Isomorphic classification of the tensor products

$$
E_{0}(\exp \alpha i) \widehat{\otimes} E_{\infty}(\exp \beta j)
$$

by
Peter Chalov (Rostov-na-Donu) and
Vyacheslav Zakharyuta (Istanbul)

Abstract

It is proved, using so-called multirectangular invariants, that the condition $\alpha \beta=\tilde{\alpha} \tilde{\beta}$ is sufficient for the isomorphism of the spaces $E_{0}(\exp \alpha i) \widehat{\otimes} E_{\infty}(\exp \beta j)$ and $E_{0}(\exp \tilde{\alpha} i) \widehat{\otimes} E_{\infty}(\exp \tilde{\beta} j)$. This solves a problem posed in [14, 15, 1]. Notice that the necessity has been proved earlier in [14].

1. Introduction. Let $A=\left(a_{i p}\right)_{i \in I, p \in \mathbb{N}}$ be a matrix of real numbers such that $0 \leq a_{i p} \leq a_{i, p+1}$, where I is a countable set. The Köthe space defined by the matrix A is the locally convex space $K(A)=K\left(\left(a_{i p}\right)\right)$ of all sequences $\xi=\left(\xi_{i}\right)_{i \in I}$ such that $|\xi|_{p}:=\sum_{i \in I} a_{i p}\left|\xi_{i}\right|<\infty$ for all $p \in \mathbb{N}$, with the topology generated by the system of seminorms $\left\{|\xi|_{p}: p \in \mathbb{N}\right\}$. We denote the canonical basis by $e=\left\{e_{i}\right\}_{i \in I}$.

We say that $X=K(A)$ is quasidiagonally isomorphic to $\tilde{X}=K(\tilde{A})$ with $\tilde{A}=\left(\tilde{a}_{j p}\right)_{j \in J, p \in \mathbb{N}}($ and write $X \stackrel{\text { qd }}{\simeq} \tilde{X})$ if there exists a bijection $\varphi: I \rightarrow J$ and a scalar sequence t_{i} such that the mapping $T e_{i}:=t_{i} e_{\varphi(i)}, i \in I$, can be extended (by linearity and continuity) to an isomorphism $T: X \rightarrow \tilde{X}$.
A. Grothendieck considered in [5] an important particular class of Köthe spaces:

$$
\begin{equation*}
E_{\lambda}(a):=K\left(\left(\exp (\lambda-1 / p) a_{i}\right)\right), \quad a=\left(a_{i}\right),-\infty<\lambda \leq \infty \tag{1.1}
\end{equation*}
$$

usually called power series spaces [4, 6] of finite type if $\lambda<\infty$ (without loss of generality we may consider only $\lambda=0$), and of infinite type if $\lambda=\infty$. A complete isomorphic classification of the spaces (1.1) is due to B. Mityagin [7, 9]. Spaces of different type possess very different properties: $E_{0}(a)$ is not isomorphic to $E_{\infty}(b)$ if a or b is not bounded (see, e.g., [7]), moreover,

[^0]every continuous linear operator $T: E_{0}(a) \rightarrow E_{\infty}(b)$ is bounded (compact if $b_{i} \rightarrow \infty$) 12].

In [13, 14] the second author introduced so-called power Köthe spaces of the first type:

$$
\begin{equation*}
E(\lambda, c)=K\left(\left(\exp \left(-1 / p+\lambda_{i} p\right) c_{i}\right)\right), \quad c=\left(c_{i}\right), \lambda=\left(\lambda_{i}\right) \tag{1.2}
\end{equation*}
$$

Including (up to isomorphism) all the spaces (1.1), this class also contains spaces of much more complicated, mixed "finite-infinite type" structure, in particular, Cartesian and tensor products of power series spaces of different type (for some results on isomorphic classification and linear topological structure of such spaces see, e.g., [13, 14, 3, 2]).

