 3.1. Let Ω ⊂⊂ Rn a relatively compact subanalytic open
set, and let f : Ω → R be a continuous function. We shall say that f is
strongly subanalytic if the function f̃ : Rn → R defined by extending f by 0
on Rn \Ω has a subanalytic graph in Rn×P1, where P1 is the 1-dimensional
projective space R ∪ {∞}.

It is easy to see that strong subanalyticity implies that the growth of
f near a boundary point in ∂Ω has to be bounded by some power of the
function d(x, ∂Ω) thanks to the Łojasiewicz inequalities ([1]).

If f̃ is continuous this condition reduces to the usual subanalyticity of
the graph of f̃ in Rn × R.

We shall also need the following theorem (cf. [11, Theorem (2.4)]).

Theorem 3.2. Let Ω ⊂⊂ Rn be a relatively compact subanalytic open
set, and let f : Ω → R be a strongly subanalytic C 1 function. Then any
partial derivative of f in Ω is also strongly subanalytic.

Since, in Definition 3.1, the continuity of f̃ just means that f(x) goes to
0 when x ∈ Ω goes to the boundary ∂Ω, using the Łojasiewicz inequalities
we easily obtain the following corollary:

Corollary 3.3. In the situation of the previous theorem, assume that
f̃ is continuous. Then there exists an integer N1 such that f̃N1 is C 1 on Rn

and subanalytic.

Now applying again the ideas of the previous corollary we finally obtain:
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Corollary 3.4. In the situation of the previous corollary there exists
an integer N2 such that f̃N2 is C 2 on Rn and subanalytic.

Remark 3.5. In view of the preceding results, the remaining non-trivial
step to prove the existence of a subanalytic C 2 function which vanishes
exactly on Rn \Ω as stated in Theorem 2.1, is to show the existence of a C 2

strictly positive (strongly) subanalytic function f on Ω which vanishes at the
boundary. The natural candidate is, of course, the function x 7→ d(x, ∂Ω).
But then all conditions are satisfied except smoothness. And non-smoothness
points may go to the boundary. If one tries to use the “desingularization
theorem” of H. Hironaka to solve this problem, a new difficulty arises because
the jacobian of the modification may vanish inside Ω and not only at some
points of ∂Ω.

3.2. Example. Let us consider the analytic map F : R3 → R3 defined
by

F (x, y, z) =
(
y(ex − 1) + x2 + y2 + z2 − ε2, y(ex

√
2 − 1), y(ex

√
3 − 1)

)
.

Denote by Ω the interior of the image Ω̃ of the compact ball B̄3(0, ε). We
start by showing that the image under F of the sphere Sε (the boundary
of B̄(0, ε)) is a subanalytic compact subset of R3 which is not semi-analy-
tic in the neighbourhood of (0, 0, 0). This example is extracted from [8, Ex-
ample I.6].

Lemma 3.6. The compact set F (Sε) is not semi-analytic in the neigh-
bourhood of the origin.

Proof. Since this compact set has an empty interior, if it were semi-
analytic in a neighbourhood of the origin, there would exist an analytic
function f : U → R on a ball U centred at 0, not identically zero, such that
f−1(0) contains U ∩ F (Sε). Let

f =
∑
m≥m0

Pm

be the Taylor series of f at the origin, which we may assume to be convergent
in U small enough. We shall assume that the homogeneous polynomial Pm0 is
not identically zero. Hence, considering (x, y, z) ∈ Sε close enough to (0, 0, ε),
the definition of F entails the equality

0 ≡
∑
m≥m0

ymPm((ex − 1), (ex
√

2 − 1), (ex
√

3 − 1))

for (x, y) ∈ R2 close enough to (0, 0). We conclude that Pm0(ex−1, ex
√

2−1,
ex
√

3−1) is identically zero for x in a neighbourhood of 0. Hence this analytic
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function vanishes identically on R. Its behaviour at infinity easily entails (2)
that we must have Pm0 ≡ 0, which gives a contradiction.

We shall now describe the open set Ω. Let us remark that the jacobian
of F is given by

J(F )(x, y, z) = 2yz
(
(
√

2−
√

3)ex(
√

2+
√

3) −
√

2 ex
√

2 +
√

3 ex
√

3
)

and for ε small enough, it does not vanish on {xyz 6= 0} within the ball
B̄3(0, ε). Indeed, the brackets give an analytic function of a single variable x;
hence it has an isolated zero at x = 0. The image of {xy = 0} ∩ B̄3(0, ε)
under F is [−ε2, 0]× {(0, 0)}, which is contained in (3) the boundary of Ω̃.
The image of {z = 0} is more complicated to describe.

Now consider the analytic morphism G : R2 → R2 defined by

G(x, y) :=
(
y(ex

√
2 − 1), y(ex

√
3 − 1)

)
.

