Isomorphic classification of the tensor products $E_0(\exp \alpha i) \widehat{\otimes} E_\infty(\exp \beta j)$

 $\mathbf{b}\mathbf{y}$

PETER CHALOV (Rostov-na-Donu) and VYACHESLAV ZAKHARYUTA (Istanbul)

Abstract. It is proved, using so-called multirectangular invariants, that the condition $\alpha\beta = \tilde{\alpha}\tilde{\beta}$ is sufficient for the isomorphism of the spaces $E_0(\exp \alpha i) \otimes E_{\infty}(\exp \beta j)$ and $E_0(\exp \tilde{\alpha} i) \otimes E_{\infty}(\exp \tilde{\beta} j)$. This solves a problem posed in [14, 15, 1]. Notice that the necessity has been proved earlier in [14].

1. Introduction. Let $A = (a_{ip})_{i \in I, p \in \mathbb{N}}$ be a matrix of real numbers such that $0 \leq a_{ip} \leq a_{i,p+1}$, where I is a countable set. The Köthe space defined by the matrix A is the locally convex space $K(A) = K((a_{ip}))$ of all sequences $\xi = (\xi_i)_{i \in I}$ such that $|\xi|_p := \sum_{i \in I} a_{ip} |\xi_i| < \infty$ for all $p \in \mathbb{N}$, with the topology generated by the system of seminorms $\{|\xi|_p : p \in \mathbb{N}\}$. We denote the canonical basis by $e = \{e_i\}_{i \in I}$.

We say that X = K(A) is quasidiagonally isomorphic to $\tilde{X} = K(\tilde{A})$ with $\tilde{A} = (\tilde{a}_{jp})_{j \in J, p \in \mathbb{N}}$ (and write $X \stackrel{\text{qd}}{\simeq} \tilde{X}$) if there exists a bijection $\varphi : I \to J$ and a scalar sequence t_i such that the mapping $Te_i := t_i e_{\varphi(i)}, i \in I$, can be extended (by linearity and continuity) to an isomorphism $T : X \to \tilde{X}$.

A. Grothendieck considered in [5] an important particular class of Köthe spaces:

(1.1)
$$E_{\lambda}(a) := K((\exp(\lambda - 1/p)a_i)), \quad a = (a_i), -\infty < \lambda \le \infty,$$

usually called *power series spaces* [4, 6] of finite type if $\lambda < \infty$ (without loss of generality we may consider only $\lambda = 0$), and of infinite type if $\lambda = \infty$. A complete isomorphic classification of the spaces (1.1) is due to B. Mityagin [7, 9]. Spaces of different type possess very different properties: $E_0(a)$ is not isomorphic to $E_{\infty}(b)$ if a or b is not bounded (see, e.g., [7]), moreover,

²⁰¹⁰ Mathematics Subject Classification: Primary 46A32; Secondary 46A04.

Key words and phrases: multirectangular characteristics, tensor product, power Köthe spaces.

every continuous linear operator $T : E_0(a) \to E_\infty(b)$ is bounded (compact if $b_i \to \infty$) [12].

In [13, 14] the second author introduced so-called *power Köthe spaces of* the first type:

(1.2)
$$E(\lambda, c) = K((\exp(-1/p + \lambda_i p)c_i)), \quad c = (c_i), \ \lambda = (\lambda_i).$$

Including (up to isomorphism) all the spaces (1.1), this class also contains spaces of much more complicated, mixed "finite-infinite type" structure, in particular, *Cartesian and tensor products of power series spaces of different type* (for some results on isomorphic classification and linear topological structure of such spaces see, e.g., [13, 14, 3, 2]).

Our main goal is the following result solving a problem posed in [14, 15, 1].

THEOREM 1. Let $\alpha, \beta, \tilde{\alpha}, \tilde{\beta}$ be positive numbers. Then the following statements are equivalent:

- (i) $X = E_0(\exp \alpha i) \widehat{\otimes} E_\infty(\exp \beta j)$ is isomorphic to the space $\tilde{X} = E_0(\exp \tilde{\alpha} i) \widehat{\otimes} E_\infty(\exp \tilde{\beta} j),$
- (ii) $X \stackrel{\text{qd}}{\simeq} \tilde{X}$,
- (iii) $\alpha\beta = \tilde{a}\tilde{\beta}$.