Our main goal is the following result solving a problem posed in [14, 15, 1 .
Theorem 1. Let $\alpha, \beta, \tilde{\alpha}, \tilde{\beta}$ be positive numbers. Then the following statements are equivalent:
(i) $X=E_{0}(\exp \alpha i) \widehat{\otimes} E_{\infty}(\exp \beta j)$ is isomorphic to the space $\tilde{X}=$ $E_{0}(\exp \tilde{\alpha} i) \widehat{\otimes} E_{\infty}(\exp \tilde{\beta} j)$,
(ii) $X \stackrel{\text { qd }}{\sim} \tilde{X}$,
(iii) $\alpha \beta=\tilde{a} \tilde{\beta}$.

This particular case is of a special interest because the sequences like $a_{i}=$ $\exp \alpha i$ are exactly on the border between so-called shift-stable sequences (for which $\left.\lim \sup a_{i+1} / a_{i}<\infty\right)$ and lacunary sequences $\left(\lim a_{i+1} / a_{i}=\infty\right)$. In fact, we need to prove only $(\mathrm{iii}) \Rightarrow(\mathrm{ii})$, since $(\mathrm{ii}) \Rightarrow(\mathrm{i})$ is obvious and $(\mathrm{i}) \Rightarrow(\mathrm{iii})$ has been proved in [14].

A crucial role in our proof is played by a system of multirectangular characteristics for the space 1.2 (see Section 2). It is worth mentioning that estimating multirectangular invariants through a single rectangle invariant (see Propositions 6 and 7) is similar, in a sense, to the transition from one interval to a union of intervals in Mityagin's investigation of the spaces (1.1) [8, 9].
2. Multirectangular invariants. Dealing with spaces 1.2 we always assume that

$$
c_{i}>1, \quad \lambda_{i} \leq 1
$$

Given $m \in \mathbb{N}$, an m-rectangular characteristic of the space $X=E(\lambda, c)$ is the function

$$
\begin{equation*}
\mu_{m}^{X}(\delta, \varepsilon ; \tau, t):=\left|\bigcup_{k=1}^{m}\left\{i: \delta_{k}<\lambda_{i} \leq \varepsilon_{k}, \tau_{k}<c_{i} \leq t_{k}\right\}\right| \tag{2.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \delta=\left(\delta_{k}\right), \quad \varepsilon=\left(\varepsilon_{k}\right), \quad \tau=\left(\tau_{k}\right), \quad t=\left(t_{k}\right) \tag{2.2}\\
& 0 \leq \delta_{k}<\varepsilon_{k} \leq 1, \quad 1 \leq \tau_{k}<t_{k}<\infty
\end{align*}
$$

and $|S|$ is the number of elements in S if S is finite, and $+\infty$ otherwise. This function counts those points $\left(\lambda_{i}, c_{i}\right)$ that lie in the union of the m rectangles

$$
\begin{equation*}
P_{k}:=\left(\delta_{k}, \varepsilon_{k}\right] \times\left(\tau_{k}, t_{k}\right], \quad k=1, \ldots, m \tag{2.3}
\end{equation*}
$$

Let $X=E(\lambda, c)$ and $\tilde{X}=E(\tilde{\lambda}, \tilde{c})$. We say that the systems of m rectangular characteristics $\left(\mu_{m}^{X}\right)$ and $\left(\mu_{m}^{\tilde{X}}\right.$) are equivalent (and write $\left(\mu_{m}^{X}\right) \approx$ $\left.\left(\mu_{m}^{\tilde{X}}\right)\right)$ if there exist a strictly increasing bijection $\varphi:[0,2] \rightarrow[0,1]$ and a positive constant Δ such that

$$
\begin{align*}
& \mu_{m}^{X}(\delta, \varepsilon ; \tau, t) \leq \mu_{m}^{\tilde{X}}\left(\varphi(\delta), \varphi^{-1}(\varepsilon) ; \tau / \Delta, \Delta t\right) \tag{2.4}\\
& \mu_{m}^{\tilde{X}}(\delta, \varepsilon ; \tau, t) \leq \mu_{m}^{X}\left(\varphi(\delta), \varphi^{-1}(\varepsilon) ; \tau / \Delta, \Delta t\right) \tag{2.5}
\end{align*}
$$

for every $m \in \mathbb{N}$ and all parameters $\delta, \varepsilon, \tau, t$; here $\varphi(\delta)=\left(\varphi\left(\delta_{k}\right)\right), \varphi^{-1}(\varepsilon)=$ $\left(\varphi^{-1}\left(\varepsilon_{k}\right)\right), \tau / \Delta=\left(\tau_{k} / \Delta\right), \Delta t=\left(\Delta t_{k}\right)$.

