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Isomorphic classification of the tensor products
E0(expαi) ⊗̂ E∞(exp βj)

by

Peter Chalov (Rostov-na-Donu) and
Vyacheslav Zakharyuta (Istanbul)

Abstract. It is proved, using so-called multirectangular invariants, that the condition
αβ = α̃β̃ is sufficient for the isomorphism of the spaces E0(expαi) b⊗ E∞(expβj) and
E0(exp α̃i) b⊗ E∞(exp β̃j). This solves a problem posed in [14, 15, 1]. Notice that the
necessity has been proved earlier in [14].

1. Introduction. Let A = (aip)i∈I, p∈N be a matrix of real numbers
such that 0 ≤ aip ≤ ai,p+1, where I is a countable set. The Köthe space
defined by the matrix A is the locally convex space K(A) = K((aip)) of
all sequences ξ = (ξi)i∈I such that |ξ|p :=

∑
i∈I aip|ξi| < ∞ for all p ∈ N,

with the topology generated by the system of seminorms {|ξ|p : p ∈ N}. We
denote the canonical basis by e = {ei}i∈I .

We say that X = K(A) is quasidiagonally isomorphic to X̃ = K(Ã) with

Ã = (ãjp)j∈J, p∈N (and write X
qd
' X̃) if there exists a bijection ϕ : I → J

and a scalar sequence ti such that the mapping Tei := tieϕ(i), i ∈ I, can be
extended (by linearity and continuity) to an isomorphism T : X → X̃.

A. Grothendieck considered in [5] an important particular class of Köthe
spaces:

(1.1) Eλ(a) := K((exp(λ− 1/p)ai)), a = (ai), −∞ < λ ≤ ∞,
usually called power series spaces [4, 6] of finite type if λ <∞ (without loss
of generality we may consider only λ = 0), and of infinite type if λ = ∞.
A complete isomorphic classification of the spaces (1.1) is due to B. Mityagin
[7, 9]. Spaces of different type possess very different properties: E0(a) is not
isomorphic to E∞(b) if a or b is not bounded (see, e.g., [7]), moreover,
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every continuous linear operator T : E0(a) → E∞(b) is bounded (compact
if bi →∞) [12].

In [13, 14] the second author introduced so-called power Köthe spaces of
the first type:

(1.2) E(λ, c) = K((exp(−1/p+ λip)ci)), c = (ci), λ = (λi).

Including (up to isomorphism) all the spaces (1.1), this class also contains
spaces of much more complicated, mixed “finite-infinite type” structure, in
particular, Cartesian and tensor products of power series spaces of different
type (for some results on isomorphic classification and linear topological
structure of such spaces see, e.g., [13, 14, 3, 2]).

Our main goal is the following result solving a problem posed in [14, 15, 1].

Theorem 1. Let α, β, α̃, β̃ be positive numbers. Then the following state-
ments are equivalent:

(i) X = E0(expαi) ⊗̂ E∞(expβj) is isomorphic to the space X̃ =
E0(exp α̃i) ⊗̂ E∞(exp β̃j),

(ii) X
qd
' X̃,

(iii) αβ = ãβ̃.

This particular case is of a special interest because the sequences like ai =
expαi are exactly on the border between so-called shift-stable sequences (for
which lim sup ai+1/ai < ∞) and lacunary sequences (lim ai+1/ai = ∞). In
fact, we need to prove only (iii)⇒(ii), since (ii)⇒(i) is obvious and (i)⇒(iii)
has been proved in [14].

A crucial role in our proof is played by a system of multirectangular
characteristics for the space (1.2) (see Section 2). It is worth mentioning that
estimating multirectangular invariants through a single rectangle invariant
(see Propositions 6 and 7) is similar, in a sense, to the transition from one
interval to a union of intervals in Mityagin’s investigation of the spaces (1.1)
[8, 9].

2. Multirectangular invariants. Dealing with spaces (1.2) we always
assume that

ci > 1, λi ≤ 1.