This particular case is of a special interest because the sequences like $a_i = \exp \alpha i$ are exactly on the border between so-called *shift-stable sequences* (for which $\limsup a_{i+1}/a_i < \infty$) and *lacunary sequences* ($\limsup a_{i+1}/a_i = \infty$). In fact, we need to prove only (iii) \Rightarrow (ii), since (ii) \Rightarrow (i) is obvious and (i) \Rightarrow (iii) has been proved in [14].

A crucial role in our proof is played by a system of multirectangular characteristics for the space (1.2) (see Section 2). It is worth mentioning that estimating multirectangular invariants through a single rectangle invariant (see Propositions 6 and 7) is similar, in a sense, to the transition from one interval to a union of intervals in Mityagin's investigation of the spaces (1.1) [8, 9].

2. Multirectangular invariants. Dealing with spaces (1.2) we always assume that

$$c_i > 1, \quad \lambda_i \le 1.$$

Given $m \in \mathbb{N}$, an *m*-rectangular characteristic of the space $X = E(\lambda, c)$ is the function

(2.1)
$$\mu_m^X(\delta,\varepsilon;\tau,t) := \Big| \bigcup_{k=1}^m \{i : \delta_k < \lambda_i \le \varepsilon_k, \, \tau_k < c_i \le t_k\} \Big|,$$

where

(2.2)
$$\delta = (\delta_k), \quad \varepsilon = (\varepsilon_k), \quad \tau = (\tau_k), \quad t = (t_k) \\ 0 \le \delta_k < \varepsilon_k \le 1, \quad 1 \le \tau_k < t_k < \infty$$

and |S| is the number of elements in S if S is finite, and $+\infty$ otherwise. This function counts those points (λ_i, c_i) that lie in the union of the m rectangles

(2.3)
$$P_k := (\delta_k, \varepsilon_k] \times (\tau_k, t_k], \quad k = 1, \dots, m.$$

Let $X = E(\lambda, c)$ and $\tilde{X} = E(\tilde{\lambda}, \tilde{c})$. We say that the systems of *m*rectangular characteristics (μ_m^X) and $(\mu_m^{\tilde{X}})$ are equivalent (and write $(\mu_m^X) \approx (\mu_m^{\tilde{X}})$) if there exist a strictly increasing bijection $\varphi : [0, 2] \to [0, 1]$ and a positive constant Δ such that

(2.4)
$$\mu_m^X(\delta,\varepsilon;\tau,t) \le \mu_m^X(\varphi(\delta),\varphi^{-1}(\varepsilon);\tau/\Delta,\Delta t),$$

(2.5)
$$\mu_m^X(\delta,\varepsilon;\tau,t) \le \mu_m^X(\varphi(\delta),\varphi^{-1}(\varepsilon);\tau/\Delta,\Delta t)$$

for every $m \in \mathbb{N}$ and all parameters $\delta, \varepsilon, \tau, t$; here $\varphi(\delta) = (\varphi(\delta_k)), \varphi^{-1}(\varepsilon) = (\varphi^{-1}(\varepsilon_k)), \tau/\Delta = (\tau_k/\Delta), \Delta t = (\Delta t_k).$

We shall use the following characterization of the quasidiagonal isomorphism of power Köthe spaces of first type in terms of their systems of multirectangular characteristics ([3]).

PROPOSITION 2. The spaces $X = E(\lambda, c)$ and $\tilde{X} = E(\tilde{\lambda}, \tilde{c})$ are quasidiagonally isomorphic if and only if $(\mu_m^X) \approx (\mu_m^{\tilde{X}})$.

The following fact will be useful in further considerations.

PROPOSITION 3 ([13, 14]). Let $a = (a_i)_{i \in \mathbb{N}}$, $b = (b_j)_{i \in \mathbb{N}}$, $c = (c_{ij})$, $c_{ij} = \max\{a_i, b_j\}$ and $\lambda = (\lambda_{ij})$, $\lambda_{ij} = b_j/c_{ij}$; let $\{e_i \otimes e_j\}$ and $\{e_{ij}\}$ be the canonical bases in $E_0(a) \otimes E_{\infty}(b)$ and $E(\lambda, c)$. Then the mapping $e_i \otimes e_j \mapsto e_{ij}$, $(i, j) \in \mathbb{N}^2$, can be uniquely extended to an isomorphism $T : E_0(a) \otimes E_{\infty}(b) \to E(\lambda, c)$.