We shall use the following characterization of the quasidiagonal isomorphism of power Köthe spaces of first type in terms of their systems of multirectangular characteristics ([3]).

Proposition 2. The spaces $X=E(\lambda, c)$ and $\tilde{X}=E(\tilde{\lambda}, \tilde{c})$ are quasidiagonally isomorphic if and only if $\left(\mu_{m}^{X}\right) \approx\left(\mu_{m}^{\tilde{X}}\right)$.

The following fact will be useful in further considerations.
Proposition 3 ([13, 14]). Let $a=\left(a_{i}\right)_{i \in \mathbb{N}}, b=\left(b_{j}\right)_{i \in \mathbb{N}}, c=\left(c_{i j}\right)$, $c_{i j}=\max \left\{a_{i}, b_{j}\right\}$ and $\lambda=\left(\lambda_{i j}\right), \lambda_{i j}=b_{j} / c_{i j}$; let $\left\{e_{i} \otimes e_{j}\right\}$ and $\left\{e_{i j}\right\}$ be the canonical bases in $E_{0}(a) \widehat{\otimes} E_{\infty}(b)$ and $E(\lambda, c)$. Then the mapping $e_{i} \otimes e_{j} \mapsto e_{i j},(i, j) \in \mathbb{N}^{2}$, can be uniquely extended to an isomorphism $T: E_{0}(a) \widehat{\otimes} E_{\infty}(b) \rightarrow E(\lambda, c)$.
3. Proof of Theorem 1. In what follows, X and \tilde{X} are the spaces from Theorem 1. By Proposition 3 we may assume that

$$
X=E(\lambda, c), \quad \tilde{X}=E(\tilde{\lambda}, \tilde{c})
$$

where $c=\left(c_{i j}\right), \lambda=\left(\lambda_{i j}\right)$ with

$$
c_{i j}=\max \{\exp \alpha i, \exp \beta j\}, \quad \lambda_{i j}=\min \{1, \exp (\beta j-\alpha i)\}
$$

and $\tilde{c}=\left(\tilde{c}_{i j}\right), \tilde{\lambda}=\left(\tilde{\lambda}_{i j}\right)$, with

$$
\tilde{c}_{i j}=\max \{\exp \tilde{\alpha} i, \exp \tilde{\beta} j\}, \quad \tilde{\lambda}_{i j}=\min \{1, \exp (\tilde{\beta} j-\tilde{\alpha} i)\}, \quad(i, j) \in \mathbb{N}^{2}
$$

First we obtain some estimates for a single rectangle characteristic with a special choice of parameters.

Lemma 4. If $\alpha \beta=\tilde{\alpha} \tilde{\beta}$ then there exists $C>1$ such that

$$
\begin{equation*}
\mu_{1}^{X}\left(e^{-1}, 1 ; \tau, t\right) \leq \mu_{1}^{\tilde{X}}(\delta, 1 ; \tau, C t) \tag{3.1}
\end{equation*}
$$

for all $\delta \in[0,1)$ and $1 \leq \tau<t<\infty$.
Proof. In our case

$$
\mu_{1}^{X}\left(e^{-1}, 1 ; \tau, t\right)=\left|L_{1} \cup L_{2}\right|, \quad \mu_{1}^{\tilde{X}}(\delta, 1 ; \tau, C t) \geq|\tilde{L}|,
$$

where

$$
\begin{aligned}
L_{1} & =\left\{(i, j): \frac{\alpha i-1}{\beta}<j \leq \frac{\alpha i}{\beta} ; \frac{\ln \tau}{\alpha}<i \leq \frac{\ln t}{\alpha}\right\}, \\
L_{2} & =\left\{(i, j): i \leq \frac{\beta j}{\alpha} ; \frac{\ln \tau}{\beta}<j \leq \frac{\ln t}{\beta}\right\}, \\
\tilde{L} & =\left\{(i, j): i \leq \frac{\tilde{\beta} j}{\tilde{\alpha}} ; \frac{\ln \tau}{\tilde{\beta}}<j \leq \frac{\ln t+\ln C}{\tilde{\beta}}\right\} .
\end{aligned}
$$