Given m ∈ N, an m-rectangular characteristic of the space X = E(λ, c) is
the function

(2.1) µXm(δ, ε; τ, t) :=
∣∣∣ m⋃
k=1

{i : δk < λi ≤ εk, τk < ci ≤ tk}
∣∣∣,
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where
δ = (δk), ε = (εk), τ = (τk), t = (tk),
0 ≤ δk < εk ≤ 1, 1 ≤ τk < tk <∞

(2.2)

and |S| is the number of elements in S if S is finite, and +∞ otherwise. This
function counts those points (λi, ci) that lie in the union of the m rectangles

(2.3) Pk := (δk, εk]× (τk, tk], k = 1, . . . ,m.

Let X = E(λ, c) and X̃ = E(λ̃, c̃). We say that the systems of m-
rectangular characteristics (µXm) and (µX̃m) are equivalent (and write (µXm) ≈
(µX̃m)) if there exist a strictly increasing bijection ϕ : [0, 2] → [0, 1] and a
positive constant ∆ such that

µXm(δ, ε; τ, t) ≤ µX̃m(ϕ(δ), ϕ−1(ε); τ/∆,∆t),(2.4)

µX̃m(δ, ε; τ, t) ≤ µXm(ϕ(δ), ϕ−1(ε); τ/∆,∆t)(2.5)

for every m ∈ N and all parameters δ, ε, τ, t; here ϕ(δ) = (ϕ(δk)), ϕ−1(ε) =
(ϕ−1(εk)), τ/∆ = (τk/∆), ∆t = (∆tk).

We shall use the following characterization of the quasidiagonal isomor-
phism of power Köthe spaces of first type in terms of their systems of mul-
tirectangular characteristics ([3]).

Proposition 2. The spaces X = E(λ, c) and X̃ = E(λ̃, c̃) are quasi-
diagonally isomorphic if and only if (µXm) ≈ (µX̃m).

The following fact will be useful in further considerations.

Proposition 3 ([13, 14]). Let a = (ai)i∈N, b = (bj)i∈N, c = (cij),
cij = max{ai, bj} and λ = (λij), λij = bj/cij; let {ei ⊗ ej} and {eij}
be the canonical bases in E0(a) ⊗̂ E∞(b) and E(λ, c). Then the mapping
ei ⊗ ej 7→ eij, (i, j) ∈ N2, can be uniquely extended to an isomorphism
T : E0(a) ⊗̂ E∞(b) → E(λ, c).

3. Proof of Theorem 1. In what follows, X and X̃ are the spaces from
Theorem 1. By Proposition 3 we may assume that

X = E(λ, c), X̃ = E(λ̃, c̃),

where c = (cij), λ = (λij) with

cij = max{expαi, expβj}, λij = min{1, exp(βj − αi)},
and c̃ = (c̃ij), λ̃ = (λ̃ij), with

c̃ij = max{exp α̃i, exp β̃j}, λ̃ij = min{1, exp(β̃j − α̃i)}, (i, j) ∈ N2.

First we obtain some estimates for a single rectangle characteristic with a
special choice of parameters.
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Lemma 4. If αβ = α̃β̃ then there exists C > 1 such that

(3.1) µX1 (e−1, 1; τ, t) ≤ µX̃1 (δ, 1; τ, Ct)

for all δ ∈ [0, 1) and 1 ≤ τ < t <∞.
Proof. In our case

µX1 (e−1, 1; τ, t) = |L1 ∪ L2|, µX̃1 (δ, 1; τ, Ct) ≥ |L̃|,
where

L1 =
{

(i, j) :
αi− 1
β

< j ≤ αi

β
;

ln τ
α

< i ≤ ln t
α

}
,

L2 =
{

(i, j) : i ≤ βj

α
;

ln τ
β

< j ≤ ln t
β

}
,

L̃ =
{

(i, j) : i ≤ β̃j

α̃
;

ln τ
β̃

< j ≤ ln t+ lnC
β̃

}
.

Setting M = ((ln t)2 − (ln τ)2)/2αβ and taking into account that αβ = α̃β̃
one can easily obtain the following estimates:

|L1| ≤
(1 + β) ln t

αβ
,(3.2)

|L2| ≤
(ln t+ ln τ + β)(ln t− ln τ + β)

2αβ
= M +

2β ln t+ β2

2αβ
,(3.3)

|L̃| ≥ (ln t+ ln τ + lnC − β̃)(ln t− ln τ + lnC − β̃)
2α̃β̃

(3.4)

− ln t+ lnC
β̃

≥M +
(lnC)2 + 2(lnC − β̃ − α̃) ln t− 2(α̃+ β̃) lnC

2αβ
.