3. Proof of Theorem 1. In what follows, X and \hat{X} are the spaces from Theorem 1. By Proposition 3 we may assume that

$$X = E(\lambda, c), \qquad \tilde{X} = E(\tilde{\lambda}, \tilde{c}),$$

where $c = (c_{ij}), \lambda = (\lambda_{ij})$ with

 $c_{ij} = \max\{\exp\alpha i, \exp\beta j\}, \quad \lambda_{ij} = \min\{1, \exp(\beta j - \alpha i)\},$ and $\tilde{c} = (\tilde{c}_{ij}), \, \tilde{\lambda} = (\tilde{\lambda}_{ij}), \, \text{with}$

$$\tilde{c}_{ij} = \max\{\exp \tilde{\alpha}i, \exp \tilde{\beta}j\}, \quad \tilde{\lambda}_{ij} = \min\{1, \exp(\tilde{\beta}j - \tilde{\alpha}i)\}, \quad (i, j) \in \mathbb{N}^2.$$

First we obtain some estimates for a single rectangle characteristic with a special choice of parameters.

,

LEMMA 4. If $\alpha\beta = \tilde{\alpha}\tilde{\beta}$ then there exists C > 1 such that (3.1) $\mu_1^X(e^{-1}, 1; \tau, t) \leq \mu_1^{\tilde{X}}(\delta, 1; \tau, Ct)$

for all $\delta \in [0, 1)$ and $1 \le \tau < t < \infty$.

Proof. In our case

$$\mu_1^X(e^{-1}, 1; \tau, t) = |L_1 \cup L_2|, \quad \mu_1^{\tilde{X}}(\delta, 1; \tau, Ct) \ge |\tilde{L}|,$$

where

$$L_{1} = \left\{ (i,j) : \frac{\alpha i - 1}{\beta} < j \le \frac{\alpha i}{\beta}; \frac{\ln \tau}{\alpha} < i \le \frac{\ln t}{\alpha} \right\},$$

$$L_{2} = \left\{ (i,j) : i \le \frac{\beta j}{\alpha}; \frac{\ln \tau}{\beta} < j \le \frac{\ln t}{\beta} \right\},$$

$$\tilde{L} = \left\{ (i,j) : i \le \frac{\tilde{\beta} j}{\tilde{\alpha}}; \frac{\ln \tau}{\tilde{\beta}} < j \le \frac{\ln t + \ln C}{\tilde{\beta}} \right\}.$$

Setting $M = ((\ln t)^2 - (\ln \tau)^2)/2\alpha\beta$ and taking into account that $\alpha\beta = \tilde{\alpha}\tilde{\beta}$ one can easily obtain the following estimates:

$$(3.2) \quad |L_1| \leq \frac{(1+\beta)\ln t}{\alpha\beta},$$

$$(3.3) \quad |L_2| \leq \frac{(\ln t + \ln \tau + \beta)(\ln t - \ln \tau + \beta)}{2\alpha\beta} = M + \frac{2\beta\ln t + \beta^2}{2\alpha\beta},$$

$$(3.4) \quad |\tilde{L}| \geq \frac{(\ln t + \ln \tau + \ln C - \tilde{\beta})(\ln t - \ln \tau + \ln C - \tilde{\beta})}{2\tilde{\alpha}\tilde{\beta}}$$

$$- \frac{\ln t + \ln C}{\tilde{\beta}}$$

$$\geq M + \frac{(\ln C)^2 + 2(\ln C - \tilde{\beta} - \tilde{\alpha})\ln t - 2(\tilde{\alpha} + \tilde{\beta})\ln C}{2\alpha\beta}.$$

Now we choose a constant C > 1 so that $|L_1 \cup L_2| \leq |\tilde{L}|$.