Setting $M=\left((\ln t)^{2}-(\ln \tau)^{2}\right) / 2 \alpha \beta$ and taking into account that $\alpha \beta=\tilde{\alpha} \tilde{\beta}$ one can easily obtain the following estimates:

$$
\begin{align*}
\left|L_{1}\right| & \leq \frac{(1+\beta) \ln t}{\alpha \beta}, \tag{3.2}\\
\left|L_{2}\right| & \leq \frac{(\ln t+\ln \tau+\beta)(\ln t-\ln \tau+\beta)}{2 \alpha \beta}=M+\frac{2 \beta \ln t+\beta^{2}}{2 \alpha \beta}, \tag{3.3}\\
|\tilde{L}| & \geq \frac{(\ln t+\ln \tau+\ln C-\tilde{\beta})(\ln t-\ln \tau+\ln C-\tilde{\beta})}{2 \tilde{\alpha} \tilde{\beta}} \tag{3.4}\\
& -\frac{\ln t+\ln C}{\tilde{\beta}} \\
& \geq M+\frac{(\ln C)^{2}+2(\ln C-\tilde{\beta}-\tilde{\alpha}) \ln t-2(\tilde{\alpha}+\tilde{\beta}) \ln C}{2 \alpha \beta} .
\end{align*}
$$

Now we choose a constant $C>1$ so that $\left|L_{1} \cup L_{2}\right| \leq|\tilde{L}|$.
The desired estimates will be guaranteed if the sum of the right sides of (3.2) and (3.3) is smaller than the right side of (3.4):

$$
\ln ^{2} C+2(\ln C-(\tilde{\alpha}+\tilde{\beta}+2 \beta+1)) \ln t \geq 2(\tilde{\alpha}+\tilde{\beta}) \ln C+\beta^{2} .
$$

It is easy to see that this inequality is true for all $t>\tau \geq 1$ if we choose C so that $\ln C \geq 2(\beta+\tilde{\alpha}+\tilde{\beta})+1+\beta^{2}$.

Lemma 5. If $\alpha \beta=\tilde{\alpha} \tilde{\beta}$ then there exist constants C and p such that

$$
\begin{equation*}
\mu_{1}^{X}(\delta, \varepsilon ; \tau, t) \leq \mu_{1}^{\tilde{X}}\left(\delta^{p}, \varepsilon^{1 / p} ; \tau, t\right) \tag{3.5}
\end{equation*}
$$

for

$$
\begin{equation*}
0 \leq \delta<\varepsilon \leq e^{-1}, \quad 1 \leq \tau, \quad C \tau<t<+\infty \tag{3.6}
\end{equation*}
$$

Proof. Taking into account the expressions for Köthe matrices of the spaces X and \tilde{X}, we can obtain the following estimates:

$$
\begin{aligned}
\mu_{1}^{X}(\delta, \varepsilon ; \tau, t) & =|\{(i, j): \ln \delta<\beta j-\alpha i \leq \ln \varepsilon ; \ln \tau<\alpha i \leq \ln t\}| \\
& \leq \frac{(\ln \varepsilon-\ln \delta+\beta)(\ln t-\ln \tau+\alpha)}{\alpha \beta} \\
\mu_{1}^{\tilde{X}}\left(\delta^{p}, \varepsilon^{1 / p} ; \tau, t\right) & =\left|\left\{(i, j): p \ln \delta<\tilde{\beta} j-\tilde{\alpha} i \leq \frac{\ln \varepsilon}{p} ; \ln \tau<\tilde{\alpha} i \leq \ln t\right\}\right| \\
& \geq \frac{\left(\frac{\ln \varepsilon}{p}-p \ln \delta-\tilde{\beta}\right)(\ln t-\ln \tau-\tilde{\alpha})}{\tilde{\alpha} \tilde{\beta}}
\end{aligned}
$$

It follows from these estimates that the inequality (3.5) will hold for the parameters (3.6) if we take the constants so that

$$
\ln C>2 \max \{\alpha, \tilde{\beta}\}, \quad p>2(\beta+\tilde{\alpha}+\tilde{\beta}+1)
$$

In the following two statements we obtain estimates (2.4) for arbitrary $m \in \mathbb{N}$, but for special unions of rectangles that are located along some horizontal or vertical strips.