Now we choose a constant C > 1 so that |L1 ∪ L2| ≤ |L̃|.
The desired estimates will be guaranteed if the sum of the right sides of

(3.2) and (3.3) is smaller than the right side of (3.4):

ln2C + 2(lnC − (α̃+ β̃ + 2β + 1)) ln t ≥ 2(α̃+ β̃) lnC + β2.

It is easy to see that this inequality is true for all t > τ ≥ 1 if we choose C
so that lnC ≥ 2(β + α̃+ β̃) + 1 + β2.

Lemma 5. If αβ = α̃β̃ then there exist constants C and p such that

(3.5) µX1 (δ, ε; τ, t) ≤ µX̃1 (δp, ε1/p; τ, t)

for

(3.6) 0 ≤ δ < ε ≤ e−1, 1 ≤ τ, Cτ < t < +∞.
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Proof. Taking into account the expressions for Köthe matrices of the
spaces X and X̃, we can obtain the following estimates:

µX1 (δ, ε; τ, t) = |{(i, j) : ln δ < βj − αi ≤ ln ε; ln τ < αi ≤ ln t}|

≤ (ln ε− ln δ + β)(ln t− ln τ + α)
αβ

,

µX̃1 (δp, ε1/p; τ, t) =
∣∣∣∣{(i, j) : p ln δ < β̃j − α̃i ≤ ln ε

p
; ln τ < α̃i ≤ ln t

}∣∣∣∣
≥
(

ln ε
p − p ln δ − β̃

)
(ln t− ln τ − α̃)

α̃β̃
.

It follows from these estimates that the inequality (3.5) will hold for the
parameters (3.6) if we take the constants so that

lnC > 2 max{α, β̃}, p > 2(β + α̃+ β̃ + 1).

In the following two statements we obtain estimates (2.4) for arbitrary
m ∈ N, but for special unions of rectangles that are located along some
horizontal or vertical strips.

Proposition 6. Let αβ = α̃β̃ and let p > 1, C > 1 be the constants of
Lemma 5. Then

(3.7) µXm(δ, ε; τ, t) ≤ µX̃m(δp, ε1/p; τ, t), m ∈ N,
for all δ = (δk), ε = (εk) ∈ [0, e−1]m with δk < εk, and t = (t, . . . , t),
τ = (τ, . . . , τ) with 1 ≤ τ < t/C; here δp := (δpk)mk=1 and ε1/p := (ε1/pk )mk=1.

Proof. Representing the set E :=
⋃m
k=1(δpk, ε

1/p
k ] as a disjoint union of

intervals, E =
⋃i
j=1(δ̃pj , ε̃

1/p
j ], and applying Lemma 3 to each rectangle

(δ̃j , ε̃j ]× (τ, t], we obtain

µXm(δ, ε; τ, t) ≤
i∑

j=1

µX1 (δ̃j , ε̃j ; τ, t)

≤
i∑

j=1

µX̃1 (δ̃pj , ε̃
1/p
j ; τ, t) = µX̃m(δp, ε1/p; τ, t).

Proposition 7. Let αβ = α̃β̃. Then there exists C > 1 such that

µXm(e−1, 1; τ, t) ≤ µX̃m(δ, 1; τ, Ct), m ∈ N,
for 0 < δ < 1 and all τ = (τk), t = (tk) ∈ Rm with 1 ≤ τk < tk < +∞; here
Ct = (Ctk)mk=1.

Proof. Let C be the constant of Lemma 4. Take any m ∈ N, τ = (τk),
t = (tk) such that 1 ≤ τk < tk, k = 1, . . . ,m, and represent the set E :=
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k=1(τk, Ctk] as a union of disjoint intervals, E =

⋃i
j=1(τ̃j , Ct̃j ]. Then,

applying Lemma 4 to each rectangle (e−1, 1]× (τ̃j , t̃j ], we obtain

µXm(e−1, 1; τ, t) ≤
i∑

j=1

µX1 (e−1, 1; τ̃j , t̃j)

≤
i∑

j=1

µX̃1 (δ, 1; τ̃j , Ct̃j) = µX̃m(δ, 1; τ, Ct).