The desired estimates will be guaranteed if the sum of the right sides of (3.2) and (3.3) is smaller than the right side of (3.4):

 $2\alpha\beta$

 $\ln^2 C + 2(\ln C - (\tilde{\alpha} + \tilde{\beta} + 2\beta + 1))\ln t \ge 2(\tilde{\alpha} + \tilde{\beta})\ln C + \beta^2.$

It is easy to see that this inequality is true for all $t > \tau \ge 1$ if we choose C so that $\ln C \ge 2(\beta + \tilde{\alpha} + \tilde{\beta}) + 1 + \beta^2$.

LEMMA 5. If $\alpha\beta = \tilde{\alpha}\tilde{\beta}$ then there exist constants C and p such that

(3.5)
$$\mu_1^X(\delta,\varepsilon;\tau,t) \le \mu_1^X(\delta^p,\varepsilon^{1/p};\tau,t)$$

for

(3.6)
$$0 \le \delta < \varepsilon \le e^{-1}, \quad 1 \le \tau, \quad C\tau < t < +\infty.$$

Proof. Taking into account the expressions for Köthe matrices of the spaces X and \tilde{X} , we can obtain the following estimates:

$$\begin{split} \mu_1^X(\delta,\varepsilon;\tau,t) &= |\{(i,j):\ln\delta < \beta j - \alpha i \le \ln\varepsilon; \ln\tau < \alpha i \le \ln t\}|\\ &\le \frac{(\ln\varepsilon - \ln\delta + \beta)(\ln t - \ln\tau + \alpha)}{\alpha\beta},\\ \mu_1^{\tilde{X}}(\delta^p,\varepsilon^{1/p};\tau,t) &= \left| \left\{ (i,j):p\ln\delta < \tilde{\beta}j - \tilde{\alpha}i \le \frac{\ln\varepsilon}{p}; \ln\tau < \tilde{\alpha}i \le \ln t \right\} \right|\\ &\ge \frac{\left(\frac{\ln\varepsilon}{p} - p\ln\delta - \tilde{\beta}\right)(\ln t - \ln\tau - \tilde{\alpha})}{\tilde{\alpha}\tilde{\beta}}. \end{split}$$

It follows from these estimates that the inequality (3.5) will hold for the parameters (3.6) if we take the constants so that

$$\ln C > 2 \max\{\alpha, \tilde{\beta}\}, \quad p > 2(\beta + \tilde{\alpha} + \tilde{\beta} + 1). \bullet$$

In the following two statements we obtain estimates (2.4) for arbitrary $m \in \mathbb{N}$, but for special unions of rectangles that are located along some horizontal or vertical strips.

PROPOSITION 6. Let $\alpha\beta = \tilde{\alpha}\tilde{\beta}$ and let p > 1, C > 1 be the constants of Lemma 5. Then

(3.7)
$$\mu_m^X(\delta,\varepsilon;\tau,t) \le \mu_m^{\tilde{X}}(\delta^p,\varepsilon^{1/p};\tau,t), \quad m \in \mathbb{N},$$

for all $\delta = (\delta_k)$, $\varepsilon = (\varepsilon_k) \in [0, e^{-1}]^m$ with $\delta_k < \varepsilon_k$, and $t = (t, \dots, t)$, $\tau = (\tau, \dots, \tau)$ with $1 \le \tau < t/C$; here $\delta^p := (\delta^p_k)_{k=1}^m$ and $\varepsilon^{1/p} := (\varepsilon^{1/p}_k)_{k=1}^m$.

Proof. Representing the set $E := \bigcup_{k=1}^{m} (\delta_k^p, \varepsilon_k^{1/p}]$ as a disjoint union of intervals, $E = \bigcup_{j=1}^{i} (\tilde{\delta}_j^p, \tilde{\varepsilon}_j^{1/p}]$, and applying Lemma 3 to each rectangle $(\tilde{\delta}_j, \tilde{\varepsilon}_j] \times (\tau, t]$, we obtain

$$\begin{split} \mu_m^X(\delta,\varepsilon;\tau,t) &\leq \sum_{j=1}^i \mu_1^X(\tilde{\delta}_j,\tilde{\varepsilon}_j;\tau,t) \\ &\leq \sum_{j=1}^i \mu_1^{\tilde{X}}(\tilde{\delta}_j^p,\tilde{\varepsilon}_j^{1/p};\tau,t) = \mu_m^{\tilde{X}}(\delta^p,\varepsilon^{1/p};\tau,t). \blacksquare \end{split}$$