Proposition 6. Let $\alpha \beta=\tilde{\alpha} \tilde{\beta}$ and let $p>1, C>1$ be the constants of Lemma 5, Then

$$
\begin{equation*}
\mu_{m}^{X}(\delta, \varepsilon ; \tau, t) \leq \mu_{m}^{\tilde{X}}\left(\delta^{p}, \varepsilon^{1 / p} ; \tau, t\right), \quad m \in \mathbb{N} \tag{3.7}
\end{equation*}
$$

for all $\delta=\left(\delta_{k}\right), \varepsilon=\left(\varepsilon_{k}\right) \in\left[0, e^{-1}\right]^{m}$ with $\delta_{k}<\varepsilon_{k}$, and $t=(t, \ldots, t)$, $\tau=(\tau, \ldots, \tau)$ with $1 \leq \tau<t / C$; here $\delta^{p}:=\left(\delta_{k}^{p}\right)_{k=1}^{m}$ and $\varepsilon^{1 / p}:=\left(\varepsilon_{k}^{1 / p}\right)_{k=1}^{m}$.

Proof. Representing the set $E:=\bigcup_{k=1}^{m}\left(\delta_{k}^{p}, \varepsilon_{k}^{1 / p}\right]$ as a disjoint union of intervals, $E=\bigcup_{j=1}^{i}\left(\tilde{\delta}_{j}^{p}, \tilde{\varepsilon}_{j}^{1 / p}\right]$, and applying Lemma 3 to each rectangle $\left(\tilde{\delta}_{j}, \tilde{\varepsilon}_{j}\right] \times(\tau, t]$, we obtain

$$
\begin{aligned}
\mu_{m}^{X}(\delta, \varepsilon ; \tau, t) & \leq \sum_{j=1}^{i} \mu_{1}^{X}\left(\tilde{\delta}_{j}, \tilde{\varepsilon}_{j} ; \tau, t\right) \\
& \leq \sum_{j=1}^{i} \mu_{1}^{\tilde{X}}\left(\tilde{\delta}_{j}^{p}, \tilde{\varepsilon}_{j}^{1 / p} ; \tau, t\right)=\mu_{m}^{\tilde{X}}\left(\delta^{p}, \varepsilon^{1 / p} ; \tau, t\right)
\end{aligned}
$$

Proposition 7. Let $\alpha \beta=\tilde{\alpha} \tilde{\beta}$. Then there exists $C>1$ such that

$$
\mu_{m}^{X}\left(e^{-1}, 1 ; \tau, t\right) \leq \mu_{m}^{\tilde{X}}(\delta, 1 ; \tau, C t), \quad m \in \mathbb{N}
$$

for $0<\delta<1$ and all $\tau=\left(\tau_{k}\right), t=\left(t_{k}\right) \in \mathbb{R}^{m}$ with $1 \leq \tau_{k}<t_{k}<+\infty$; here $C t=\left(C t_{k}\right)_{k=1}^{m}$.

Proof. Let C be the constant of Lemma 4. Take any $m \in \mathbb{N}, \tau=\left(\tau_{k}\right)$, $t=\left(t_{k}\right)$ such that $1 \leq \tau_{k}<t_{k}, k=1, \ldots, m$, and represent the set $E:=$
$\bigcup_{k=1}^{m}\left(\tau_{k}, C t_{k}\right]$ as a union of disjoint intervals, $E=\bigcup_{j=1}^{i}\left(\tilde{\tau}_{j}, C \tilde{t}_{j}\right]$. Then, applying Lemma 4 to each rectangle $\left(e^{-1}, 1\right] \times\left(\tilde{\tau}_{j}, \tilde{t}_{j}\right]$, we obtain

$$
\begin{aligned}
\mu_{m}^{X}\left(e^{-1}, 1 ; \tau, t\right) & \leq \sum_{j=1}^{i} \mu_{1}^{X}\left(e^{-1}, 1 ; \tilde{\tau}_{j}, \tilde{t}_{j}\right) \\
& \leq \sum_{j=1}^{i} \mu_{1}^{\tilde{X}}\left(\delta, 1 ; \tilde{\tau}_{j}, C \tilde{t}_{j}\right)=\mu_{m}^{\tilde{X}}(\delta, 1 ; \tau, C t)
\end{aligned}
$$