Now we are ready to prove Theorem 1. As noted above, we need only
show (iii)⇒(ii).

By Proposition 2, it is sufficient to prove that the systems (µXm) and
(µX̃m) are equivalent, that is, there exists a constant ∆ and a function ϕ such
that for any m and for any collection (2.2) we have (2.4) and (2.5). Due to
symmetry, it is sufficient to prove only (2.4).

Let αβ = α̃β̃. Then we choose a constant C and p satisfying the condi-
tions of Propositions 6 and 7. We are going to prove that (2.4) holds with
∆ = C2 and any strictly increasing function ϕ : [0, 2] → [0, 1] such that
ϕ(x) = x1/p, 0 ≤ x ≤ e−1, namely

(3.8)
∣∣∣{i : (λi, ci) ∈

m⋃
k=1

Pk

}∣∣∣ ≤ ∣∣∣{i : (λ̃i, c̃i) ∈
m⋃
k=1

Qk

}∣∣∣
for any m ∈ N, any system of rectangles (2.3) and

Qk = (ϕ(δk), ϕ−1(ε)]× (τk/∆,∆tk], k = 1, . . . ,m.

To this end we introduce two auxiliary collections of rectangles in the fol-
lowing way. Taking from the set {e−1, δk, εk : k = 1, . . . ,m} only different
numbers ≤ e−1 in increasing order, we obtain a new set {ξk : k = 1, . . . , n}
with ξn = e−1. Setting ξn+1 = 1 and ηs = Cs−1, s ∈ N, consider the
rectangles

Rr,s = (ξr, ξr+1]× (ηs, ηs+1],

Sr,s =

{
(ξpr , ξ

1/p
r+1]× (ηs, ηs+1] if r < n,

(e−1/p, 1]× (ηs, Cηs+1] if r = n,

with r = 1, . . . , n and s ∈ N. Let

M =
{

(r, s) : Rr,s ∩
( m⋃
k=1

Pk

)
6= ∅
}
.

It is easily seen that

(3.9)
m⋃
k=1

Pk ⊂
⋃

(r,s)∈M

Rr,s,
⋃

(r,s)∈M

Sr,s ⊂
m⋃
k=1

Qk.
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By Proposition 7, we have an estimate

(3.10)
∣∣∣{i : (λi, ci) ∈

⋃
s: (n,s)∈M

Rn,s

}∣∣∣ ≤ ∣∣∣{i : (λ̃i, c̃i) ∈
⋃

s: (n,s)∈M

Sn,s

}∣∣∣.
On the other hand, by Proposition 6, we have

(3.11)
∣∣∣{i : (λi, ci) ∈

⋃
r<n: (r,s)∈M

Rr,s

}∣∣∣ ≤ ∣∣∣{i : (λ̃i, c̃i) ∈
⋃

r<n: (n,s)∈M

Sr,s

}∣∣∣
for any s such that there exists r < n with (r, s) ∈M . By the construction
of the rectangles, we observe that

(3.12)
( ⋃
r<n: (r,s)∈M

Sr,s

)
∩
( ⋃
q: (n,q)∈M

Sn,q

)
= ∅,

and for all s1 6= s2 we have

(3.13)
( ⋃
r<n

Sr,s1

)
∩
( ⋃
r<n

Sr,s2

)
= ∅.

Combining (3.9)–(3.13), we get (3.8), which completes the proof.
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Math. Soc. 16 (1955).

[6] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Univ. Press,
New York, 1997.

[7] B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat.
Nauk. 16 (1961), no. 4, 63–132 (in Russian); English transl.: Russian Math. Surveys
16 (1961), no. 4, 59–127.

[8] —, Equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111–137.

[9] —, Non-Schwartzian power spaces, Math. Z. 182 (1983), 303–310.

[10] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.

[11] V. P. Zahariuta [V. P. Zakharyuta], The isomorphism and quasiequivalence of bases
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