PROPOSITION 7. Let $\alpha\beta = \tilde{\alpha}\tilde{\beta}$. Then there exists C > 1 such that

$$\mu_m^X(e^{-1}, 1; \tau, t) \le \mu_m^{\tilde{X}}(\delta, 1; \tau, Ct), \quad m \in \mathbb{N},$$

for $0 < \delta < 1$ and all $\tau = (\tau_k)$, $t = (t_k) \in \mathbb{R}^m$ with $1 \le \tau_k < t_k < +\infty$; here $Ct = (Ct_k)_{k=1}^m$.

Proof. Let C be the constant of Lemma 4. Take any $m \in \mathbb{N}$, $\tau = (\tau_k)$, $t = (t_k)$ such that $1 \leq \tau_k < t_k$, $k = 1, \ldots, m$, and represent the set E :=

 $\bigcup_{k=1}^{m} (\tau_k, Ct_k]$ as a union of disjoint intervals, $E = \bigcup_{j=1}^{i} (\tilde{\tau}_j, C\tilde{t}_j]$. Then, applying Lemma 4 to each rectangle $(e^{-1}, 1] \times (\tilde{\tau}_j, \tilde{t}_j]$, we obtain

$$\begin{split} \mu_m^X(e^{-1},1;\tau,t) &\leq \sum_{j=1}^i \mu_1^X(e^{-1},1;\tilde{\tau}_j,\tilde{t}_j) \\ &\leq \sum_{j=1}^i \mu_1^{\tilde{X}}(\delta,1;\tilde{\tau}_j,C\tilde{t}_j) = \mu_m^{\tilde{X}}(\delta,1;\tau,Ct). \ \bullet \end{split}$$

Now we are ready to prove Theorem 1. As noted above, we need only show (iii) \Rightarrow (ii).

By Proposition 2, it is sufficient to prove that the systems (μ_m^X) and $(\mu_m^{\tilde{X}})$ are equivalent, that is, there exists a constant Δ and a function φ such that for any m and for any collection (2.2) we have (2.4) and (2.5). Due to symmetry, it is sufficient to prove only (2.4).

Let $\alpha\beta = \tilde{\alpha}\tilde{\beta}$. Then we choose a constant C and p satisfying the conditions of Propositions 6 and 7. We are going to prove that (2.4) holds with $\Delta = C^2$ and any strictly increasing function $\varphi : [0,2] \rightarrow [0,1]$ such that $\varphi(x) = x^{1/p}, 0 \leq x \leq e^{-1}$, namely

(3.8)
$$\left|\left\{i: (\lambda_i, c_i) \in \bigcup_{k=1}^m P_k\right\}\right| \le \left|\left\{i: (\tilde{\lambda}_i, \tilde{c}_i) \in \bigcup_{k=1}^m Q_k\right\}\right|$$

for any $m \in \mathbb{N}$, any system of rectangles (2.3) and

$$Q_k = (\varphi(\delta_k), \varphi^{-1}(\varepsilon)] \times (\tau_k / \Delta, \Delta t_k], \quad k = 1, \dots, m.$$

To this end we introduce two auxiliary collections of rectangles in the following way. Taking from the set $\{e^{-1}, \delta_k, \varepsilon_k : k = 1, \ldots, m\}$ only different numbers $\leq e^{-1}$ in increasing order, we obtain a new set $\{\xi_k : k = 1, \ldots, n\}$ with $\xi_n = e^{-1}$. Setting $\xi_{n+1} = 1$ and $\eta_s = C^{s-1}$, $s \in \mathbb{N}$, consider the rectangles

$$\begin{aligned} R_{r,s} &= (\xi_r, \xi_{r+1}] \times (\eta_s, \eta_{s+1}], \\ S_{r,s} &= \begin{cases} (\xi_r^p, \xi_{r+1}^{1/p}] \times (\eta_s, \eta_{s+1}] & \text{if } r < n, \\ (e^{-1/p}, 1] \times (\eta_s, C\eta_{s+1}] & \text{if } r = n, \end{cases} \end{aligned}$$

with $r = 1, \ldots, n$ and $s \in \mathbb{N}$. Let

$$M = \left\{ (r,s) : R_{r,s} \cap \left(\bigcup_{k=1}^{m} P_k \right) \neq \emptyset \right\}.$$