Now we are ready to prove Theorem 1. As noted above, we need only show (iii) \Rightarrow (ii).

By Proposition 2, it is sufficient to prove that the systems $\left(\mu_{m}^{X}\right)$ and $\left(\mu_{m}^{\tilde{X}}\right)$ are equivalent, that is, there exists a constant Δ and a function φ such that for any m and for any collection (2.2) we have 2.4 and (2.5). Due to symmetry, it is sufficient to prove only 2.4 .

Let $\alpha \beta=\tilde{\alpha} \tilde{\beta}$. Then we choose a constant C and p satisfying the conditions of Propositions 6 and 7 . We are going to prove that 2.4 holds with $\Delta=C^{2}$ and any strictly increasing function $\varphi:[0,2] \rightarrow[0,1]$ such that $\varphi(x)=x^{1 / p}, 0 \leq x \leq e^{-1}$, namely

$$
\begin{equation*}
\left|\left\{i:\left(\lambda_{i}, c_{i}\right) \in \bigcup_{k=1}^{m} P_{k}\right\}\right| \leq\left|\left\{i:\left(\tilde{\lambda}_{i}, \tilde{c}_{i}\right) \in \bigcup_{k=1}^{m} Q_{k}\right\}\right| \tag{3.8}
\end{equation*}
$$

for any $m \in \mathbb{N}$, any system of rectangles (2.3) and

$$
Q_{k}=\left(\varphi\left(\delta_{k}\right), \varphi^{-1}(\varepsilon)\right] \times\left(\tau_{k} / \Delta, \Delta t_{k}\right], \quad k=1, \ldots, m
$$

To this end we introduce two auxiliary collections of rectangles in the following way. Taking from the set $\left\{e^{-1}, \delta_{k}, \varepsilon_{k}: k=1, \ldots, m\right\}$ only different numbers $\leq e^{-1}$ in increasing order, we obtain a new set $\left\{\xi_{k}: k=1, \ldots, n\right\}$ with $\xi_{n}=e^{-1}$. Setting $\xi_{n+1}=1$ and $\eta_{s}=C^{s-1}, s \in \mathbb{N}$, consider the rectangles

$$
\begin{aligned}
R_{r, s} & =\left(\xi_{r}, \xi_{r+1}\right] \times\left(\eta_{s}, \eta_{s+1}\right] \\
S_{r, s} & = \begin{cases}\left(\xi_{r}^{p}, \xi_{r+1}^{1 / p}\right] \times\left(\eta_{s}, \eta_{s+1}\right] & \text { if } r<n \\
\left(e^{-1 / p}, 1\right] \times\left(\eta_{s}, C \eta_{s+1}\right] & \text { if } r=n\end{cases}
\end{aligned}
$$

with $r=1, \ldots, n$ and $s \in \mathbb{N}$. Let

$$
M=\left\{(r, s): R_{r, s} \cap\left(\bigcup_{k=1}^{m} P_{k}\right) \neq \emptyset\right\} .
$$

It is easily seen that

$$
\begin{equation*}
\bigcup_{k=1}^{m} P_{k} \subset \bigcup_{(r, s) \in M} R_{r, s}, \quad \bigcup_{(r, s) \in M} S_{r, s} \subset \bigcup_{k=1}^{m} Q_{k} \tag{3.9}
\end{equation*}
$$

By Proposition 7, we have an estimate

$$
\begin{equation*}
\left|\left\{i:\left(\lambda_{i}, c_{i}\right) \in \bigcup_{s:(n, s) \in M} R_{n, s}\right\}\right| \leq\left|\left\{i:\left(\tilde{\lambda}_{i}, \tilde{c}_{i}\right) \in \bigcup_{s:(n, s) \in M} S_{n, s}\right\}\right| \tag{3.10}
\end{equation*}
$$