Denote by Γ the image under G of the ball B̄2(0, ε) of R2. If (v, w) ∈
Γ \ {(0, 0)} then the fibre G−1(v, w) reduces to a single point (for ε small
enough). In fact we must have vw 6= 0 and

(ex
√

2 − 1)

(ex
√

3 − 1)
=
v

w
=
√

2√
3
h(x)

whenever h ∈ C{x} converges for |x| < 2π/
√

3 and satisfies h(0) = 1 and
h′(0) = (

√
2 −
√

3)/2; these equations determine a unique x ∈ [−ε, ε], for
ε� 1, and hence a unique y. Note that for x in a neighbourhood of 0, v/w
is close to

√
2/
√

3. Therefore Γ approaches (0, 0) only along that direction.
The fibre over (0, 0) of G is the curve {xy = 0} ∩ B̄2(0, ε).
Observe that the points in the sphere {x2 + y2 = ε2} are mapped to the

boundary of Γ . Indeed, those on {xy = 0} are mapped to the origin. On
the other hand, for those points not mapped to the origin, the jacobian of G
does not vanish and the boundary of B̄2(0, ε) is mapped to the boundary
of Γ in a neighbourhood of that point.

Hence, any point of the interior Γ ′ of Γ is the image under G of some
point in B2(0, ε) \ {xy = 0}.

We shall denote by ϕ : Γ \ {(0, 0)} → R the subanalytic function (4)
given by ϕ(v, w) = ‖G−1(v, w)‖2, in other words, the composition of G−1

with the square of the euclidean norm in R2.

(2) This is equivalent to the algebraic independence of the functions ex − 1, ex
√

2 − 1,
ex
√

3 − 1.
(3) See the description of Γ near (0, 0) given below
(4) The graph of G−1 : Γ \ {(0, 0)} → B̄2(0, ε \ {xy = 0} is the same as the graph of

G : B̄2(0, ε) \ {xy = 0} → Γ \ {(0, 0)}.
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We shall denote by ψ : Γ \ {(0, 0)} → R the subanalytic function defined
by setting ψ(v, w) = y(ex − 1) where G−1(v, w) = (x, y), and we set

∆+ :=
{

(ψ(v, w), v, w) ; (v, w) ∈ Γ \ {(0, 0)}
}
,

∆− :=
{

(ψ(v, w) + ϕ(v, w)− ε2, v, w) ; (v, w) ∈ Γ \ {(0, 0)}
}
,

∆0 := [−ε2, 0]× {(0, 0)}.
Note that
∆+ ∩∆− =

{
(u, v, w) ∈ R× (Γ \ {(0, 0)}) ; u = ψ(v, w) and ϕ(v, w) = ε2

}
is the graph of the restriction of ψ to ∂Γ \ {(0, 0)}.

We now have the following description of Ω̃ and of its interior Ω.

Lemma 3.7. One has ∂Ω̃ = ∆+ ∪∆− ∪∆0. The interior Ω is the open
set

Ω =
{

(u, v, w) ∈ R× Γ ′ ; ψ(v, w) + ϕ(v, w)− ε2 < u < ψ(v, w)
}

where Γ ′ denotes the interior of Γ .

Proof. Let (u, v, w) ∈ Ω̃. If vw = 0 then xy = 0 and v = w = 0, and
u = x2 + y2 + z2− ε2 belongs to [−ε2, 0] which is contained in ∆0. Since the
projection of Ω on R2 is an open set contained in Γ , hence in Γ ′, the point
(u, v, w) does not belong to Ω.

Let us now assume uv 6= 0. There is a point (x, y, z) ∈ B̄3(0, ε) such that
F (x, y, z) = (u, v, w) with xy 6= 0. Then (x, y) ∈ B̄2(0, ε) \ {xy = 0} and
G(x, y) = (v, w) is not (0, 0). Since ϕ(v, w) = x2 + y2 we have

u = ψ(v, w) + ϕ(v, w) + z2 − ε2

where z ∈ [−ε, ε] is, up to sign, determined by this equation. We conclude
that the inequalities
(3.1) ψ(v, w) + ϕ(v, w)− ε2 ≤ u ≤ ψ(v, w)

hold on Ω̃. We have to check that ∂Ω̃\∆0 is exactly described by the equality
(3.2) (u− ψ(v, w)− ϕ(v, w) + ε2)(ψ(v, w)− u) = 0.

Since the projection on R2 is open, if (v, w) 6∈ Γ ′ then it must lie at
the boundary of Ω. It suffices to prove that for (v, w) ∈ Γ ′ the equality
above implies that (v, w) is at the boundary. This is clear because near any
(u, v, w) ∈ Ω one can find δ > 0 such that ]u − δ, u + δ[ × {(v, w)} is con-
tained in Ω, which is not possible by the inequalities (3.1) at a point where
the equality (3.2) is satisfied.