It is easily seen that

(3.9)
$$\bigcup_{k=1}^{m} P_k \subset \bigcup_{(r,s)\in M} R_{r,s}, \quad \bigcup_{(r,s)\in M} S_{r,s} \subset \bigcup_{k=1}^{m} Q_k.$$

By Proposition 7, we have an estimate

$$(3.10) \quad \left|\left\{i: (\lambda_i, c_i) \in \bigcup_{s: (n,s) \in M} R_{n,s}\right\}\right| \le \left|\left\{i: (\tilde{\lambda}_i, \tilde{c}_i) \in \bigcup_{s: (n,s) \in M} S_{n,s}\right\}\right|.$$

On the other hand, by Proposition 6, we have

$$(3.11) \quad \left|\left\{i: (\lambda_i, c_i) \in \bigcup_{r < n: (r,s) \in M} R_{r,s}\right\}\right| \le \left|\left\{i: (\tilde{\lambda}_i, \tilde{c}_i) \in \bigcup_{r < n: (n,s) \in M} S_{r,s}\right\}\right|$$

for any s such that there exists r < n with $(r, s) \in M$. By the construction of the rectangles, we observe that

(3.12)
$$\left(\bigcup_{r < n: (r,s) \in M} S_{r,s}\right) \cap \left(\bigcup_{q: (n,q) \in M} S_{n,q}\right) = \emptyset,$$

and for all $s_1 \neq s_2$ we have

(3.13)
$$\left(\bigcup_{r< n} S_{r,s_1}\right) \cap \left(\bigcup_{r< n} S_{r,s_2}\right) = \emptyset.$$

Combining (3.9)–(3.13), we get (3.8), which completes the proof.

References

- P. A. Chalov, Tensor products of power series spaces of different type, Mat. Zametki 83 (2008), 629–635 (in Russian); English transl.: Math. Notes 83 (2008), 573–578.
- [2] P. Chalov, T. Terzioğlu, and V. Zahariuta, Multirectangular invariants for power Köthe spaces, J. Math. Anal. Appl. 297 (2004), 673–695.
- [3] P. Chalov and V. Zahariuta, On quasidiagonal isomorphism of generalized power spaces, in: Linear Topological Spaces and Complex Analysis 2, A. Aytuna (ed.), METU - TÜBİTAK, Ankara, 1995, 35–44.
- [4] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Springer, Berlin, 1979.
- [5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [6] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Univ. Press, New York, 1997.
- B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk. 16 (1961), no. 4, 63–132 (in Russian); English transl.: Russian Math. Surveys 16 (1961), no. 4, 59–127.
- [8] —, Equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111–137.
- [9] —, Non-Schwartzian power spaces, Math. Z. 182 (1983), 303–310.
- [10] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
- [11] V. P. Zahariuta [V. P. Zakharyuta], The isomorphism and quasiequivalence of bases for power Köthe spaces, Dokl. Akad. Nauk SSSR 221 (1975), 772–774 (in Russian); English transl.: Soviet Math. Dokl. 16 (1975), 411–414.
- [12] —, On the isomorphism of Cartesian products of locally convex spaces, Studia Math. 46 (1973), 201–221.

- [13] V. P. Zahariuta, The isomorphism and quasiequivalence of bases for Köthe spaces, (in Russian), in: Mathematical Programming and Related Questions (Drogobych, 1974), Theory of operators in linear spaces, Tsentral. Ekonom. Mat. Inst. Akad. Nauk SSSR, Moscow, 1976, 101–126.
- [14] —, Linear topological invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996), 237–289.
- [15] V. P. Zahariuta and P. A. Chalov, On basis structure of power Köthe spaces of the first type, Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. 1 (2007), no. 1, 8–12 (in Russian).

Peter Chalov Department of Mathematics South Federal University 344090 Rostov-na-Donu, Russia E-mail: chalov@math.rsu.ru Vyacheslav Zakharyuta Sabanci University 34956 Istanbul, Turkey E-mail: zaha@sabanciuniv.edu

Received January 30, 2011

(7097)

282