On the other hand, by Proposition 6, we have

$$
\begin{equation*}
\left|\left\{i:\left(\lambda_{i}, c_{i}\right) \in \bigcup_{r<n:(r, s) \in M} R_{r, s}\right\}\right| \leq\left|\left\{i:\left(\tilde{\lambda}_{i}, \tilde{c}_{i}\right) \in \bigcup_{r<n:(n, s) \in M} S_{r, s}\right\}\right| \tag{3.11}
\end{equation*}
$$

for any s such that there exists $r<n$ with $(r, s) \in M$. By the construction of the rectangles, we observe that

$$
\begin{equation*}
\left(\underset{r<n:(r, s) \in M}{ } S_{r, s}\right) \cap\left(\bigcup_{q:(n, q) \in M} S_{n, q}\right)=\emptyset \tag{3.12}
\end{equation*}
$$

and for all $s_{1} \neq s_{2}$ we have

$$
\begin{equation*}
\left(\bigcup_{r<n} S_{r, s_{1}}\right) \cap\left(\bigcup_{r<n} S_{r, s_{2}}\right)=\emptyset . \tag{3.13}
\end{equation*}
$$

Combining (3.9)-(3.13), we get (3.8), which completes the proof.

References

[1] P. A. Chalov, Tensor products of power series spaces of different type, Mat. Zametki 83 (2008), 629-635 (in Russian); English transl.: Math. Notes 83 (2008), 573-578.
[2] P. Chalov, T. Terzioğlu, and V. Zahariuta, Multirectangular invariants for power Köthe spaces, J. Math. Anal. Appl. 297 (2004), 673-695.
[3] P. Chalov and V. Zahariuta, On quasidiagonal isomorphism of generalized power spaces, in: Linear Topological Spaces and Complex Analysis 2, A. Aytuna (ed.), METU - TÜBİTAK, Ankara, 1995, 35-44.
[4] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Springer, Berlin, 1979.
[5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
[6] R. Meise and D. Vogt, Introduction to Functional Analysis, Oxford Univ. Press, New York, 1997.
[7] B. S. Mityagin, Approximative dimension and bases in nuclear spaces, Uspekhi Mat. Nauk. 16 (1961), no. 4, 63-132 (in Russian); English transl.: Russian Math. Surveys 16 (1961), no. 4, 59-127.
[8] -, Equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137.
[9] -, Non-Schwartzian power spaces, Math. Z. 182 (1983), 303-310.
[10] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
[11] V. P. Zahariuta [V. P. Zakharyuta], The isomorphism and quasiequivalence of bases for power Köthe spaces, Dokl. Akad. Nauk SSSR 221 (1975), 772-774 (in Russian); English transl.: Soviet Math. Dokl. 16 (1975), 411-414.
[12] -, On the isomorphism of Cartesian products of locally convex spaces, Studia Math. 46 (1973), 201-221.
[13] V. P. Zahariuta, The isomorphism and quasiequivalence of bases for Köthe spaces, (in Russian), in: Mathematical Programming and Related Questions (Drogobych, 1974), Theory of operators in linear spaces, Tsentral. Ekonom. Mat. Inst. Akad. Nauk SSSR, Moscow, 1976, 101-126.
[14] -, Linear topological invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996), 237-289.
[15] V. P. Zahariuta and P. A. Chalov, On basis structure of power Köthe spaces of the first type, Izv. Vyssh. Uchebn. Zaved. Sev.-Kavk. Reg. 1 (2007), no. 1, 8-12 (in Russian).

Peter Chalov
Department of Mathematics
South Federal University
344090 Rostov-na-Donu, Russia
Vyacheslav Zakharyuta
Sabanci University
34956 Istanbul, Turkey
E-mail: chalov@math.rsu.ru

[^0]: 2010 Mathematics Subject Classification: Primary 46A32; Secondary 46A04.
 Key words and phrases: multirectangular characteristics, tensor product, power Köthe spaces.