Hence it is sufficient to prove that Ω̃ \∆0 is the set of points (u, v, w) in
R× (Γ \ {(0, 0)}) satisfying (3.1). Indeed, any choice of (v, w) ∈ Γ \ {(0, 0)}
gives a unique point (x, y) ∈ B2(0, ε) such that G(x, y) = (v, w) and (3.1)
entails that we can find z ∈ R such that z2 = u−ψ(v, w)−ϕ(v, w) + ε2 and
ϕ(v, w) + z2 ≤ ε2. Note that if u = ψ(v, w) + ϕ(v, w) − ε2 we have z = 0.
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Therefore, the boundary ∆− corresponds to the image of B̄3(0, ε)∩ {z = 0}
\ ∆0. Similarly the equality u = ψ(v, w) corresponds to the image of the
sphere {x2 + y2 + z2 = ε2} with ∆0 removed.

Now define f : R3 → R+ by

f(u, v, w) =
{

(ψ(v, w)− u)(u− ψ(v, w)− ϕ(v, w) + ε2) for (u, v, w) ∈ Ω,
0 for (u, v, w) 6∈ Ω.

Note that f is strictly positive on Ω by Lemma 3.7, and that it is analytic
on the complement of ∂Ω, since the functions ϕ and ψ are analytic on Γ ′.
Moreover f is bounded.

Let us now define f̃(u, v, w) = f(u, v, w)v2w2.

Lemma 3.8. The function f̃ : R3 → R+ is subanalytic and continuous,
it satisfies

Ω = {(u, v, w) ∈ R3 ; f̃(u, v, w) > 0}
and it is C∞ on R3 \ ∂Ω.

Proof. First we prove that f is subanalytic (5). Since its graph is the
union of the graph of its restriction to Ω and the set (R3 \Ω)×{0} which is
subanalytic, Ω being an open subanalytic set of R3, it is sufficient to prove
that the graph of the restriction of f to Ω is subanalytic.

Consider the polynomial morphism h : R3 → R given by

h(x, y, z) = (ε2 − (x2 + y2 + z2))z2

and denote by X, X1, X2 the graphs of the restrictions of h respectively
to B̄3(0, ε), ∂B3(0, ε), B̄3(0, ε) ∩ {xy = 0}, and by Y , Y1, Y2 the respective
images of these graphs under the morphism F × id : R3 × R→ R3 × R.

Let us prove that the graph of the restriction of f to Ω is equal to Y \
(Y1∪Y2). Indeed, for (u, v, w) ∈ Ω, if (x, y, z) ∈ B̄3(0, ε) satisfies F (x, y, z) =
(u, v, w), we get ϕ(v, w) = x2 + y2, ψ(v, w) = y(ex − 1) and u = ψ(v, w) +
ϕ(v, w) + z2 − ε2.

One sees that f(u, v, w) = (ε2− (x2 + y2 + z2))z2. To finish, it is enough
to note that the points of F (B̄3(0, ε) ∩ {xy = 0}) and of F (∂B3(0, ε)) are
never in Ω. Hence f̃ is subanalytic.

Let us show that it is continuous along ∂Ω, since it is C∞ on R3\∂Ω. Let
(u0, v0, w0) ∈ ∂Ω. First assume that (u0, v0, w0) ∈ ∆+. Then u0 = ψ(v0, w0),
in other words, we get the image under F of a point (x, y, z) ∈ ∂B3(0, ε) \
{xy = 0}. Hence the limit of u − ψ(v, w) when (u, v, w) ∈ Ω tends to
(u0, v0, w0) is zero. As the functions ψ and ϕ are bounded on Ω, the limit of
f̃ is zero at such a point.

(5) As pointed out by the referee, this fact is a consequence of basic stability properties
of subanalytic functions. We give a direct proof for non-specialists.
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If (u0, v0, w0) ∈ ∆−, then we have the image of a point in

(B̄3(0, ε) ∩ {z = 0}) \ {xy = 0}.
Since the function ψ is bounded on Γ the limit of f at such a point is zero,
and so is the case for f̃ .

If (u0, v0, w0) ∈ ∆0 then v0 = w0 = 0 and the function f is bounded,
hence f̃ tends to 0 at such a point.

Let us finally show that Ω is the set where f̃ is strictly positive. It is
sufficient to check that vw 6= 0 on Ω. But vw = 0 entails xy = 0 and
so v = w = 0 and u = x2 + y2 + z2 − ε2, in other words, (u, v, w) ∈
[−ε2, 0]× (0, 0) = ∆0. Hence such a (v, w) belongs to ∂Ω.

We have now constructed a subanalytic function f̃ on R3 which is con-
tinuous and strictly positive exactly on Ω ⊂⊂ R3. By Corollary 3.4 there
exists a positive integer N such that f̃N is of class C 2. Then one gets a Stein
open subanalytic set of C3 which intersects R3 exactly in Ω as in the general
proof of Theorem 2.4.
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